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To Prof. §. Schwarz on the occasion of the 60-th anniversary of his birthday.

A generalization of well-known disjoint covering systems of arithmetic sequences
is given in this article (see [1]). It is shown here that the majority of results con-
cerning disjoint covering systems can be extended to the case of the so called vec-
tor-covering systems of arithmetic sequences.

I

Let Z be the set of all integers, a, n € Z with 0 < a < n. Denote by a(n) the set
of all numbers of the form a + sn, where s € Z. In the following such a set will be
called arithmetic sequence with modulus n. Let f be the characteristic function of the
set a(n) on Z, i.e. if r € Z then

1 if rea(n)
)= {0 otherwise .

Using this notion we can recall the definition of disjoint covering systems as
follows:

Definition 1 (see [1]). A system of arithmetic sequences
(1 ajn;) j=1,2,....,m, 2<n, <n, £...<n, -
is said to be a disjoint covering (DCS) if for any r € Z the equality
m
2 Sr) =1
j=1

holds.
Now we shall introduce a new kind of covering.
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Definition 2. Let a vector ¢ = (v, v,, ..., v,,) With real v, be given. The system (1)
will be called an g-covering if for any r € Z we have

o)) élvj filr)=1.

We say that (1) is a vector-covering system (VCS) if there exists such a vector &
that (1) is an e-covering.

Obviously any DCSis a VCS for ¢ = (1, 1, ..., 1). It is easy to show that to a given
vector & (with m = 2) there exists an e-covering system if and only if at least two
components v; are positive.

Corollary. (1) is an e-covering if and only if the system
bJ(nJ), j= 1,2,...,m
is an e-covering with b; = n; — a; — 1.

Proof. Obviously, the function g,(r) = f(—r — 1) is the characteristic function
of the set b(n;). We use simply (2). 4

The functions f,(r) are periodic with periods being divisors of N = [ns,
ny, ..., n,] — the least common multiple of moduli n,, n,, ..., n,. Thus we can easily
prove the following

Lemma. The system (1) is an e-covering if and only if (2) holds for the numbers
0,1,...,N — 1.

Example. The system

1(3), 2(3), 3(4), 1(4), 0(6), 1(6), 5(6)

isa(1,1,1,1,1, =1, —1)-covering. This could be checked showing that for each
number 0, 1, ..., 11 the equality (2) holds (see the preceding Lemma).

In a vector-covering system, superfluous sequences can exist in the sense that
deleting them we get a vector-covering system again. Some of our results hold only
for VCS without superfluous sequences.

Definition 3. The system (1) is called a reduced & = (vy, v, ..., v,,)-covering if it is
an g-covering but no such non-empty subsystem a;(n;) i = 1,2, ..., k exists that for
any r € Z the equality

_glvj(fjt(r) =0

holds. A system is said to be a reduced VCS if it is a reduced covering for a
vector .
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The system from our example could be shown to be reduced. Obviously, deleting
the superfluous sequences in a VCS we get a reduced one.

1I
Theorem 1. (1) is a (vy, v,, ..., v,,)-covering if and only if for any function g given
on Z the equation
N-1 m  Nnj—1
o o) =30 3, olas + on)
= I= =

holds.

Proof. Suppose (1) is a (vy, s, ..., v,,)-covering. Take some t5€{0,1,...,N — 1}.
The term g(t,) occurs in the inner sum

N/nj—1
Y, 9(a, + sn;)
s=0

exactly if #, € aj(n;); therefore the coefficient of g(t,) on the right hand side of (3) is

m

2 v f{t)
ji=1
but this is equal to 1 since (1) is a (vy, v, ..., v,)-covering (see (2)) and hence (3)
follows.
Now suppose (3) holds for any g. We choosere€ Z,0 < r < N — 1. Putting g(r) = 1
and g(n) = 0 otherwise we get from (3)

m  Njny—1 m
L=Yo % glaj+sny)) =3 v;fr)
=17 550 i=1
and according to Lemma (1) is a (vy, v, ..., v,)-covering.
If we consider a (v,, v,, ..., v,)-covering ,where v; are integers, one can prove the
following (in a sense stronger).

Theorem 2. Let vy, v,, ..., 0, be integers. Then the system (1) is a (vy, v, ..., V)~
covering if and only if the equality
Ve

ve
4 + oo =
() e" — 1 efm—-1 e-1

aj a; I

holds.

Proof. Putting g(f) = ' we obtain from (3) (after some modifications) the relation
(4). Now suppose (4) holds. Multiplying by e* — 1 we can rewrite this relation in the
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form

m N/nj 1

©) z—~z o % ety =0,

Thus we have a vanishing polynomial in e with integral coefficients and therefore all
coefficients must be zero (e is a transcendental number). But the coefficient by e” is
equal to

> v fAr)
Jj=1
r=0,1,...,N — 1. According to Lemma, (1) is a (v,, v;, ..., v,)-covering.

Corollary 1. Putting g(t) = 1 in (3) we get

V.

INgE]
1S
Il

=

j=1h;

Corollary 2. Putting g(t) = t in (3) we have

e a; 1 1
vV;|l—— )= — -
,;1 I(nj 2) 2

A. S. FRAENKEL proved in [2] the following interesting result:

(1) is a DCS if and only if

Y i1 B, (ﬂ) - B,
j=1 n;

holds for t = 0,1,2,..., where B,(x) is the t-th Bernoulli polynomial and B, the
t-th Bernoulli number.

In [8] another proof of Fraenkel’s result is given. This one can be applied (with
some modifications) to prove the following theorem (generalizing Fraenkel’s result
for vector-covering systems):

Theorem 3. The system (1) is (vy, v,, ..., v,)-covering if and only if
Y vni " B, &) = B,
j=1 n;

Using the properties of Bernoulli polynomials some coherences could be found
between Theorems 2 and 3 (see [8]).

holds fort = 0,1,2, ...
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IIx

Let (1) be a (vy, v,, ..., v,)-covering system. Let z be any complex number with
z # (27i/N) u, u integer. Then putting g(t) = z* in (3) we get

(6)

Comparing the residues on both sides of (4) we have for all j = 1,2, ..., m (see [3]):

m aj
v;z 1

=1z =1 z-—1

() i Y arisan; _ {0 if s=1,2,...,n; — 1.

=1 n, 1 if s=n

njlsne

Remark. Similarly as in [3] it can be proved that (7) is a necessary and sufficient
condition for (1) to bea (v, ..., v,,)-covering*). We showed here only that (7) is
a necessary condition.

Theorem 4. Let n, be a modulus of a (v,, ..., v,)-covering system. If v, + O then
there exists a modulus n, (u * t) so that n, l n,.

Proof (see [3]). If no n, (t * u) is divisible by n,, then we get (putting j = u,
s = 11in (7))
& eZm'au/nu — 0
nll
which is impossible.

Corollary. Due to Theorem 4 the modulus n,, is also a divisor of some n,, u + m,
provided v, + 0. Owing to (1) this is possible only if n, = n,_,. For DCS this
is a well-known fact (see [1]).

However, we can prove a little more:

Theorem 5. Let (1) be a (vy, ..., v,)-covering with v,, % 0 and let q be the smallest
prime divisor of n,,. Then (1) contains at least q equal moduli.

Proof. Suppose n; S ny £ ... S Mpoy < Mpyoyyy = Npy_gs3 = ... = n,, (from
Corollary of Theorem 4 the inequality t > 2 follows). It is sufficient to prove that
t = gq. Puttingj=m,s=1,2,...,9g — 1lin (7) we get the system of equalities

t—1

Z vm_zeluixam—glnm =0.

z=0

Hence the system of equations

t—1 \
Z xzeZntsa,,,_z/n,,. — 0 , s
z=0

I

1,2,...,t

*) The equation (6) in [3] contains some misprints.
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has a solution Xo = U, ..., X;—; = Up_41, but this is impossible if t < g (because
then the determinant of this system is not 0). The proof is complete.

Remark. The analogous result for DCS was conjectured in [7]; later it was
proved in [4] and [3]. Our proof is a slight modification of that from [3].

S. K. STEIN proved in [6] the following interesting theorem:

If in a DCS (1) there exist exactly two equal moduli (and the remaining ones
are distinct) then

(8) n,=2 for j=1,2,...m—-2, n,_, =n, =2""1,

J

Theorem 6. If (1) is a (vy, ..., v,)-covering with v, % 0 in which there exist exactly
two equal moduli then (1) is a DCS and (8) holds.

Proof. We shall proceed by induction concerning the number of sequences m.
For m = 2 the assertion obviously holds. Suppose the assertion holds for all systems
with less than m sequences. From the conditions of our theorem and from the
Corollary of Theorem 4 we have

Ny <fy<..<MNpy_py<Np_y=n,.

Thus from (7) putting j = m, s = 1 we get

(9) v 1e27n’a,,._|/n,,. 4+ eZuiam/nm — 0
m- m
and hence |v,| = |v,,— 4| Let us distinguish two cases:
a) Up-y = —v,. Then we get from (9) a,, = a,,—,. This is a contradiction because

deleting the equal sequences a,,(n,,) a,—(n,-,) we should get a VCS with distinct
moduli (see Theorem 5).

b) v,, = v,,—;. Then it can be shown by elementary considerations that (9) implies
(supposing a,,—; < a,,)

nlll
a, =Qa,_1+ —.
2

Hence the sequences da,,—(n,,-;) and a,(n,,) can be replaced by a single sequence
ay,—1(n,[2). In such a way we obtain a VCS having m — 1 sequences and exactly two
equal moduli (see Theorem 5). Now use the inductive assumption and (8) follows.
From Corollary 1 of Theorem 1 we have v,,.., = v,, = 1 and hence (1) is a DCS, too.

Remark. For DCS simiiar results were proved in the cases that there exist exactly
3,4, 5, 7 equal moduli (see 5 and [7]).
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