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This paper shows that every left translation of a compact semilattice is continuous,
and that the semilattice of all left translations with the compact-open topology is
iseomorphic to the semilattice of all retract ideals with the hyperspace topology.
A corollary to the latter result is that the semilattice of all left translations of a com-
pact semilattice is compact. The first part of the paper will study the generalizations
of these concepts in a larger class of partially ordered spaces.

1. IDEAL RETRACTIONS OF POSETS

A poset is a partially ordered set. A compact poset X is a compact Hausdorff
space with a partial order < whose graph is closed in X x X. For x e X, L(x) =
={yeX:y < x}and U(x) = {y eX:x = y}. Most terminology on posets will
be taken from [4] and most on semigroups from [5].

If X is a poset, a set I < X is said to be an ideal if for xeI and y < x, then y € I.
A map f:X — X is said to be an ideal retraction if for y < xe X, f(y) £ f(x);
forx e X, f(x) < x;f? = f; and f(X) is an ideal. An ideal I of X is said to be a retract
ideal if there exists an ideal retraction f of X such that f(X) = I. If X is a semilattice,
then we define x = y if and only if xy = y. It will be seen in section 2 that the ideal
retractions on a semilattice are precisely the left translations. Propositions 1.1 and 1.2
are a partial generalization of 2.2 which is taken from PETRICH [5] which summarizes
material found in [6].

1.1. Proposition. A subset I of a poset X is a retract ideal if and only if for any
x € X there is an a el such that I n L(x) = L(«). Furthermore if f is an ideal
retraction, L(x) 0 f(X) = L(f(x))-

Proof. Let I be a retract ideal and f an ideal retraction such that f(X) = 1. It
will be shown that L(x) n I = L(f(x)). If ye L(x) n1, then y < x which implies
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y = f(y) £ f(x). Thus y e L(f(x)). Since I = f(X) is an ideal, L(f(x)) = I, and
since f(x) £ x, L(f(x)) € L(x). Therefore, L(f(x)) = I n L(x). This also proves the
last statement in the proposition.

Clearly, any set I is an ideal if it has the property that for all x € X, there is some y
such that L(x) n I = L(y). Define f: X - X by I n L(x) = L(f(x)). Note that for
a, beX, L(a) = L(b) implies a = b, so f is well defined. Now f2 = f and f(x) < x.
If x £y, then L(f(x)) = I n L(x) = I n L(y) = L(f(y)) which implies f(x) < f(»).

* 1.2. Proposition. For a poset X, the set A(X) of ideal retractions with the operation
of map composition forms a semilattice which is isomorphic, by the map f — f(X)
(f an ideal retraction), to the semilattice Ry of retract ideals where the operation
is set intersection.

Proof. That the map f — f(X) is a one-to-one onto map from ideal retractions to
retract ideals follows from 1.1. Let g, fe A(X). For xe X,

(8o ) () = (g0 ) (s () = glg/(X)) = g f(x).

Certainly, if x < z, then go f(x) £ gof(2), and if z £ go f(x), then g. f(z) =
= g(z) = z. Thus go fe AX).

Obviously, f(X) n g(X) = go f(X). Suppose y € gof(X), then y = go f(z) for
some zeX. Since g(f(2) = f(z), f(») = f(g-f(2)) = gof(z) = y. Therefore
2o f(X) = g(X) n f(X). It follows that gof(X) = g(X) n f(X) which implies Ry
is a semilattice under set intersection and that the map f — f(X) : A(X) —» Ry is an
isomorphism.

1.3. Definition. A topological poset X is said to be locally bounded directed (LBD)
if for every x = y € X and U a neighborhood of y, there exists a neighborhood V
of x such that for v € V there exists a z € U such that z < v, y. Such a neighborhood V
is said to satisfy the LBD property with respect to y and U.

Note that every topological semilattice is a LBD poset.

1.4. Proposition. For a compact LBD poset, every retract ideal is closed.

Proof. Let I be a retract ideal and let x belong to the closure I~ of I. By [4, p. 48],
the convex neighborhoods of x form a basis for the neighborhood system of x.
Let U be a convex neighborhood of x. Let V' be a neighborhood of x which satisfies
the LBD property with respect to x and U. Since x e I, there is a z € V n I. By the
choice of V there exists a y € U such that y < z, x. By 1.1, there exists a w e I with
L(x) n I = L(w). Now y € L(x) n I = L(w) implies y £ w £ x, and since U is convex
w e U. Because U was picked arbitrarily from a neighborhood basis for x, it follows
that x = wel.
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1.5. Theorem. Every ideal retraction of a compact LBD poset is continuous.

Proof. Let f be an ideal retraction. By 1.1, I = f(X) is a retract ideal, and by 1.4,
it is compact. Let y € X and U be an open set of f(y). By [4, p. 48] there exists an
open increasing set V and an open decreasing set W of f(y) such that f(y) e Vn W <
< U. Now L(f(y)) = W. By [4, p. 46], for every z,, z, € X with z; % z, there exists
an open decreasing set D, of z; and an open increasing set D, of z, such that D, n-
A D, = 0. It follows that for x € X, L(x) = {Z : Z an open decreasing set of x}.
Thus L(f(»)) = L()) nI = {UI:U an open decreasing set containing y}. By
the compactness of I, there exists an open decreasing set U, of y such that Uy n I <=
< Wn . Let U, be an open neighborhood of y such that U; < U, and for ze Uy,
there exists a z' eV with z' £ f(»), z. Now z' < f(y), z implies z' €I n L(z) =
= L(f(z)) which implies since V is upwards directed that f(z) e V. Also f(z) £ z
implies f(z) eI n U, = W. Thus f(z) eV n W < U which implies f is continuous.

Most of the following results on uniformities are drawn from [2, pp. 27—32].
If X is a compact space, the collection of all neighborhoods of the diagonal of X x X
forms a system of entourages for a uniform structure on X that realizes the topology
of X. Let H(X) be the set of all non-empty closed subsets of X.If  is an entourage
of X, define #* = {(A4, B)e H(X) x H(X): A < %(B) and B = %(A)}. The collec-
tion of all * forms a basis for a uniformity on H(X) whose associated topology
is compact.

1.6. Proposition. If X is a compact LBD poset, then Ry is a compact subset of H(X).

Proof. Let {I,}, « € I', be a net in Ry that converges to a closed set I. Let x € X.
For each o € I, there exists a y, € I, such that I, n L(x) = L(y,). Since X is compact
it may be assumed that the net {y,}, « € I', converges to an element y. By proposition
45 of [2, p. 29], y €l. For each a € I', y, < x which implies since the graph of < is
closed that y < x. If ze L(y) and U is an open set of z, there exists a neigh-
borhood V of y that satisfies the LBD property for z and U. Again by 45 of [2], there
exists an I, « € I', such that I, 0 V # @ which implies I, n U = 0. Thus z is a cluster
point of {I,}, « € I', which implies z € I. Thus L(y) = I n L(x).

Let wel n L(x). Since the space H(X) is compact, we may assume that the net
{L(yn)}, @ € I', converges to a closed set L. Clearly L = L(y). Let U be an open neigh-
borhood of w, and let U, be a neighborhood of w which satisfies the LBD property
with respect to w and U. Since w €I, there exists for each « e I' a f = « such that
I;n Uy # 0.Lettel; n Uy. Then there existsa t’ € U such that ¢ < ¢, which implies
that ¢ € Iy N L(w) = Iy n L(x) = L(yp). Thus t' € L(ys) n U which implies that U
meets {L(y,)} for a cofinal set of indices a. This implies that w € L = L(). Therefore,
I n L(x) = L(y).

Remark. Having shown that Ry is a compact space and an algebraic semilattice,
the natural conjecture is that Ry is a compact semilattice. We have also shown that Ry
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is algebraically isomorphic to A(X). Now A(X) is a topological semilattice with the
compact-open topology which leads to the conjecture that A(X) is iseomorphic
to Ry. We will now show that when X is a compact semilattice these conjectures are
true; it is then natural to ask for what class of compact posets are the conjectures true.

2. LEFT TRANSLATIONS OF COMPACT SEMILATTICES

A topological semigroup is a semigroup S equipped with a Hausdorff topology
for which the operation of multiplication is continuous as a map from S x S into S.
A topological semilattice is a meet semilattice together with a Hausdorff topology
for which the meet operation is continuous, or equivalently, a commutative topolo-
gical semigroup in which every element is idempotent.

If S is a semigroup, a left translation of S is a map 4 of Sinto S such that A(xy) =
= (Ax) y for all x, y € S. The set A(S) of all left translations forms a semigroup under
function composition. Furthermore, if S is locally compact, A(S) equipped with the
compact-open topology is a topological semigroup, and the evaluation map (1, s) — As :
A(S) x S —» S is continuous. For each se€ S, let A be the left translation Ag¢ = st
for all ¢t € S. The canonical map 7 : S — A(S) defined by n(s) = A, is a continuous
homomorphism.

2.1. Proposition. Let S be a locally compact ideal of a topological semigroup V;
then the map t :s — A | S of Vinto A(S) is a continuous homomorphism. Further-
more, if S is a semilattice, then T is the unique extension of the canonical homo-
morphism of S into A(S).

Proof. The proof that 7 is a continuous homomorphism is standard, so it will be
omitted. The rest of the proposition follows from III 1.12 and V 6.5 of [5].

If S is a semilattice, then an ideal I of S is called a retract ideal if there exists an
endomorphism a of S such that e:(S) < I and «(x) = x for all x € 1. Such a mapping
o is called an I-endomorphism. The following proposition is taken from [5, p. 168].

2.2. Proposition. Let Y be a semilattice. Then left translations of Y coincide with
I-endomorphisms of Y where I is an ideal of Y.The set Ry of retract ideals coincides
with the set of all ideals I having the property that for every a € Y, I 0 J (a) is a
principal ideal. The mapping ¥ defined by:

¥a o AY) (he AY))

is an isomorphism of A(Y) onto Ry where multiplication in the latter is the set
theoretical intersection. Moreover, for I € Ry the corresponding left translation is
given by: I n J(o) = J(Ja) for every o €Y.
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Remark. It becomes clear from 2.2 that an ideal retraction on a semilattice is just
a left translation. It is also evident that the two uses of retract ideal coincide on
semilatticés. Using the results of section 1, and in addition 7.1 of [1, p. 47] in part
(b), we have the following theorem.

2.3. Theorem. For a compact semilattice X the following are true.

(a) Every retract ideal is closed.
(b) Ry is a compact semilattice of H(X).
(c) Every left translation of X is continuous.

If X is a compact semilattice, Ry will always be understood to have the subspace
topology of H(X), and A(X) the compact-open topology.
The proof of the next theorem was suggested to me by P. Bacon.

2.4. Theorem. If X is a compact semilattice, the map ¥ : 1 —> AX) is an iseo-
morphism of A(X) onto Ry.

Proof. Let & denote the evaluation map of A(X) x X - X, & = ¢o (id x¥ ™).
Let Py denote the set of principal ideals of X in the hoperspace topology, and let 2
denote the map from X — P defined by 2(f) = XtX. For X a compact semilattice 2
is an isomorphism. The map & can be factored as

Ry x X % Ry x Py —" s P, 270
where each map is continuous. Since by 2.2 ¥ is an isomorphism, the ¥ ~! image of
the topology of Ry on A(X) is a compact Hausdorff topology for which the evaluation
map ¢ is continuous. The compact open topology on A(X) is the minimal Hausdorff
topology for which the evaluation map is continuous, and a compact Hausdorff to-
pology is a minimal Hausdorff topology. Hence the two topologies are equal and ¥
is an iseomorphism.

Corollary. For a compact semilattice X, the semilattice A(X) of left translations
is a compact semilattice.

Remark. The translational hull of a semigroup is defined in [5, p. 63]. For a semi-
lattice, the translational hull is the same as the semilattice of left translations [5, p.
171]. So we may restate the corollary: If X is a compact semilattice, the translational
hull of X is a compact semilattice.

We now give an application of the above theorem.

2.5. Theorem. For a compact semilattice X the following statements are equi-
valent.

(a) X may be embedded as an ideal in a connected semigroup with identity;
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(b) A(X) is connected;

(c) for every non-zero retract ideal R of X and every open set % of the diagonal
in X x X, there exists a retract ideal T R, T4 R and T = %*(R).

Proof. (a) = (b). If X is embedded as an ideal in a connected semigroup T with
identity, we may without loss of generality assume that X is an ideal of T. If 7 is the
map defined in 2.1, then T’ = 7(T) is a connected subsemilattice of A(X) containing
the identity and zero of A(X). Observe that A(X) = UAT’, 4 € A(X). Thus A(X) is
a union of connected sets with non-empty intersection which implies A(X) is con-
nected.

(b) = (a). Since X is compact, the map 7 :s - A, : X - A(X) is an embedding,
and by III 1.7 [S, p. 641, n(X) is an ideal of A(X).

(b) = (c). By 2.4, A(X) connected implies Ry is connected, which implies that each
non-zero element R of Ry is connected to the retract ideal {0} by a connected totally
ordered semilattice I of Ry, with R = sup I. If % is an open set of the diagonal in
X x X, then %*(R) is an open neighborhood of R. Since I is connected, there exists
aTe¥*(R)nIsuchthat T< R, T+ R.

(c) = (b). Let I, be the zero of Ry. Condition (c) implies that condition (2) of
theorem 2 in [4] is satisfied for the open set Ry \{Io}. Also condition (c) implies
Ry \ {Io} is not closed. Therefore, by theorem 2 of [4] every retract ideal R belongs
to a connected chain C in Ry that also contains I,,. Thus Ry is a union of connected
sets with non-empty intersection, and so Ry is connected. By 2.4, A(X) is connected.

Example. Let S = {(x, y): 0 £ x < 1 and 0 < y £ 1} with the operation of min
multiplication in each coordinate. Let X be the subsemilattice {(x, y) : 0 < x < 1
and 0 < y <1 — x}. For each (a,b)€eS, let I(a,b) = {(x,y):0 < x < a and
0 <y £ b} nX. Then Ry = {I(a, b) : (a, b) € S}. The map (a, b) > I(a, b) is an
iseomorphism of S onto Ry. The corresponding iscomorphism of S onto A(X) is
given by (a, b) = A, ] X.

We now wish to conclude the paper with some comments.

(1) A Lawson semilattice is a topological semilattice with enough homomorphisms
into the unit interval with the min multiplication to separate points. From the above
example a natural question arises: Does the semilattice of left translations of a com-
pact Lawson semilattice form a Lawson semilattice?

(2) The author gives an inexact statement of a question raised by R. KocH. How
large is the semilattice of left translations compared to the original semilattice?

(3) Since there is a great similarity between the theory of ideal retractions on
a compact locally bounded directed poset and the theory of left translations on
a compact semilattice, it is natural to conjecture that in the more general case the
retract ideals do indeed form a compact semilattice which is issomorphic to the semi-
lattice of ideal retractions.
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(4) Using the remark after theorem 2.3, that the translational hull of a compact
semilattice is a compact semilattice, and V 6.4 of [5], one should be able to give an
explicit description of the translational hull of a compact semigroup which is a semi-
lattice of groups. This paper, in fact, was originally motivated by the author’s desire
to begin a study -of topologizing the translational hull of compact semigroups.
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