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(Received April 4, 1973)

In this paper the convergence of the w-periodic solutions u,(f) and u,(1) () respec-
tively of the equations

(1) eu(t)+uw(t)+ Au®) =f(t), eeR* =(0,0), teR = (-0, o),
(2) euw'(t) + uw'(t) + Au(t) = pF(e) (u) (t), e, pe R, teR

respectively for ¢ — 0, are studied. Here A is any linear selfadjoint strongly positive
operator with domain 2(4) and range %(A) in a Hilbert space H, p is a small para-
meter, f({) is an w-periodic function with values in H and F is an operator mapping
from the space of w-periodic functions with values in H into itself.

This problem was studied in the concrete form

€y — g, + 2au, + cu = g(t, x) + &f (1, x, u, u,, u,),

(@ > 0,c>0,teR*, x e R), by M. KOPACKOVA in [2] where the classical solutions
were investigated. The present article is intended as a supplement to our preceding
paper [1] the notation of which we use frequently.

The text is divided into two paragraphs. The first paragraph deals with the linear
equation (1) and in the second one the weakly nonlinear equation (2) is studied. The
results are formulated in Theorems 1.1, 2.1 and 2.2.

Let us recall the notation: The space H is equipped by the norm || induced
by the scalar product (., .) and for a non negative integer k, ve R* and

u(*) € Ci(R; 2(A4")) “= {u : R > H; ue C0, w); 2(4")), u(t + w) = u(t), te R}

we write

Jley = sup {“;— A" u()

; teR, 1=0,1,...,k}.

In all paragraphs c;, (j = 1,2, ...) are some constants.
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1. THE LINEAR CASE

In this paragraph we will investigate the character of the convergence of u,(t)
to uo(?) in the graph norm of A'/? under the assumption A'/? f(r) is continuous on R.
Firstly, we shall introduce some useful facts.

Let us consider the equations
(1.1) u'(t) + 2au'(t) + Au(t) = f(t), (x> 0),
(1.2) u'(t) + Au(t) = (7).
The function u,(t) and u,(t) respectively is called a solution in <0, ) of (1.1)
and (1.2) respectively if
u, € U,(<0, )) = C*<0, w); H) n C'(0, w); 2(A'?)) A C°(K0, »); 2(A))
and

u; € U, (€0, o)) == C'(€0, w); H) n C°(K0, ®); 2(A))
respectively and u, and u; satisfy the equation (1.1) and (1.2) respectively in <0, ).

Proposition 1.1. Let A be selfadjoint with inf o(4) = m > 0, 6(A) being the spec-
trum of A, o* > m *), and let f € Co(R; D(A'?)). Then the function

(13) ul(t) = — f ° exp (ar) S A= OV p Ly

(A _ a2)1/2
and

(1.4) uy(t) = J' ° exp (cA) f(t + 1) de

respectively is a unique w-periodic solution on R of the equation (1.1) and (1.2)
respectively.

Proof. Denote

sin (A4 — o?)'/?
(A _ a2)1/2

J(t) = exp (af) cos (A — «*)'*, teR

T(f) = exp (t4), teR™ = (—0,0).

K(t) = exp (af) , teR

Using theorems on differentiation of Bochner’s and spectral integrals (see e.g. [3]
*) «? > mis not necessary but the opposite case we need not investigate.
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p. 191 and [1]) and integrating by parts we find from (1.3) and (1.4)

(1.5) uy(r) = ”i (xK(x) + J(2)) f(t + 1) dr
uy(t) = — Mi (o K(t) + 22 J(1) — (4 — o2*) K(7)) f(¢ + 1) dv + £(t)
w) = — [* 4 1@ 4 51 + 9y ae + 100,

where the existence of the integrals in (1.5) is ensured by sup |4'2 f(r)| < oo and
by the estimates teR

(1.6) K@) = (o« — m)™"? exp (o — («® — m)"/?) + [t| exp (at), teR™,
HA”Z K(t)| < afa®> — m)™"2exp t(a — (> — m)'"?) + (1 + aft|) exp («t)
teR™,

[J@)] < expt(x — (> — m)'/?), teR™,
[T(t)| < exp(tm), teR™,

(L6) 4" T()| < (2e1)2, te<——51n—l, 0), 4172 T(1)] < m'’2 exp (tm),

1 N
te{ —o0, —— ).
2m

(The norms are taken in the space of continuous linear mappings of H into itself.)
Let us prove e.g. (1.6). Let x € H; then

|42 K(r) x| = <Jwi exp (2at) W d||E(2) x”z)”2 <
s ([ 2o oo M= ey )

® 22 00 2\1/2
+<f exp (2ut) (A — o* +a2)gnl(l—2a)
-

a2

) ) s

< (e — m)" Y2 exp t(a — (o> — m)"/?) || (E(«?) — E(m)) x|| +
+ (1 + aft]) exp () [[(E(0) — E(«?)) x| <
< [ofe® — m)" "2 exp (e — (> — m)"/?) + (1 + at|) exp ()] |x]|, teR™,
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where E(2) is the resolution of the identity for 4. The continuity in ¢ of the integrals
in (1.5) follows from [3] p. 191. The continuity in ¢ of A u,(f) and A4 u,(r) may be
established analogously. The uniqueness of the found solution may be obtained
from the relations

ro

0= (v5(r) + 2xvh(r) + A vy(1), vy(xr))dr =

JO

roT1 d , 5 1d
- [TTL & ol + 2l + L 2 o]

ro

0= | (vi(x) + Avy(r), v4(x)) dr =

JO

ro

1d ,
=[5 a1 + (a0, 0|

JO

holding for any solution v,(t) and v,(t) respectively of the equation (1.1) and (1.2)
(with f(f) = 0) respectively.

Now let us investigate the equation
1.7 eu'(t) + u'(t) + Au(t) = f(1), teR,
)

where 4 is as above f € CO(R; Z(A'/?)) and ¢ = 0 is a parameter. According to the
preceding proposition for any & = 0 there exists a unique w-periodic solution u(f)
of (1.7) and it is given by the formula

(1.9) u(t) = _zjo K()f(t +1)de. &> 0,

-0

uo(r) = Jw T(x) f(r + 7)dr,
denoting

sin 2i (4e4 — 1)"?
K(t) = exp + “_'j‘—_TTz—' , teR™.
2¢ (43A - 1)

Let us formulate the main result of this paragraph:

Theorem 1.1. Let the assumptions of Proposition 1.1 be fulfilled. Then for any
ve0,1) and any &,> 0 there exists a constant ¢ = c¢(m, &), (1lim c(y, &) = o)

u=04
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such that the inequality

(1.9) lue = uoll0,1/2) = Egm_"—?sv”f”m,x/z) ,

where u, is given by (1.8), holds for ¢ e <0, g ).

Proof. We may assume g, = 3/16m without loss of generality. Choose fixed
£€(0, &) and M € {m, 1/4¢) and denote P, = E(M) — E(m), P, = E(1/4¢) — E(M),
Py =1 — E(1/4¢), A; = P;A, i =1,2,3. Clearly we have 9(4,) = 9(4,) = H,
9(A45) = 2(A) and

[4'72x] = [ A4x] + 42" x] + [ 437x]

xeP(A'?).
Writing

v(t) = uft) — uo(t), teR
we get

0
1427 o 0)] < j 2P, K(5) + P, T@)] desup 412 1€

— o0

Further, for x € H it is

P,2K (1) + T(1)) x = Mi qde, 7, 4) dE(A) x ,

mi=1

where

‘11(8, T, A) = exp (7:,1) — exp zls (1 - (1 _ 48/1)1/2) .

(1 — da2) 2
e T, A) = ex
ol ) 1+ (1 — 4el)? p<1 + (1 — 4ed 1/2)
and
qs(e, 7, 4) = (1 — 4ed)™ 72 CXPl(l +(1—4e2)'?), 1eR™, Ae(m, L .
2 4¢

Obviously

_ 1/2
q3(e, 7, 4) < gs(e, 7, M) < (1 — 4eM) ™% exp (1(1_248M—)> ,
P

teR™, Aelm, M)

and hence setting

pe,v) = max |qe, 7, 4)|, (i=12),
Ae(m, M



we find

-0

(1.10) J'O \nPl K1) + P, T(r)| dr < J‘O (p4(e, 1) + @i(e, 7)) dT +

- 0

+ 2¢(1 — 4eM)7 L.

Making use of the monotonicity of sh &/¢ we can derive easily the estimate

[P, K ()] < (1 — 4eM)~"/2 exp 21 (1 = (1 — 4eM)'2) .
&

Also the estimates
1P Q)] = o (09, [P0 5 Hewe(3), 1a 0] 5 000 (7).
2¢ 2¢ 4e
holding for t € R™ may be obtained in an elementary way. Thus

(1.11) J im(zupz K@) + |P. T()]) dr < % " 1714 =

< 3MTY(1 — deM)™1,

(L12) j " QP K@) + [Py T)]) dr < 66

- o0

Since
42 00] = [ CIP KL + [P T demax 426 1= 23,

we find from (1.10), (1.11) and (1.12)

(1.13) 42 v(n)] = [J.O (¢4(e, ©) + @i, 7)) dr + 2

+
w 1 — 4eM

+3M7(1 — 4eM)M? + 63] [fl0.1/2, teR.

Let M = M(e) = 3[16¢. The function q1(&, 7, A) reaches its maximum at the point
A = mforany t€ R™ and ¢ > 0. Indeed, it is

1+ (1 — 4e2)'/?

IIA

<< [exp (2) — (1 — 4 M() ™" exp ( “—_ﬂ <

1+ (1 — dem)/?
< tfexp (rd) — texp(rA)] £ 0



for 1 £0, e (m, M(a)) from where it follows
2¢

(4] 0
oie, 1) dr = qq(e, t, m)dt = — —
f—-m 1( ) f—w 1( ) m 1—(1- 4em)!/?
For the function g,(e, 7, 1) we have
8 ~1/2 51— T
laa(e 7. )] = Jo(1 — 4e M(2) ™2 412 exp () <

pel{m,1/4¢)

?4v~1
<2 (1 —eM@E)V? max [pexp(H
3 2
where e R™, A < m, M(¢g)) and v € €0, 1) is arbitrary. As
Y (4 ) 3V
m'exp(-tm), 1e—00, — =
3 4m
v 4 —=3v\¥ 3y
max (pexp-tu) =4 (= )exp(=v), te( -2, —4ev
pe {m,M(e)) 3 47 4m
3 vexp t {(—4 0>
— —), te{—4dev,
16¢ 4¢

and (1 — 4e M(g))™"/* = 2, it is
0 24v —=3v/4m
f ¢i(e, 1) de < 3 & [m"f exp (T.) dr +
,—dey d 3\ 0
! h> exp * dr < ﬁ@ g
16e) J_ ., 4 1—v

+ (32)‘ exp (—v)
4 —3v/4m (_T)v

where lim ¢,(u) = c0. So we have from (1.13)

u=04
I 5 [26 4 200+ 80 4 320 4 6] U
v 4va2—v _v—1 Clon) 3
§ & 23 m + — ”f”(O,I/Z) N 0<e é ——) .
I—v 16m

q.ed.
2. THE NONLINEAR CASE

In this paragraph we will investigate the periodic problem
(2.1) ew'(t) + u'(t) + Au(t) = p F(e) (u) (1)
(2.2) u(t + o) =u(t), teR, eeR", pueR,
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with the operator A fulfilling the assumptions of Proposition 1.1. Here the nonlinear
perturbation F(g) (u) (1) is supposed to be of the form

(23) F) (1) (1) = Fo(0) () () + Fe) () (1) + Fo(e) () (1)

where F (&) (1) (1) are some nonlinear operators mapping from the space of w-periodic
functions with values in H into itself. The behaviour in ¢ of each of Fi(¢) (u) (1) in
(2.3) is in connection with character of its domain and range. The precise form of
this dependence is given in the following assumptions:

(Ao) The function |[F(&) (0) (*)]|(0.1/2) is bounded in & for & e €0, &y).

(A;) The operator F,(e)(u) () maps U,(R) into Co(R; Z(4)) and U(R) into
C2(R; 2(A'?)) respectively for ¢ > 0 and ¢ = 0 respectively. It fulfils the
Lipschitz continuity conditions

[F1(e) (1) (+) = Fi(e) () (o.1y £ Lfjuy = usll0.1y» £€(0,8) .
uy, uy € Uy(R),
§!F1(O) ("1)() - FI(O) (“z)(')H(O.l/Z) = L!|“1 - uz”(o.n’ Uy, Uy € Un(R)-

(A,) The operator F,(¢) (u)(r) maps U,(R) and U,(R) respectively into CO(R;
Z(A'?)) for ¢ > 0 and & = O respectively. It fulfils the Lipschitz continuity
conditions

[Fa(e) (u1) () = Fale) (u2) (0.1 = Le"2[Juy — 3]0,y £€(0,80)
uy, uy € Uy(R),
[F2(0) (u3) (+) = F2(0) (u2) (*)]c0.1/2) = Ly = uzf0,175 1. u2 € Uy(R).

(A;) The operator F(e) (u) (f) maps U,(R) into C(R; 2(A'/?)). It fulfils the Lipschitz
continuity condition

1F3(e) (1) (+) = Fsle) (2) (Vo172 = L&y — wr]101/2) . 2€(0, 807,
uy, u, € Uy(R)
and F5(0) (u) (1) = 0.

A

Let us introduce for ¢ > 0 the Banach space B, = {u € U,(R); u(t) is w-periodic
on R} with the norm [u, = [[u] 0.1y + &]|u[(1,1/2) + &*|#](2.0) and the Banach
space B, = {ue U,(R); u(r) is w-periodic on R} with the norm [juf, =
= [ull.0) + [0,y

Theorem 2.1. Let A satisfy the assumptions of Proposition 1.1 and let F satisfy
(Ao), (A}), (A,) and (A;). Then there exists a p, > 0 such that for any ¢ € €0, &)
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(60 > O being arbitrary) and any p in {0, o> there exists a unique solution u(u)
in B, of (2.1) and (2.2).

Proof. According to the results of the preceding paragraph we are justified to
define for u € B,, (¢ > 0), the operators

Gi(w) () = —2u j " K@) F&) @) (t +7)de, i=1,2.3,

— 0

Gl @) = XG0 @),
Go(k) (u) = uF T(c) F(0) () (¢ + 7) d .

—

According to the proposition 1.1 it is sufficient to show that there exists a py, > 0
such that for any ¢ € (0, &) and any u € <0, po» there exists a unique fixed point
u,(1) of the operator G,(u) () in B,. So let us apply the Banach fixed point theorem
to the operator G,(u) (4) in B, (¢ = 0). First, let us note that as

[K(0)] = (1 - dem) 172 exp [; (-1 4em)”2)] 1 erp (—)

2¢

[4'2 K(7)| < (48)"Y* (1 — 4em)™ "% exp [218(1 - (1 - 4sm)”2] +

+ [(4e)71% + (20) 2 [e[J exp (52)
and

[9)] < exp [; (-0~ 4em>”2)],

where & > 0, te R™ and J,(t) = exp (t/2¢) cos (t/2¢) (4eA — I)"/%, we have

(2.4) j K@ dr S e < o, J A K de 5 e,

- -

["penesa.

—

Besides, from (1.6,) we have

- o0

(2.5) J * AV T@) de = es < .
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The operator G,(u) (u), (¢ = 0) maps B, into itself (Proposition 1.1). Let us prove

that the operators G;(u) (), (i = 1, 2, 3), are in B, Lipschitz continuous with a con-
stant L(u) = L,u.

If ¢ > 0 and u,, u, € Uy(R) then

[4(GE(k) (1) (1) = G () (u2) ()] =

=2‘u

<

J(j K(t) A(F,(e) (uy) (¢ + 1) — Fy(e) (uy) (¢ + 7)) de

= zl‘J-i ”Ks(f)” dr|[F7*(e) (uy) (*) = Fule) (2) (0.1 = 2uc;Llu, — 0.1
14(GZ () (1) (1) = G2(w) (u2) (1)) =
ﬁAm&@#Wﬂ@ww+ﬂ—n@wm+ﬂmr

= 2# <

S 2014 KO aeF) ) ()~ Foe) ) O =

< 2pesfluy — uy 0.1y

[4(GI (1) (1) — GX(w) (uo))]| < 2ucsLeluy — uyr,y2,

&

A2 £ (620) () () = G2(0) () (0)

1
= 2ue — =
M2s

J.(_) (K(7) + J,(v)) AT2A(F () (uy) (¢ + 1) — Fi(e) (uy) (¢t + 7)) dt

S Mea + ca) m™ 2Ly — usfo,1) 5

¢ 472 (620 (1) 1) ~ G20 () (1)

< ez + ca) Ljuy — 30,1y,

&

A2 % (G3(w) (1) (1) — G3(w) (u2) (1))

< ey + cq) Le¥?|uy — uz)1,1/y

gmmm@m-qumm

62

1
. 2uer —
4¢?

fmeM4u4mw.

<5 [ () weon oo o
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JFae) (uy) (+) = Fale) (42) (D] 0.1y = 5(3”’_’02 +¢g) Lluy = 50,1,

& ;—%(Gf(u) (1) (1)) = GZ(w) (u2) ()] =

< g[(Zcz + ) m™H? 4 46" 2e; T Le' P uy — w0y 5

82

L6200 @) ()~ G0 (u2) (0)

=

IIA

g[(zcz + cg) m™V? 4 46" 2e| Le* |y — s (1,172

for te R wherefrom the last assertion follows immediately. If ¢ = 0 and u,, u, €
€ U,(R) then using (2.5) we can prove similarly as above

[A(Go(r) (u1) (2) = Golp) (u2) ()] = 2pesLijuy — w201y
and

< 2ul(es + m™ %) uy — us] 0.1

15, (6006 () () ~ Gl () )

for t € R. Now having proved the Lipschitz continuity with respect to u in B, with
the constant L(i) = L,u we can make the operators G,(i) (u), ¢ € 0, &,, contractive
and mapping any fixed ball of B, with center in u = 0 into itself choosing u suf-
ficiently small (independently of &€ <0, &)). Indeed, if u is in B, and [ul, < r,
(r > 0) then

163(1) ()] = [Gw) (0) = Gw) () + [ Gulw) (0)]. =

< Lyur + 2p ” j i mKE(r) F(e)(+ +7,0) dr

€

Since

= ¢

“ f ° K6 (- +7,0) de

&

in virtue of (A,) it suffices to choose 0 < p, < r(Lyr + 2¢4)~". Note that the con-
stants L, and ¢, kK = 2, ..., 6 may be estimated by the only constant ¢, which is of
the form ¢; = ¢,(m, &) = cg(m™" + &)

To prove the theorem on convergence of u,(u) to uy(u) analogous to the theorem
1.1 we shall make the following additional assumptions:
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(Ap) The functions [Fy(e)(u)(*)|0.1/2 [[Fa(e) () (0,12 are bounded for
£ €40, &) and u € U,(R), [July, < r.

(A}) The operator F,(¢)(u) (r) fulfils the condition [Fy(e) (u;) (+) — Fi(e)
(“2)(')“(0,1/2) = L““i - “2”(0'1/2)’ ee(0, 60, Uy, Uy € U,(R).

(A3) The operator Fy(e) (u) (f) fulfils the condition [Fa(e) (uy) (+) = Fale)
(15) ()] 0.0y L& [luy — s 0,172 €€ (0, &0), ty, i, € Uy(R).

Theorem 2.2. Let A satisfy the assumptions of Proposition 1.1 and let F satisfy
(Ao), (Ao) (Ay), (A, (Az), (AY) and Fy(e) () (t) = 0. Then for any ve(0.1)
there exists a constant k > 0 and a i, € (0, pio) such that

v

Ju(r) = ()] c0,1/2) = k#( L+ 1/1(8)),

1—v

where e 0, 1t,), £ €0, &) and
o) = sup {3 [F6) @) = FAO) @)ai we Ui(R), o, 7).
Proof. Expressing A4"/(u,(s) (1) — uo(u) (1)) in the form
Auf) ()~ wo®) 0) = ~1 3, 2 K A () (0 -
) () (¢4 ) e+ [ @K + T A EL) () e+ 9 —

- " AT (R0 ) ~ FO) () ¢

we find

) — uo(W)]0,1/2) = #[2LJO ”Ke(f)“ df”“s(“) — uo(W)]0,1/2) +

0
+ zLj 1412 K (0)] de e72] i) = ooy +

= o0

+

“|f " QK9 + TE) AL () () + F(0) 1) (¢ + ) a

[ ) 0 1 ) = O il
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We have proven in paragraph 1 the existence of a constant cg such that

f " (K + TE) AVEE(E) (1) (1 -+ ) + Fle) (o) (1 + 9) e

sup
teR

= lcs_avv (1F1(e) (o) 0,129 + [ F2(e) (o)) 0.1/2)

for v € (0, 1) arbitrary. Further the terms || Fi(e) (uo())[0,1/2) (i = 1, 2) are by (Ay)
bounded by some constant co. Using (2.4) and (2.5) we find

lue() = wo)llco.1/2) < l‘[ZL(Cz + &) [ulw) = uo(W]0,1/2) + f(fcz &+ ¢ '/’(3):, .

Choosing 0 < p; < min ([2L(c, + ¢3)]™", o) we have

i) = uo(W)lco,1/2) = #[1 - 2L(c2#; c3)]-1 (126_801 &+ ¢s !//(8))’

Osp=sp, €e{0,¢).

Corollary. If the operators Fe)(u)(r) (i =1,2) are equi-continuous in ue
€ Uy(R), ||u]|v,y < r in the point & = 0, i.e. if lim |[Fi(g) («) — F{0) ()] 0.0y = 0
£204

uniformly for u e U,(R), |uy, £ r, then clearly lim |u(1) — uo(1)](0,1/2) = O.
=04
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