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A TRACE INEQUALITY FOR FUNCTIONS OF TRIANGULAR 
HILBERT-SCHMIDT OPERATORS 

JOHN J. BUONI, Youngstown 

(Received May 17, 1972) 

Introduction. CHANDLER DAVIS [1] has found trace inequalities for functions of 
matrices^). This note gives an extension of a variation of a resuh of C. Davis. Section 1 
developes a trace inequaUty for simultaneously triangularizable matrices and 
section 2 extends these results to simultaneously triangularizable Hilbert-Schmidt 
operators. 

Section 1. Two matrices X and Y are said to be simultaneously triangularizable iff 
there exists a unitary matrix U such that UXU^ and UYU^ are upper triangular. 
A matrix N shall be called strictly upper triangular iff N is upper triangular and 
nilpotent. Now if N is strictly upper triangular and S is a diagonal matrix then the 
following are clear: 

(i) NS and SN are nilpotent; 
(ii) if/(Я) can be expanded in a power series in the circle |Я — ÀQ\ < г; 

со 

/(Я) = X А„(Я - Яо)", 
п = 0 

then this expansion remains valid when the scalar argument X is replaced by the matrix 
S + N whose spectrum, a(S + iV), Hes within the circle of convergence; 

(iii) f(S + N) can be written as a diagonal plus a strictly nilpotent where the 
diagonal part is precisely f(S). 

Let us adhere to the following notations: set / ^ [ ^ , a] = {f{ß) — f{^))l{ß — ^) 
for ß Ф oi, ф^ф = (i//, Ф), and let фф^ be the linear operator defined by фф^в = 

n 

= (Ö, Ф) ф. In this notation, we find that the trace (XY) = ^ фfXYфl where {Ф11 i = 
1 = 1 

^) The author has pointed out to Chandler Davis that the proof of Theorem 3 in [1] is in
correct. 



= 1, ..., и} is any orthonormal basis and X and Fare matrices. We can now obtain 
a trace inequality for a function of a pair of diagonal matrices. 

Lemma 1. Let X and Y be a pair of diagonal matrices, К an open disc of radius 
r > 0 centered at the origin, and /(Я) have a power series whose region of con
vergence contains G(X) and (т(х + у). / / /^[(^, a] EK for ^ e (т(х + у) and a e (j{x), 
then {trace (77*)}"^ . trace {Y{f{X + У) - f{X)))eK. 

Proof. Since X and У are a diagonal pair of matrices, there exists an orthonormal 
basis {Ф11 i = 1, ..., /1} such that: 

(1) X=t<^i^i^î, Y=tßi^i^*r^ 

(2) / ( x+y) = f/(a,+ )?,)'А,'АГ, / W = i/(«,•) «̂i-A* ; 
t = l t = l 

and 

(3) trace Y{f{X + У) - /(X)) = ^ .А*У(/(Х + У) - /(X)) ^ , ) . 
1 = 1 

If we replace (l) and (2) into (З), (3) then becomes 

t ßkfi^i + ß) - /(«0) = t \ß\' {f{^-i + ß^ - A^Mßi • 

Since/^[a^ + ßi, oci^ e К and К is an open disc of radius r, we find that 

!(/(«( + ßi) - fioii))ißi\ = !(/(«; + ße - fi^i))lßi\ 

Thus, 

< r , 

I {trace (77*)}-^ trace {7(/(Z + 7) - /(X))}| = 

-\{t\ßi\4fi^i + ße~m)lßeltm<r, 
i = l i = l 

and this yields the result. 
We can now use the lemma to obtain a similar identity for matrices which are 

simultaneously triangularizable. 

Theorem 1. Let X and Y be simultaneously upper triangularizable, К an open 
disc centered at the origin of radius r, and f{X) have a power series whose region 
of convergence contains (т{Х) and a(X + 7). / / /^ [7 , а]еК for у e (7(X + 7) 
and a e (т{Х), then {trace 77*}"^ . trace Y{f{X + 7) - f{X)) e K. 

Proof. Since X and 7 can be simultaneously upper triangularized, then there 
exists и unitary, S^ and 52 diagonal, and N^ and N2 strictly upper triangular, such 



that UXU* = 5i 4- iVi and UYU^ == Si + N2. Since the trace is invariant under 
similarity, it follows that 
(4) {trace 77*} " ̂  trace Y{f{X + 7) - /(7)) = 

= {trace (777*17*}-^ trace UYmu{f{X + 7) - /(7)) t/* = 
= {trace I77[7*L/7*1/*}-^ trace 1/7I7*(/(1/(X + 7) C/*) -̂  f{UXm)) = 

= {trace (52 + N2) (S* + iV*)}-i trace (52 + iV2) 
(/(5, + ^2 + iVi + iV2) - / (S , + N,)) . 

Since the trace is Hnear, and since ^25*, S'2iV2 and N2if{Si -\- S2 + N^ + N2) -
— f{^i + Nif) are nilpotent, one finds that (4) equals 

(5) {trace {S2SI + N2Nt)}'' trace S2(/(5i + S2 + N^ + N2) - /{S^ + N^)) = 

- {trace (S2S* + N2Nt)}-' trace (52(/(5, + S2) ~ /(Sx)) + ^2 7) 

where Tis strictly upper triangular and nilpotent. Thus (5) equals 

(6) {trace {S2SI + N2NI)}-' trace 52(/(Si + ^2) - /(S^)) • 

Since trace 52^* and trace N2NI are positive, the absolute value of (6) is less than 
or equal to 

[{trace S2St}-' trace S2(/(5i + S2) - /(Si))| . 

The result now follows immediately upon application of Lemma 1. 

Section 2. We would Uke to recall a few facts about Hilbert-Schmidt and trace 
class operators on a separable Hubert space H. For complete information about 
these operators, the reader is referred to [2]. Let {<Ai},̂ i be a complete orthonormal 
set for Я. A bounded linear operator X is said to be a Hilbert-Schmidt (H. S.) 
operator in case the quantity ||X|| = {Xl '̂Aip}^^^ is finite where |Xi^,| is the norm 

i 

of the vector Xij/i. The number || • |[ is sometimes referred to as the Hilbert-Schmidt 
norm and is independent of the orthonormal basis chosen. Every H.S. operator 
is compact and is the Hmit in the || • || norm of a sequence of operators with finite 
range. If X is an H.S. operator and/ is a singlevalued analytic function on a do
main containing (г(Х) vanishing at zero, then/(X) is an H.S. operator and the map 
X -^ f(X) is continuous in the || • || norm. 

Let {^i}T=i be the eigenvalues repeated according to multiplicity of the H.S. 
00 

operator X. X is said to be a trace class if Y, \^i\ < 00• The trace X of an operator 
i = 1 

00 

of trace class is defined to be trace X =Y^i- Although an H.S. operator X need 

not be of trace class, the product of two H.S. operators are of trace class [2, p. 1093]. 



Two compact operators X and 7 on Я will be said to be simultaneously triangu-
larized iff there exists an orthonormal bases {^i^f^i and orthogonal projections P„ 
onto the subspace determined by i/̂ i, 1A2, • • -, ^n such that PnXP^ = ZP„ and P^Pn = 

In view of the above statements, it would be desirable to extend Theorem 1 to H.S. 
operators. With this in mind the following lemma is useful. 

Lemma 2. Let X and Y be a simultaneous triangularizable pair of Hilbert-
Schmidt operators, then there exists two sequences of operators {X„}, {Y„} such that 
the following hold: 

(i) for each n, X„ and Y„ are simultaneously triangularizable operators of finite 
rank, 

(ii) the sequence {X„} and [Y„} converge in the Hilbert-Schmidt norm to X and Y 
respectively. 

Proof. By the hypothesis there exists an orthonormal basis {iAi}r=i ^^^ ^ sequence 
of orthogonal projections {P„} onto the subspace spanned by i/̂ i, 1/̂2̂  • • •> 'An such that 
P„XP„ = XP„ and P„YP„ = YP„ for each n. Set X„ = P„XP„ and Y„ = PJP^, 
Clearly (i) is satisfied. 

To show (ii), observe that 
00 00 00 

\\x - x„p = E |(x - p„xp„) ^,f = E |(x - xp„) ф,\' = E \хф,\'. 
00 

Since Y, \X^i\^ equals | |z | | and converges, the proof of the lemma is completed. 
i=l 

The above lemma, together with the earlier discussion, the continuity of trace 
[2, p. 1100], and Theorem 1 yields the following theorem. 

Theorem 2. Let X and Y be simultaneously triangularizable Hilbert-Schmidt 
operators on a separable Hilbert space, К an open disc, and /(Я) an analytic 
function vanishing at zero with a power series whose region of convergence contains 
(T{X) and (T{X+Y). If f'[y,(x]eK for у e G{X + Y) and a e a{X), then 
{trace (77*)} -^ trace {Y{f(X + 7) - f{X))} e K. 
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