Czechoslovak Mathematical Journal

Václav Koubek; Jan Reiterman

A set functor which commutes with all homfunctors is a homfunctor

Czechoslovak Mathematical Journal, Vol. 26 (1976), No. 2, 183-191

Persistent URL: http://dml.cz/dmlcz/101389

Terms of use:

© Institute of Mathematics AS CR, 1976

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

A SET FUNCTOR WHICH COMMUTES WITH ALL HOMFUNCTORS IS A HOMFUNCTOR

Václav Koubek, Jan Reiterman, Praha

(Received February 4, 1974)

0. INTRODUCTION

The aim of the present paper is to prove under the GCH (generalized continuum hypothesis): given a covariant set functor F such that for each covariant homfunctor $Q, F \circ Q$ and $Q \circ F$ are naturally equivalent, the functor F is itself equivalent to a homfunctor.

The first part contains preliminaries; in the second one we prove the theorem for functors from the category S_{n} of all sets of cardinality less than n, n being a cardinal inaccessible in the sense: if $a, b<n$ then $a^{b}<n$ (n is not assumed to be regular). In the last part, the theorem is proved for small functors - and, under the generalized continuum hypothesis for all functors - from the category of sets into itself.

1. CONVENTIONS, DEFINITIONS AND PRELIMINARY LEMMAS

Given sets A, B and a mapping $f: A \rightarrow B,|A|$ denotes the cardinality of $A, A \simeq B$ $(A<B, A \leqq B)$ stands for $|A|=|B|(|A|<|B|,|A| \leqq|B|$, respectively). The set $\{f(x) ; x \in X\}$ is denoted by $\operatorname{Im} f$. If $X \subset A$ then i_{A}^{X} denotes the inclusion mapping of X into A. Each cardinal m will be viewed as a set (with $m=|m|$).
Q_{A} denotes the covariant homfunctor from the category Set of sets into itself: $Q_{A}=\operatorname{Hom}(A,-)$. Clearly $Q_{A} \sim Q_{|A|}(\sim$ denotes the natural equivalence of functors) so that we shall consider Q_{m} (m is a cardinal) only. If n is a cardinal then \boldsymbol{S}_{n} is the category of sets of cardinality $<n$. The word functor as well as the letter F (or G, H etc.) will stand for a covariant functor from Set to Set, or from \boldsymbol{S}_{n} to \boldsymbol{S}_{n}, respectively.
Let F be a functor. Let A, X be sets, $A \subset F X .(A, X)$ is a reaching couple for F if for each set Y and each $y \in F Y$ there are $a \in A$ and $f: X \rightarrow Y$ with $F f(a)=y . F$ is said to be small if it possesses a reaching couple; the minimal cardinality of A is
denoted by δF. Clearly, δF is the smallest cardinal m such that there exists a system $\left\{\varepsilon_{x}: Q_{X} \rightarrow F ; \alpha \in m\right\}$ which is collectively epimorphic, i.e., if $\mu \circ \varepsilon_{x}=v \circ \varepsilon_{x}$ for some transformations $\mu, v: F \rightarrow G$ and for each α then $\mu=v$; equivalently: $\operatorname{Im}\left(\varepsilon_{\alpha}\right)^{X}$ cover $F X$ for each X.

Cardinal n is called an unattainable cardinal of F provided that there is $x \in F n$ such that $x \notin \operatorname{Im} F f$ for any $f: X \rightarrow n$ with $X<n ; \mathscr{A}_{F}$ denotes the class of all unattainable cardinals of F.

For every X and $x \in F X$, put $\mathscr{F}_{F}^{X}(x)=\left\{Y \subset X ; x \in \operatorname{Im} F i_{X}^{Y}\right\} . \mathscr{F}_{F}^{X}(x)$ is a filter on $X[5]\left(\exp X=\{Y ; Y \subset X\}\right.$ is also considered a filter). Denote $\varphi F=\sup \chi\left(\mathscr{F}_{F}^{X}(x)\right)$ (if it exists) where $\chi \mathscr{F}$ (\mathscr{F} being a filter) is the character of \mathscr{F}, i.e., the minimal cardinality of a base of \mathscr{F}.

A filter \mathscr{F} is called trivial if $\chi \mathscr{F}=1$, i.e., if $\bigcap \mathscr{F} \in \mathscr{F}$.
Let \mathscr{F} be a filter on a set A; let $\mathscr{F}_{a}(a \in A)$ be filters on a set X. Denote by

$$
\bigcup_{\mathscr{F}} \mathscr{F}_{a}
$$

the filter whose base consists of sets of the form

$$
\bigcup_{a \in Z} Z_{a}
$$

where $Z \in \mathscr{F}$ and $Z_{a} \in \mathscr{F}_{a}(a \in A)$.
Lemma 1.1. Let \mathscr{F} be a trivial filter. Let there exist $F_{a} \in \mathscr{F}{ }_{a}$ such that $\left\{F_{a} ; a \in A\right\}$ is a disjoint family. Then

$$
\chi \bigcup_{\mathscr{F}} \mathscr{F}_{a}=\prod_{a \in \cap \mathscr{F}}\left(\chi \mathscr{F}_{a}\right) .
$$

In particular, if $\gamma \mathscr{F}_{a}>1$ for each a and $m \simeq \bigcap \mathscr{F}$ then

$$
\chi \bigcup_{\mathscr{F}} \mathscr{F}_{a} \geqq 2^{m}
$$

Lemma 1.2. Conversely, if all \mathscr{F}_{a} are trivial then

$$
\chi \bigcup_{\mathscr{F}} \mathscr{F}_{a} \leqq \chi \mathscr{F} .
$$

Lemma 1.3. Let F, G be functors. Then

$$
\mathscr{F}_{F \circ G}^{X}(x)=\bigcup_{\mathscr{F}_{F}^{G X}(x)} \mathscr{F}_{G}^{X}(a) \quad(a \in G X) .
$$

Lemma 1.4. For each $f \in Q_{m} X$ (i.e. $f: m \rightarrow X$),

$$
\mathscr{F}_{Q_{m}}^{X}(f)=\{Z \subset X ; Z \supset \operatorname{Im} f\} .
$$

Thus all the filters $\mathscr{F}_{Q_{m}}^{X}(f)$ are trivial.

Proposition 1.5. Let $\varepsilon: F \rightarrow G$ be an epitransformation, $x \in F X, \varepsilon^{X}(x)=y$. Then

$$
\mathscr{F}_{G}^{X}(y)-\{\emptyset\}=\bigcup_{\varepsilon^{X}(z)=y} \mathscr{F}_{F}^{X}(z)-\{\emptyset\}=\left\{Z ; Z \in \mathscr{F}_{F}^{X}(z), \varepsilon^{X}(z)=y\right\}-\{\emptyset\} .
$$

In particular, $\mathscr{F}_{F}^{X}(x) \subset \mathscr{F}_{G}^{X}(y)$; if moreover $\varepsilon^{X}(x) \neq \varepsilon^{X}(z)$ for every $z \neq x$, then $\mathscr{F}_{F}^{X}(x)=\mathscr{F}_{G}^{X}(y)$.

Proposition 1.6. If $F m \simeq m$ for an infinite m then $m \notin \mathscr{A}_{F}$.
Lemma 1.7. Let \bar{F}, \bar{G} be domain-restrictions of $F, G:$ Set \rightarrow Set, respectively, to S_{n}, where sup \mathscr{A}_{F}, sup $\mathscr{A}_{G}<n$. If $\bar{F} \sim \bar{G}$ then $F \sim G$.

Proofs of the above propositions, except 1,6, are straightforward computations. Concerning 1,6: It is proved in [2] that, for any infinite $m \in \mathscr{A}_{F}, F m \geqq|\mathfrak{D}|$ where \mathfrak{D} is an almost-disjoint system of subsets of m. It is well-known (e.g. [1]) that \mathfrak{D} can be found such that $|\mathfrak{D}|>m$.

Lemma 1.8. [4]. F preserves intersections iff each $\mathscr{F}_{F}^{X}(x)$ is trivial.
Lemma 1.9 [2]. If $F f(x)=y$ for some $x \in F X, y \in F Y, f: X \rightarrow Y$, then $Z \in$ $\in \mathscr{F}_{F}^{X}(x) \Rightarrow f(Z) \in \mathscr{F}_{F}^{Y}(y)$.

If, moreover, f is one-to-one on a set of $\mathscr{F}_{F}^{X}(x)$, the converse is also true.
Proposition 1.10 [2]. A functor $F:$ Set \rightarrow Set (or $F: \boldsymbol{S}_{\boldsymbol{n}} \rightarrow \boldsymbol{S}_{n}$) is small iff \mathscr{A}_{F} is a set (or $\sup \mathscr{A}_{F}<n$, respectively).

Proposition 1.11[2]. If $X>n=\sup \mathscr{A}_{F}$, then $F X \leqq \max \left\{F n, X^{n}\right\}$.
2. FUNCTORS FROM S_{n} TO S_{n}

Convention. Throughout this part, F denotes a small functor of \boldsymbol{S}_{n} into itself. We shall suppose

$$
a, b<n \Rightarrow a^{b}<n .
$$

Thus each covariant homfunctor $Q_{a}(a<n)$ maps the category \boldsymbol{S}_{n} into itself; we may and we shall consider it as a functor from \boldsymbol{S}_{n} to \boldsymbol{S}_{n}.

Lemma 2.1. For each set $A<n, \delta\left(F \circ Q_{A}\right) \leqq \delta F$.
Proof. If $\left\{\varepsilon_{\alpha}: Q_{X} \rightarrow F ; \alpha \in I\right\}$ is a collectively epimorphic system, so is $\left\{\varepsilon_{\alpha} Q_{A}\right.$: $\left.: Q_{X} \circ Q_{A} \rightarrow F \circ Q_{A} ; \alpha \in I\right\}$. As $Q_{X} \circ Q_{A} \sim Q_{X \times A}$, our lemma follows.

Lemma 2.2. If $\delta F>1$ then there exists $m<n$ such that $\delta\left(Q_{m} \circ F\right)>\delta F$.
Proof. Put $m=\delta F$. Let us suppose $\delta\left(Q_{m} \circ F\right) \leqq \delta F=m$. Then there exists a reaching couple $\left(A_{1}, X_{1}\right)$ for $Q_{m} \subset F$, where $A_{1}=\left\{a_{q} ; \alpha \in m\right\}$. As X_{1} can be chosen arbitrarily large, we may assume that $\left(F X_{1}, X_{1}\right)$ is a reaching couple for F. Write each a_{α} in the form $a_{\alpha}=\left\{a_{\alpha}^{\beta} ; \beta \in m\right\}, \alpha \in m$, where $a_{\alpha}^{\beta} \in F X_{1}$ for $\alpha, \beta \in m$. As $\delta F>1$ and $\left(F X_{1}, X_{1}\right)$ is a reaching couple for F, for every $x \in F X_{1}$ there is $y \in F X_{1}$ such that $y=F f(x)$ holds for no $f: X_{1} \rightarrow X_{1}$. Hence for each $\alpha \in m$ we can choose y_{α} such that $y_{\alpha} \neq F f\left(a_{\alpha}^{\alpha}\right)$ for any $f: X_{1} \rightarrow X_{1}$. Thus, putting $y=\left\{y_{\alpha} ; \alpha \in m\right\} \in Q_{m} \circ F\left(X_{1}\right)$ we have $y \neq Q_{m} \circ F f\left(a_{\alpha}\right)$ for any $f: X_{1} \rightarrow X_{1}$ and $\alpha \in m$ which is a contradiction because (A_{1}, X_{1}) is a reaching couple for $Q_{m} \circ F$.

Proposition 2.3. Let $F \circ Q_{m} \sim Q_{m} \circ F$ for each $m \in \boldsymbol{S}_{n}$. Then F is a factorfunctor of some $Q_{a}\left(a \in \boldsymbol{S}_{n}\right)$.

Proof follows from Lemmas 2,1 and 2,2.
Lemma 2.4. For each $a \in \boldsymbol{S}_{n}, \varphi\left(F \circ Q_{a}\right) \leqq \varphi F$.
Proof. See 1,2, 1,3 and 1,4.
Lemma 2.5. If $n>\varphi F>1$ then there exists $m \in \boldsymbol{S}_{n}$ such that $\varphi\left(Q_{m} \circ F\right)>\varphi F$.
Proof. As $n>\varphi F>1$, there is Y and $y \in F Y$ with $\chi \mathscr{F}_{F}^{Y}(y)>1$. Put $m=\varphi F$. Further, φF is infinite so that we can choose monomorphisms $\psi_{\iota}(\iota \in m)$ from Y to Y such that $\iota \neq \iota^{\prime} \Rightarrow \operatorname{Im} \psi_{\imath} \cap \operatorname{Im} \psi_{\iota}=\emptyset$. Put $x_{\imath}=F \psi_{\iota}(y)$. By $1,9, \chi_{\mathscr{F}_{F}^{Y}}^{Y}\left(x_{\imath}\right)>1$. Thus, putting $x=\left\{x_{\imath} ; \imath \in m\right\} \in Q_{m} \circ F Y$, we get

$$
\varphi Q_{m} \circ F \geqq \chi \mathscr{F}_{Q_{m} \circ F}^{Y}(x) \geqq 2^{m}>m=\varphi F
$$

(see 1,1 and 1,3).
Proposition 2.6. Let $F \circ Q_{m} \sim Q_{m} \circ F$ for each $m<n$. Then $\varphi F=1$, i.e. each filter $\mathscr{F}_{F}^{X}(x)$ is trivial, equivalently: F preserves intersections.

Proof. See 1,8, 2,4 and 2,5.

Lemma 2.7. Let F be a factorfunctor of some $Q_{a}\left(a \in \boldsymbol{S}_{n}\right)$ such that F preserves intersections. Then there exists $V \in \boldsymbol{S}_{n}$ and an epitransformation $\varepsilon: Q_{V} \rightarrow F$ such that $\mathscr{F}_{F}^{V}\left(\varepsilon^{V}\left(1_{V}\right)\right)=\{V\}$.

Proof. Let $v: Q_{a} \rightarrow F$ be an epitransformation. As F preserves intersections, each filter $\mathscr{F}_{F}^{X}(x)$ is trivial. In particular, there is $V \subset a$ such that $\mathscr{F}_{F}^{a}\left(v^{a}\left(1_{a}\right)\right)=$ $=\{Y \subset a ; Y \supset V\}$. Define $\varepsilon: Q_{V} \rightarrow F$ by $\varepsilon^{V}\left(1_{V}\right)=u$, where u is the (only) element of $F V$ satisfying $F i_{a}^{V}(u)=v^{a}\left(1_{a}\right)$. Then ε is evidently an epitransformation and $\mathscr{F}_{\boldsymbol{F}}^{V}(u)=\{V\}($ see 1,9$)$.

Definition. For F satisfying the assumptions of 2,7 the epitransformation ε from 2,7 will be called the minimal factorization.

Lemma 2.8. Let $\varepsilon: Q_{V} \rightarrow F$ be the minimal factorization. Let $f: V \rightarrow X$ be a monomorphism, $g: V \rightarrow X$ an arbitrary mapping $(X<n)$. If $\varepsilon^{X}(f)=\varepsilon^{X}(g)$ then $\operatorname{Im} g \supset \operatorname{Im} f$.

Proof. Let $x \in(\operatorname{Im} f-\operatorname{Im} g)$. Choose $h: X \rightarrow V$ such that $h \circ f=1_{V}$ and $\left|h^{-1}(h(x))\right|=1$. As

$$
(\operatorname{Im} h \circ g) \in \mathscr{F}_{Q_{V}}^{V}(h \circ g),
$$

we get by 1,5 that

$$
(\operatorname{Im} h \circ g) \in \mathscr{F}_{F}^{V}\left(\varepsilon^{V}(h \circ g)\right)=\mathscr{F}_{F}^{V}\left(\varepsilon^{V}\left(1_{V}\right)\right)=\{V\}
$$

(it is easily seen, that $\varepsilon^{V}(h \circ g)=\varepsilon^{V}(h \circ f)=\varepsilon^{V}\left(1_{V}\right)$). Thus Im $h \circ g=V$ which is a contradiction because $h(x) \notin \operatorname{Im} h \circ g$.

Lemma 2.9. Let $\varepsilon: Q_{V} \rightarrow F$ be the minimal factorization. Let $\varepsilon^{V}\left(1_{V}\right) \neq \varepsilon^{V}(f)$ for every $f: V \rightarrow V, f \neq 1_{V}$. Let $u \in F X$ such that $(\{u\}, X)$ is a reaching couple for F. Then $\left|\left(\varepsilon^{X}\right)^{-1}(u)\right|=1$ and $\left(\left(\varepsilon^{X}\right)^{-1}(u), X\right)$ is a reaching couple for Q_{V}.
$\operatorname{Proof.}$ As $(\{u\}, X)$ is a reaching couple for F, there is $h: X \rightarrow V$ with $F h(u)=$ $=\varepsilon^{X}\left(1_{V}\right)$. Let $f, g \in\left(\varepsilon^{X}\right)^{-1}(u)$. Then

$$
\varepsilon^{V}\left(Q_{V} h(f)\right)=F h(u)=\varepsilon^{V}\left(1_{v}\right) .
$$

Thus $Q_{V} h(f)=1_{V}$, i.e. $h \circ f=1_{V}$; analogously $h \circ g=1_{V}$. Further, $\operatorname{Im} f=\operatorname{Im} g$ by 2,8 . Clearly, if two one-to-one mappings have common retraction and the same image, then they must be equal; thus $f=g$. As $Q_{V} h(f)=1_{V},(\{f\}, X)$ is a reaching couple for Q_{V}.

Lemma 2.10. Let $\varepsilon: Q_{V} \rightarrow F$ be the minimal factorization and let $\mid\left(\varepsilon^{V}\right)^{-1}$ $\left(\varepsilon^{V}\left(1_{v}\right)\right) \mid=1$. Given $X, m \in \mathbf{S}_{n}$ and a reaching couple $(\{u\}, X)$ for $F \circ Q_{m}$. Then $\left(\{u\}, Q_{m} X\right)$ is a reaching couple for F and there are monomorphisms $g_{i}: m \rightarrow X$ such that $\operatorname{Im} g_{i} \cap \operatorname{Im} g_{j}=\emptyset$ for $i \neq j$ and such that

$$
\varepsilon_{\varepsilon_{m} X}\left(\left\{g_{i} ; i \in V\right\}\right)=u .
$$

Proof. To prove that $\left(\{u\}, Q_{m} X\right)$ is a reaching couple for F, consider any Y and $y \in F Y$. Take an epimorphism $k: Q_{m} Y \rightarrow Y$ and choose $z \in F \circ Q_{m} Y$ with $F k(z)=y$. Then $z=F \circ Q_{m} h(u)$ for some $h: X \rightarrow Y$ so that $y=F\left(k \circ Q_{m} h\right)(u)$. By 2,9 there exists exactly one element $g=\left\{g_{i} ; i \in V\right\}$ such that

$$
\varepsilon^{Q_{m} X}(g)=u
$$

where $g_{i} \in Q_{i n} X$, i.e. $g_{i}: m \rightarrow X$ for $i \in V$. Let $h_{i}: m \rightarrow Z(i \in V)$ be arbitrary mono-
morphisms such that $i \neq j \Rightarrow \operatorname{Im} h_{i} \cap \operatorname{Im} h_{j}=\emptyset$. Then $h=\left\{h_{i} ; i \in V\right\} \in Q_{V}\left(Q_{m} Z\right)$ so that there is $p: X \rightarrow Z$ with $Q_{V} \circ Q_{m} p(g)=h$ (by $2,9,\left(\{g\}, Q_{m} X\right)$ is a reaching couple for $\left.Q_{V}\right)$. Thus $p \circ g_{i}=h_{i}, i \in V$. As h_{i} are monomorphisms, so are g_{i}, as h_{i} have disjoint images, so have g_{i}.

Given $f: V \rightarrow V$ and $m\left(V, m \in S_{n}\right)$, denote by $\tilde{f}_{i}(i \in m)$ mappings from $V \times m$ defined as follows:

$$
\tilde{f}_{i}(x, j)=(x, j) \text { for } j \neq i, \quad \tilde{f}_{i}(x, i)=(f(x), i)
$$

Lemma 2.11. Let $\varepsilon: Q_{V} \rightarrow F$ be a transformation. Let $f, g: V \rightarrow V$ with $\varepsilon^{V}(f)=$ $=\varepsilon^{V}(g)$. Then

$$
Q_{m} \circ F\left(\tilde{f}_{i}\right)\left(\left(Q_{m} \varepsilon\right)^{m \times V}\left(1_{m \times V}\right)\right)=Q_{m} \circ F\left(\tilde{g}_{i}\right)\left(\left(Q_{m} \varepsilon\right)^{m \times V}\left(1_{m \times V}\right)\right) .
$$

Proof. Straightforward computation.
Lemma 2.12. Let $\varepsilon: Q_{V} \rightarrow F$ be the minimal factorization such that $\varepsilon^{V}(f)=$ $=\varepsilon^{V}\left(1_{V}\right)$ for some $f: V \rightarrow V$. If $F \circ Q_{m} \sim Q_{m} \circ F$ for every $m<n$, then $f=1_{V}$.

Proof. Put $Y=\{t \in V ; f(t) \neq t\}$. Choose $m>V^{3}$. Let $\mu: Q_{m} \circ F \rightarrow F \circ Q_{m}$ be a natural equivalence. Put $v=\mu^{m \times V}(u)$, where

$$
u=\left(Q_{m} \varepsilon\right)^{m \times V}\left(1_{m \times V}\right)
$$

By $2,11, Q_{m} \circ F\left(\tilde{f}_{i}\right)(u)=u$ so that $F\left(Q_{m} \tilde{f}_{i}\right)(v)=v$ for each $i \in m$. As follows easily by 1,9 , for any

$$
g \in W=\bigcap \mathscr{F}_{\vec{F}}^{Q_{m}(m \times V)}(v)
$$

and for any $i \in m$ there is

$$
k_{i} \in \bigcap_{\mathscr{F}}^{\mathscr{P}_{F}(m \times V)}(v)
$$

with $g=Q_{m} \tilde{f}_{i}\left(k_{i}\right)=\tilde{f}_{i} \circ k_{i}(i \in m)$. Let $i \in m$. Evidently, if $k_{i}=k_{j}$ for some $j \neq i$ then $\tilde{f}_{i} \circ g=g$, because $\tilde{f}_{i} \circ g=\tilde{f}_{i} \circ\left(\tilde{f}_{i} \circ k_{i}\right)=\tilde{f}_{i} \circ k_{i}=g$. Thus $\left\{i ; \tilde{f}_{i} \circ g \neq g\right\} \subset$ $\subset\left\{i ; k_{i} \neq k_{j}\right.$ for every $\left.j \neq i\right\} \subset\left\{k_{i} ; i \in m\right\} \subset W$. Further, $W \leqq V$ as for any $x \in F X$, $\cap \mathscr{F}_{F}^{X}(x) \leqq V\left(\right.$ see 1,5 and 1,6). We get $\left\{i ; \tilde{f}_{i} \circ g \neq g\right\} \leqq V$ so that

$$
\left\{i ; \bigcup_{g \in W} \operatorname{Im} g \cap(\{i\} \times Y) \neq \emptyset\right\} \leqq V^{2}
$$

and finally

$$
\bigcup_{g \in W} \operatorname{Im} g \cap(m \times V) \leqq Y \times V^{2} \leqq V^{3}
$$

On the other hand, using 1,3 and 1,4 we get

$$
\bigcup_{g \in W} \operatorname{Im} g=\bigcap \mathscr{F}_{F \circ Q_{m}}^{m \times V}(v)=\bigcap \mathscr{F}_{Q_{m} \circ F}^{m \times V}(u) .
$$

Since for any minimal factorization $\varepsilon, Q_{m} \varepsilon$ is a minimal factorization, too, so that the last intersection is $m \times V$. Hence

$$
\bigcup_{g \in W} \operatorname{Im} g \cap(m \times Y)=m \times Y
$$

As shown above, the former set has cardinality $\leqq V^{3}<m$; we get $Y=\emptyset$, i.e. $f=1_{V}$.
Theorem 2.13. Let F be a small functor of \boldsymbol{S}_{n} into \boldsymbol{S}_{n} such that for every $m<n$ $F \circ Q_{m} \sim Q_{m} \circ F$. Then $F \sim Q_{r}$ for some r.

Proof. Let $\varepsilon: Q_{V} \rightarrow F$ be a minimal factorization. By 2,12, $\left|\left(\varepsilon^{V}\right)^{-1}\left(\varepsilon^{V}\left(1_{V}\right)\right)\right|=1$. It suffices to prove the following: if $\varepsilon^{X}(f)=\varepsilon^{X}(g)$ for some $f, g: V \rightarrow X$, then $f=g$. Choose $m, n>m>V^{2}$, and put $u=\left(Q_{m} \varepsilon\right)^{m \times V}\left(1_{m \times V}\right)$. Let $\mu: Q_{m} \circ F \rightarrow F \circ Q_{m}$ be a natural equivalence. As $(\{u\}, m \times V)$ is a reaching couple for $Q_{m} \circ F$, so $(\{\mu(u)\}, m \times V)$ is a reaching couple for $F \circ Q_{m}$. By $2,10\left(\{\mu(u)\}, Q_{m}(m \times V)\right)$ is a reaching couple for F, and there are monomorphisms $h_{i}: m \rightarrow m \times V$ with disjoint images such that $h=\left\{h_{i} ; i \in V\right\}$ is the only element of $Q_{V} \circ Q_{m}(m \times V)$ with

$$
\varepsilon^{Q_{m}(m \times V)}(h)=\mu^{Q_{m}(m \times V)}(u) .
$$

By 1,4 ,
contains

$$
\bigcup_{i} \operatorname{Im} h_{i}
$$

and so does

$$
\mathscr{F}_{F \circ Q_{m}}^{m \times V}\left(\mu^{m \times V}(u)\right)
$$

(see 1,5). By 1,4 , the last filter is equal to

$$
\mathscr{F}_{Q_{V} \circ Q_{m}}^{m \times V}\left(1_{m \times V}\right)=\{m \times V\}
$$

so that

$$
\bigcup_{i} \operatorname{Im} h_{i}=m \times V
$$

Further, $\tilde{f}_{i} \circ h_{j} \neq \tilde{f}_{i} \circ h_{k}$ for every $i, j, k, j \neq k$ (indeed, $\tilde{f}_{i}(x)=\tilde{f}_{i}(y)$ for at most V^{2} couples x, y with $x \neq y$; the equality $\tilde{f}_{i} \circ h_{j}=\tilde{f}_{i} \circ h_{k}$ would require m such couples, namely the couples $h_{j}(t), h_{k}(t)$ for $\left.t \in m\right)$. Analogously $\tilde{g}_{i} \circ h_{j} \neq \tilde{g}_{i} \circ h_{k}, \tilde{f}_{i} \circ h_{j} \neq$ $\neq \tilde{g}_{i} \circ h_{k}$ for i, j, k as above. Let $p_{1}, p_{2} \in Q_{V}\left(Q_{m}(m \times V)\right), p_{1}(j)=\tilde{f}_{i} \circ h_{j}$ for $j \in V, p_{2}(j)=\tilde{g}_{i} \circ h_{j}$ for $j \in V$, where $i \in m$ is arbitrary but fixed. As noted above, $j \neq k \Rightarrow p_{1}(j) \neq p_{1}(k)$ and analogously for p_{2}. Thus p_{1}, p_{2} are monomorphisms. By 2,11, $Q_{m} \circ F \tilde{f}_{i}(u)=Q_{m} \circ F \tilde{g}_{i}(u)$ so that $F \circ Q_{m} \tilde{f}_{i}\left(\mu^{m \times V}(u)\right)=F \circ Q_{m} \tilde{g}_{i}\left(\mu^{m \times V}(u)\right)$. Further $Q_{V} \circ Q_{m}\left(\tilde{f}_{i}\right)\left(h_{j}\right)=p_{1}, Q_{V} \circ Q_{m}\left(\tilde{g}_{i}\right)\left(h_{j}\right)=p_{2}$; hence

$$
\varepsilon^{Q_{m}(m \times V)}\left(p_{1}\right)=F \circ Q_{m} \tilde{f}_{i}\left(\mu^{m \times V}(u)\right)=F \circ Q_{m} \tilde{g}_{i}\left(\mu^{m \times V}(u)\right)=\varepsilon^{Q_{m}(m \times V)}\left(p_{2}\right) .
$$

By $2,8, \operatorname{Im} p_{1}=\operatorname{Im} p_{2}$. In other words, the set of all $\tilde{g}_{i} \circ h_{j}(j \in V)$ is equal to the set of all $\tilde{f}_{i} \circ h_{j}(j \in V)$. In particular, each $\tilde{f}_{i} \circ h_{j}$ is equal to some $\tilde{g}_{i} \circ h_{k}$; then necessarily $j=k$ (see above), i.e. $\tilde{g}_{i} \circ h_{j}=\tilde{f}_{i} \circ h_{j}$ for each j. As

$$
\bigcup_{j} \operatorname{Im} h_{j}=m \times V,
$$

we get $\tilde{g}_{i}=\tilde{f}_{i}$; thus $f=g$ which completes the proof.

3. FUNCTORS FROM Set TO Set

Let us define a transfinite sequence $\left\{\alpha_{i}\right\}$ of cardinals by the transfinite induction:

$$
\alpha_{0}=\aleph_{0}, \quad \alpha_{i+1}=2^{\alpha_{i}}, \quad \alpha_{i}=\sup _{j<i} \alpha_{j} \text { provided i is limit }
$$

Lemma 3.1. Let i be an ordinal such that either i is limit or $i=0$. Then $a^{b}<\alpha_{i}$ provided $a, b<\alpha_{i}$.

Proof. The case $i=0$ is easy. Let i be limit, $a, b<\alpha_{i}$. Choose j with $a, b<$ $<\alpha_{j}<\alpha_{i}$. We have

$$
a^{b}<\alpha_{j}^{\alpha_{j}}=2^{\alpha_{j}}=\alpha_{j+1}<\alpha_{i} .
$$

Lemma 3.2. Let $F:$ Set \rightarrow Set be a small functor. Then there is a cardinal n such that $n>\sup \mathscr{A}_{F}$ and
a) F maps \boldsymbol{S}_{n} into \boldsymbol{S}_{n};
b) the restriction of F to S_{n} is a small functor:
c) for any two cardinals $a, b, a^{b}<n$ provided $a, b<n$.

Proof. Let (A, X) be a reaching couple for F. Choose i such that $\alpha_{i}>F X$ and either $i=0$ or i is a limit ordinal. Put $n=\alpha_{i}$. Now, c) and a) follow by 3,1 and 1,11 ; b) is obvious.

Lemma 3.3. Assume the GCH. Let

$$
n=\aleph_{\alpha+\omega_{0}}
$$

Let $F: \boldsymbol{S}_{n} \rightarrow \mathbf{S}_{n}$ be a functor such that $F \circ Q_{m} \sim Q_{m} \circ F$ for each $m<n$. Then F is small.

Proof. For any natural k such that $F 2 \leqq \aleph_{x+k}$ we have

$$
F\left(\aleph_{\alpha+k+1}\right) \simeq F\left(2^{\aleph_{\alpha+k}}\right) \simeq(F 2)^{\aleph_{\alpha+k}} \simeq 2^{\aleph_{\alpha+k}} \simeq \aleph_{\alpha+k+1}
$$

and so $\aleph_{\alpha+k+1} \notin \mathscr{A}_{F}$ by 1,6 . Hence sup $\mathscr{A}_{F}<n$ and F is small by 1,10 .

Lemma 3.4. Assume the GCH. Let $F:$ Set \rightarrow Set be a functor such that $F \circ Q_{\boldsymbol{m}} \sim$ $\sim Q_{m} \circ F$ for any m. Then a$), \mathrm{b}$), c) of 3,2 take place for every $n=\aleph_{\alpha+\omega_{0}}$, where $\aleph_{\alpha} \geqq F 2$.

Proof. a) follows by 1,10, b) by a) and $3,3, \mathrm{c}$) by the GCH.
Theorem 3.5. Let $F:$ Set \rightarrow Set be a small functor such that $F \circ Q_{m} \sim Q_{m} \circ F$ for every m. Then $F \sim Q_{n}$ for some n.

Proof. See 1,7, 2,13 and 3,2.
Proposition 3.6. Assume the GCH. Let

$$
n=\aleph_{\alpha+\omega_{0}},
$$

arbitrary. Let $F: \boldsymbol{S}_{n} \rightarrow \boldsymbol{S}_{n}$ be a functor such that $F \circ Q_{m} \sim Q_{m} \circ F$ for every $m<n$. Then $F \sim Q_{r}$ for some r.

Proof. See 2,13 and 3,3.
Theorem 3.7. Assume the GCH. Let $F:$ Set \rightarrow Set be a functor such that $F \circ Q_{m} \sim$ $\sim Q_{m} \circ F$ for every m. Then $F \sim Q_{r}$ for some r.

Proof. According to 3,4 and 3,6 , for every α with $\aleph_{\alpha} \geqq F 2$ the restriction \bar{F} of F to \boldsymbol{S}_{n}, where

$$
n=\aleph_{\alpha+\omega_{0}},
$$

is naturally equivalent to some Q_{r} restricted to S_{n}. The cardinal r does not depend on α, since it is uniquely determined by

$$
2^{r} \simeq Q_{r} 2 \simeq F 2
$$

Thus, $r=\sup \mathscr{A}_{F}$ and our theorem follows by 1,7.
Remark. The above theorem can be proved under a little weaker set-theoretical assumptions than the GCH, viz: There is a proper class of cardinals α such that $\alpha^{+}=2^{\alpha}$ and $\alpha^{++}=2^{\alpha+}(+$ denotes the follower $)$.

References

[1] L. Gillman, M. Jerison: Rings of continuous functions. Van Nostrand's University series in higher mathematics, Princeton - New Jersey.
[2] V. Koubek: Set functors. Comment. Math. Univ. Carolinae 12 (1971), 175-195.
[3] S. Mac-Lane: Kategorien. Lecture Notes, Berlin-Heidelberg-New York, 1972.
[4] V. Trnková: On descriptive classification of set functors I. Comment. Math. Univ. Carolinae 12 (1971), 143-175.
[5] V. Trnková: Some properties of set functors. Comment. Math. Univ. Carolinae 10 (1969), 323-352.

Authors' address: V. Koubek, 18600 Praha 8 - Karlín, Sokolovská 83, ČSSR (Matematickofyzikální fakulta UK), J. Reiterman, 11519 Praha 1-Staré Město, Husova 5, ČSSR (Fakulta jaderná a fyzikálně inženýrská ČVUT).

