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1. In the previous paper [3] and [4], the author tried to seek holomorphic solutions
of some system of partial differential equations with one simple pole in several complex
variables. On the other hand A. FurioL1 MARTINOLLI [2] considered a Darboux
problem with singularities xy = 0, that is x = 0 and y = 0, in two real variables.
Moreover, I. T. KIGURADZE [5] considered the existence and uniqueness of the so-
lution of the problem

u™ = f(t,u,uy ., u® D), wYT() =0
(=12 .,v k=12,..,m)

where the function f(1, xy, X,, ..., x,) has singularities for ¢ = t, (k = 1,2, ..., m)
in one real variable ¢.

The aim of this paper is to give a singular partial differential equation of order
m + n with m + n simple poles which has a unique global holomorphic solution in
a domain of the space C? of two complex variables.

2. Singular ordinary differential equation. Let Q be a bounded convex domain in
the complex plane C of a complex variable x. Let Lbe a positive number larger than 1
such that any two points of Q can be connected by a line segment in 2 with length
smaller than L. Let m be a positive integer. Let ay, a4, ..., a,_, be m distinct points
of Q.:We put

(2.1 P(x) = (x —ap) (x — ay) ... (x — ap-1).

Let P;(x) be the polynomial in x satisfying

() P) = (5 — a) 9

for j=0,1,...,m — 1. Let Ag(x), A4(x), ..., A,—,(x) and D(x) be bounded holo-
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morphic functions in Q satisfying
(2.3) [Ax)| =M (j=0,1,...m~—1), |D(x)|<N
in Q for positive numbers M and N.
Lemma 1. Assume that
(2.4) mML" < 1.

Then the problem
‘ d"u "} d’u
j=
d'u )
acj-(aj) =0 (J =0,1,...m — 1)

has a unique holomorphic solution in Q.

Proof. Let Hy, be the set of all holomorphic functions v(x) in Q satisfying

d’v
m—1 El—_] (X)

(26) lello sup 3

xeQ j=0 | X — dj

< 4+ .

Then we have

SLx|le (j=01,...,m—1)

—(x)] =

x7

div
d

in Q for v e Hy,. For v e Hg,, we define a holomorphic function Tv in Q by putting

x so Sm-2 m—1 . J
(2.7) To=| dso| ds;... Z —I-J—iAj Ei._l.) (Sm—1) dSp—y
m—1 4=0 P dx’

ao ay a

where the integral contours are line segments in Q. Then we have Tv e H, and

(2:8) | To]o = mML[o]q .

‘We define a holomorphic function v, in Q by putting

(2.9) vo(x) = f dsoj ds, ...J'm- D(Sp-1) dSp—1y -

Then we have v, € H,, and

(2.10) [vo]@ £ mL"™N
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since the integral contours are line segments with length smaller than L > 1. We
define a sequence {v,; v = 1, 2, ...} of holomorphic functions in Q by putting

(.11 () () = (To) () (r=0,1,2,..).
By (2.8) and (2.10) we have v € Hg and

1) Iola £ (m12) mizN

for v=0,1,2,... We define a sequence {u,(x); v=1,2,...} of holomorphic
functions in Q by putting

(2.13) u(x) = vo(x) + v,(x) + ... +v,_4(x) (v=1,2,..).

Then we have

(2.14) Ug,y=Tu, +v, (v=12,..).

By (2.4), the sequence {u,;v = 1,2,...} converges uniformly to a holomorphic
function u(x) in Q. By (2.14) u is a holomorphic solution in Q of the integral equation

(2.15) u=Tu+v,.

Hence u is a holomorphic solution in 2 of the problem (2.5).

Now let u and v be two holomorphic solutions of the problem (2.5). We put
w=u — vin Q. Let Q' be a relatively compact convex subdomain of @ containing

Ay, Agy ..y Ap—1. Then w € Hy,, and we have

(2.16) w="Tw.
By (2.8) we have
(.17) [wlar < (mAL2)” ]

forv =0,1,2,.... By (2.4) we have ||w|o- = 0. By the theorem of identity w is iden-

tically zero in Q.

Lemma 2. Assume that there hold (2.4) and
(2.18) Afa) 0 (j=0,1,...m—1).
Then the ordinary differential equation

(2.19) ) S = ':g:pj(x) A &+ P(x) D)

has a unique holomorphic solution in Q.
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Proof. Let u be a holomorphic solution in @ of the equation (2.19). Substituting
x = a;in (2.19), we have

. du .
(2.20) —(a)=0 (j=0,1,....,m—1)
dx’
by (2.18). Hence u is the unique holomorphic solution in Q of the problem (2.5).

3. Singular partial differential equation. Let Q, and Q, be bounded convex domains
in the complex plane. Let L be a positive number larger than 1 such that any two
points of 2, and any two points of 2, can, respectively, be connected by line segments
in Q, and Q, with length smaller than L. Let m and n be positive integers. Let
ag, ay, as,, ..., a,_, be m distinct points of Q. Let by, by, b,, ..., b,_{ be n distinct
points of 2,. We put

(3.1) I1={0,1,...,m} x {0,1,2,...,n} — {(m,n)},
(3.2) P(x,y) = (x — ao) (x — ay) ...
v (x=au- ) =bo)(y = by) .. (v = by—y) -

Let P;(x, y) be a polynomial in x and y for (j, k) €I satisfying

(3.3) P(x,y) = (x = a;) (y = bi) Py(x, y)
(=01..m-1k=0,1,...,n—-1),

(34) P(x, y) = (x = aj) Pju(x, y) - P(x,9) = (y = be) Pl )
(G=01,...m—1,k=01,...n~-1).

Let A;(x, y) and D(x, y) be bounded holomorphic functions in @ = @, x Q, of the
space C? of two complex variables x and y for (j, k) €I satisfying

(35) |[45(x, 9 = M,
(3.6) |D(x, )| < N
in Q for positive numbers M and N.

Proposition 2. Assume that
(3.7) 2mnML"" < 1.
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Then the problem

= X Pule ) Aulx, y) + P(x, y) D(x, ),

3.8 P(x,
(3.8) (y)amay g ay

J
%(aj:y)=0 (] =0,1,...,m— 1)’

k
Z—;}—l:(x,bk)=0 (k=0,1,..n—1).

has a unique holomorphic solution u(x, y) in Q. This solution u satisfies u € Hy and
(3.9) Ju]o < 2mnL™*"N .
Proof. Let u be a holomorphic solution in Q of the problem (3.8). Since
Jj
a—u_(aj,y) =0 (j=0,1,...,m—1)
ox’

in Q,, we have

(3.10) u(x, y) =J dsoj dsl...jm Z——(s,,, 1 V) dspm—y
aop aj X

in Q. Since (Bku/ay") (x,b,)=0(k=0,1,...,n — 1), we have

o
(3.11) oy

in Q,. By (3.10) and (3.11), we have

X 'S0 Sm =2 y to
(3.12) u(x, y) =j dsof ds, f dsm_l_[ dtoj‘ de, ...
ao a am-1 bo by

s (B, 27 ) + D( ) d
.. — Sm—15 bn— Sm—15 In- bp—1 -
I e e R

Let H, be the set of all holomorphic functions v(x, y) in @ satisfying

T (b)) =0 (j=01,..,m k=0,1,...n—1)

Jk(x y) a j a k( y)
(3.14) [v]e = sup Y , < +00.
(x.3)eR (keI P(x, y)
Then we have
ot
3.15 g
(3.15) Gomer |0x7 9y "( y)‘ ol
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for ve Hy. For v e H,, we define a holomorphic function Tv in Q

x S0 Sm -2 y to
(3.16) (Tv) (x, y) =f dSOJ. ds, J ds,—; J dtoj dt, ...
ao ay am-1 bo by

" j+k
n-2 ij itk
.. A - Sm—15 bn— dt, .
an_l ((i%s]( P oxi ay* (Sm-1 1) .

Then we have Tv e H, and

(3.17) [To]e < maML™*"||v], .

We define a holomorphic function v, in Q by putting

. x S0 Sm=-2 y o
(3.18) vo(x, ¥) =J~ ds, f ds, J‘ ds,—; J. dtoJ' dt, ...
ao ay am-1 bo by

th-2
J D(Sm—l’tn—l)dtn—l .

bn-1
Then we have v, € Hy, and

(3.19) [vo]o £ mnL"*"N .

We define a sequence of holomorphic functions {v,;v = 1,2, ...} and {u,;v =
= 1,2,...} by putting (2.11) and (2.13) for this T. By (3.17) and (3.19), we have

(3.20) [o.] e £ (maML**") mnL"*"N

for v=0,1,.... By (3.7) and (3.20), the sequence {u,;v =1,2,...} converges
uniformly to a holomorphic function u in . u is a unique holomorphic solution of
the integral equation u = Tu + v,, that is, the problem (3.8). By (3.19) and (3.20),
we have (3.9).

Theorem 1. Assume that there hold (3.7),

(3.21) Apfa;, )0 (j=01,...,m—1)

in Q,,

(3.22) sup Aulap )l L (j=01,...m—-1,k=0,1,...,n—1),
ves | Ajpfajy)|  nL

(3.23) Aw(x,b) 0 (k=0,1,...,n—1)

in Q,

(3.24) sup Aulx by) <L (=01,...m—=1,k=01..,n-1)
xeQ A",u(x, bk) mL"
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and
(3.25) Ajfaj, b) + 0

for (j, k) €I. Then the singular partial differential equation

(3.26) P(x, v)

X" oyt Z PJk(x y) AJ’\(X y) + P(x )) D(x y)
V' el ay*

has a unique holomorphic solution u(x, y) in Q.

Proof. We put
du .
(3.27) o(y)= —(a;y) ((=01,..,m-1)
ox’
in Q,. Substituting x = a; in (3.23), we have
(3'28) Z ij(aj’ y) Alk(al’ y) q)j(y) =0
in Q,. By (3.22) and Lemma 2, we have
J
(3.29) T y) =0 (G=0,1,.om—1)
ox’
in Q,. Similarly, we have
u
(3.30) o (x,b) =0 (k=0,1,...n— 1)

in Q,. By (3.29) and (3.30), u is the unique holomorphic solution of the problem
(3.8).

4. Non-linear equation. Let f(x, y, ..., u, ...) be a holomorphic function in
(4.1) ’ ={(x, s oo U .- .)eQ x €™ 15 |ug| < R, (j, k) el}
such that
(4.2) [f(x, ¥, oup .. )| SN,
Gy et ) = (6 ys v ) SN Y Juy — v
Gl

Let ¢, be a positive number with ¢, < 1 satisfying
min (1, R)

4.3 .
( ) & < AmnIm 2N
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For any positive number & with ¢ < &,, consider the non-linear problem

itk

(+9) Per) ot = 3 Pl d) Aul ) S+
’ ’ ox™ oy" o ox? ay*
oty
+ ¢ P(x, Xy Vyuuny — s oo s
( y)f( ox’ ay* >

u \ .
5;(“1'0’) =0 (j=0,1,...m—1),

ak
Eﬁ@JO=0(k=QL“qn—ﬂ

in Q. Assume (3.7). Let v, be the holomorphic solution in @ of the problem

am+nvo
(45) . P(x, y) X" 3y = y k)EI Pul(x, y) A s ))

+eP(x, ) f(x,y,...,0, )

)
'é;,?‘(apy) =0 (] = 0: l,...,m - 1),
v
gy—,‘j(x, b)=0 (k=01 n_1).

By Proposition 2, we have

(4.6) [vole < 2emnlntny

We want to construct sequences {v,; y = 0, 1,2,..} and fusv = 0,1,2

holomorphic functions in  satisfying

() Pl ))6 "‘6y <j,ks Pilx7) Ai(x, J’) o +&P(x, y).

aj-*-kuv X
.{f(x, Vs ouey 6xj’6y", ) _ f(k’ o Q’“‘uv-l
Toxi oyt ’

v,
0 =0 (=0

0x sm—1),
v
“D(x,b) =0 _
ayk(x l\) (k—0>1,...,n—-1),
(4.8) WO w=ugo
o1
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forv=1,2,...in Q. Assume that v,, v

so as to belong to H, and satisfy "7 P~y and uo, uy, ..., u, are well-defined
4.9 _ < mtn

(4.9) lov-slle < (2emnL: ”N)"_’ 2emnL"*"N

and

(410) ”uv”Q é 48an'"+nN .

By (3.15) and (4.2), we have

oitky, .
(4.11) ‘f(x,Y,-.., (?xj@k"“>\f(x’J”"” L”l,... <
o’ ox’ ay* -
oI tky, itk
=N igk A sl S PN|ve-ye-
(keI [0x? Dy axI ok | = v-1]le

By (4.11), Proposition 2 and (3.9), the problem (4.7) has the holomorphic solution v,
in Q satisfying

(4.12) Jou]] e < 2mnLM e I2N |
By (4.3), (4.9), (4.10) and (4.12), we have

V- 1||Q

(4.13) [o,]0 £ QemnL*"+2NY 2empm+ny < (3) 2emnL™*"N
and
(4.14) luvislle < demnrrnn .
Hence we have
aj+k v+1
(4.15) '3 iy ( y)’ < 4emnL™* "N <R

in Q. Thus we have proved that the sequences {v,; v =0,1,2,...} and {u,;v =
© =0,1,2,...} are well-defined. By (4. 13) the sequence {u,; v = 0, 1, 2, ...} converges
uniformly to a holomorphic function u(x y) in Q. u(x, y) is a unique holomorphic
solution of the problem (4 4) Summarizing the above result, we have the following
Proposition and Theorem.

Proposition 3 Assume (3.7). Let ¢, be a positive number satisfying (4.3). Then for
any positive number ¢ with & < ¢, the problem (4.4) has a unique holomorphic
solution in Q.

Theorem 2. Assume (3.7), (3.21), (3.22), (3.24) and (3.25). Let &, be a positive
number satisfying (4.3). Then for any positive number ¢ with ¢ < &, the singular
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partial differential equation

(4.16) Ple, ) T S Py, ) Al )
. X, y) —— = 4, 2(x, y) ——
Y oxm oy e VA ) oy
oIt ky
+ eP(x, y) f(x, v, o0 ——, ...
(e, ) f(x, y PPN )

has a unique holomorphic solution in Q.
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