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THE EXISTENCE OF 2-FACTORS IN SQUARES OF GRAPHS 

YousEF ALAVI^) and GARY CHARTRAND, Kalamazoo 
(Received September 27, 1973) 

The square G^ of a connected graph G is that graph having the same vertex set 
as G and such that two vertices of Ĝ  are adjacent if and only if the distance between 
these vertices in G is at most two. Figure 1 shows two graphs У and Z and their 
squares. 

Fig. 1. 

^) Research supported in part by a Faculty Research Fellowship from Western Michigan 
University. 
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An n-f actor of a graph G is a spanning subgraph of G which is regular of degree n. 
A 2-factor of G, then, is a collection of disjoint cycles which spans G. FLEISCHNER 
[3] proved that the square of every сусИс block is hamiltonian and hence contains 
a 2-factor. In [5] NEUMAN proved that the square T^ of a tree T with at least three 
vertices is hamiltonian if and only if T does not contain the graph Y (of Fig. 1) as 
a subgraph. HOBBS [4] proved that if every vertex of a graph G has degree at least 
two, then Ĝ  has a 2-factor. By Neuman's result, neither У̂  nor Z^ is hamiltonian; 
however, it is not difficult to show that Z^ contains a 2-factor while Y^' does not. 

It is the object of this paper to present a necessary and sufficient condition for the 
square Ĝ  of a graph G to possess a 2-factor. Before stating this result, we givQ one 
additional definition; all other definitions not given here may be found in [1]. An 
end-path is a path in which at least one end-vertex of the path has degree one and all 
vertices which are not end-vertices have degree two. 

The following lemma will prove convenient. 

Lemma. Let G be any cyclic block, and let v be any vertex of G. Then there 
exists a vertex и in G adjacent with v such that G — v — и is connected. 

Proof. Since blocks contain no cut-vertices, the graph G — v h connected. Sup
pose for every vertex м of G adjacent with v that G — Ü — м is disconnected. This 
implies that every vertex adjacent with t? is a cut-vertex of G — г;. Let В be an end-
block of G — f (a block of G — t? containing exactly one cut-vertex of G), and let w 
be the cut-vertex of G — г; belonging to B. No vertex of Б, except possibly w, is 
adjacent to v in G. Hence, w is a cut-vertex of G; this contradicts the fact that G is 
a block and estabhshes the lemma. 

We now present our main result. 

Theorem. Let G be a connected graph having at least three vertices. A necessary 
and sufficient condition for the square G^ of G to contain a 2-factor is that there 
exists in G no vertex which is the end-vertex of three end-paths of length two. 

Proof. Suppose G is a connected graph containing a vertex v which is the end-
vertex of three end-paths of length two. Let the three vertices of degree one in these 
three end-paths be denoted by Vi,V2, and 1;з. Assume Ĝ  contains a 2-factor F. 
For each i — 1, 2, 3, the vertex Vi is incident with two edges in G ,̂ one of which is the 
edge v^v. Now each vertex v^ and thus each edge v-v belongs to F; however, this implies 
that V is incident with three edges in F. This is impossible since every vertex in F has 
degree two. Therefore, our assumption is incorrect, and Ĝ  does not contain a 2-factor. 

For the converse, we proceed by induction on the number p of vertices of G. The 
result follows immediately for p = 3,4, and 5. Assume that if Я is a connected graph 
of order at least three but less than p{'^6) such that H contains no vertex which is 
the end-vertex of three end-paths of length two, then H^^ has a 2-factor. Let G be 
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a connected graph of order p such that G contains no vertex which is the end-vertex 
of three end-paths of length two. 

If G is a block, then by Fleischner's theorem, G^ is hamiltonian so that G^ has 
a 2-factor. Hence, we may assume G to have cut-vertices and two or more blocks. 
An end-block of G is a block of G containing exactly one cut-vertex of G. Among 
all end-blocks of G, we consider those end-blocks В with the property that, with at 
most one exception, every block containing the cut-vertex in В is an end-block. We 
refer to such end-blocks as terminal end-blocks. 

Three cases are now considered, depending on the number of vertices in terminal 
end-blocks. 

Case 1. Suppose G contains a terminal end-block В having four or more vertices. 
Let V be the cut-vertex of G belonging to B. Denote by Ĝ  the connected graph 
obtained by deleting from G all vertices of В different from v. 

If Gl contains a vertex which is the end-vertex of three end-paths of length two, 
then, necessarily, f is a vertex of degree one on one of these three end-patlis. By 
Fleischner's Theorem, B^ contains a hamiltonian cycle F j , and by the induction 
hypothesis, (G^ — vY contains a 2-factor F2- Thus, Fj u F2 is a 2-factor of G .̂ 

We henceforth assume that Ĝ  contains no vertex which is the end-vertex of three 
end-paths of length two. Suppose, first, that Ĝ  has at least three vertices. Then, by 
the induction hypothesis. Gl contains a 2-factor F^. In [2] it was shown that if H 
is a cyclic block with at least four vertices, then Я^ — x is hamiltonian for every 
vertex X of H. By applying this result, we arrive at a hamiltonian cycle F2 in the graph 
B^ — v. Hence F^ u F2 is a 2-factor of G^. 

Next assume that G^ has two vertices. Let и be the vertex of G^ different from v. 
We investigate two subcases. 

Sub-case A. Assume В — v contains a vertex which is the end-vertex of three or 
more end-paths of length two. Let v^, V2,..., % /c ^ 3, be all vertices of degree one 
on all end-paths of length two in В — v. Since В has no vertices of degree one, v is 
adjacent to each of the vertices v^, V2,..., î ^ in B. Hence В — {v, v^, V2,..., t;J 
is connected, contains more than three vertices, and has no vertex which is the end-
vertex of three end-paths of length two; thus, by the induction hypothesis, the 
square of Б — [v, v^, V2,..., %} has a 2-factor F^. The subgraph of G^ induced by 
the vertices in the set {u,v,Vi,V2,...,Vk} contains a hamiltonian cycle F2. Then 
Fl u F2 is a 2-factor of G^ 

Sub-case B. Assume В — v contains no vertex which is the end-vertex of three 
or more end-paths of length two. By the lemma, there exists a vertex w in Б which is 
adjacent with v such that В — v — w h connected. Suppose there exists no vertex 
in В — V — w which is the end-vertex of three or more end-paths of length two. 
Since p'^e, B — V — w contains at least three vertices. Therefore, by the induction 
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hypothesis, (В — v — w)^ contains a 2-factor F^. Furthermore, the subgraph induced 
by the vertices w, v, and w in G^ is a triangle F2, and F^ и F2 is a, 2-factor in G .̂ 

Now suppose that there exists in Б — t; — w a vertex which is the end-vertex of 
three or more end-paths of length two, and let w^, W2, ..., w ,̂ Ä; ̂  3, be all vertices 
of degree one on all end-paths of length two in Б -- г; — w. Then В — {i;, w, w^, 
W2,..., Wk} is a connected graph with at least three vertices which does not contain 
a vertex which is the end-vertex of three end-paths of length two. Hence the square 
of Б -- {v, w, Wj, W2,..., w j contains a 2-factor F^. Moreover, in G^ the subgraph 
induced by [u, v, w, w^, W2,..., w j contains a 2-factor F2 so that F^ u F2 is a 2-
factor of G^. 

Case 2. Suppose G contains to terminal end-block having four or more vertices 
but does contain terminal end-blocks with exactly three vertices. Let Б be a triangle 
which is a terminal end-block of G, and let v be the cut-vertex of G in Б. If all blocks 
containing v are end-blocks, then it follows immediately that G^ is hamiltonian and 
hence has a 2-factor. We therefore assume that not all blocks containing v are end-blocks. 

If G has other end-blocks containing v, then define H^ to be the graph obtained 
from G by deleting those vertices different from v in the end-blocks containing v. 
Also, define H^ = HQ — v. Necessarily, each of HQ and H^ is connected, and at 
least one of HQ and H^ has order at least three and contains no vertex which is the 
end-vertex of three end-paths of length two. Let H denote whichever of HQ and H^ 
has the above property. Then Я^ contains a 2-factor F^, and the remaining vertices 
of G induce in G^ a hamiltonian cycle F2. Thus, F^ u F2 is a 2-factor of G .̂ 

Assume now that Б is the only end-block of G containing v, and define Gj to be 
the graph obtained by deleting the vertices of Б from G. If G^ contains no vertex 
which is the end-vertex of three end-paths of length two, then Gl has a 2-factor F^ 
and Fl u Б is a 2-factor of G^. Otherwise, let v^, V2,..., f/̂ , A: ̂  3, be the vertices of 
degree one in all end-paths of length two in G^. If GQ is the graph obtained by 
removing the vertices of Б and the vertices r^, V2,.-., t̂fc from G, it follows, by the 
induction hypothesis, that GQ has a 2-factor F\ In G^ the subgraph induced by the 
vertices of Б and {f̂ , V2, *.., v^} contains a hamiltonian cycle F". Therefore, F' u F" 
is a 2-factor in G^. 

Case 3. Suppose that the only terminal end-blocks in G are acyclic. Let B^ be 
a terminal end-block containing the vertices v and v^, where v is the cut-vertex. 
If all blocks containing v are end-blocks, then G is a star graph and G^ is hamiltonian 
and thus contains a 2-factor. Hence, we assume not all blocks containing v are 
end-blocks. 

If G contains at least three vertices of degree one adjacent with v, say 1;̂ , V2,..., % 
(fc ^ 3), then at least one of HQ = G — {v^, V2,..., %} and H^ = HQ — v is a con
nected graph of order at least three containing no vertex which is the end-vertex of 
three end-paths of length two. Such a graph H has the property that H^^ contains 
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a 2-factor F^ while the remaining vertices of G induce in G a hamiltonian cycle F2-
Thus, Fl u F2 is a 2-factor of G^ 

Suppose next that the only vertices of degree one adjacent with v are v^ and V2. 
Define Gl = G — [v, v^, t'2}. If G^ has no vertex which is the end-vertex of three 
end-paths of length two, then Gl has a 2-factor F^. The subgraph of G^ induced by 
{v, v^, V2} is a 2-factor F2, and F^ u F2 is a 2-factor of G^. If, on the other hand, 
Gl contains a vertex which is the end-vertex of three or more end-paths of length 
two, we let Wi, U2,..., w ,̂ /c ^ 3, be all vertices of degree one on all end-paths of 
length two in G .̂ Here the subgraph of G^ induced by {i;, ÜJ, 1̂ 2, «i, W2, •••, wj 
has a hamiltonian cycle F while the square of Go = G^ — (wj, U2,..., w j has 
a 2-factor F". Then F' u F' is a 2-factor of G^ 

Finally, suppose that v^ is the only vertex of degree one adjacent with v. Then we 
have a situation analogous to that considered in Case 1. The graph G^ can be shown 
to have a 2-factor by essentially the same argument made in Subcases A and B. 

This completes the proof. 
We conclude by presenting a corollary. The subdivision graph S{G) of a graph G 

is that graph in which every edge e = uv is replaced by a new vertex w and two new 
edges uw and wv. The total graph T(G) of G is that graph whose vertex set can be 
put in one-to-one correspondence with the set of vertices and edges of G in such 
a way that two vertices of T(G) are adjacent if and only if the corresponding elements 
of G are adjacent or incident. It is a consequence of the definitions, that for every 
graph G, T(G) = 1_S(G)Y- From this, we arrive at the following. 

Corollary. Ä necessary and sufficient condition for the total graph T(G) of 
a connected graph G having at least two vertices to possess a 2-factor is that G 
does not contain three vertices of degree one which are adjacent with the same 
vertex. 
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