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Czechoslovak Mathematical Journal, 26 (101) 1976, Praha 

ARCHIMEDEAN CLASSES IN AN ORDERED SEMIGROUP III 

TÔRU SAITÔ, Tokyo 

(Received October 7, 1974) 

The terminology and notation of our previous papers [3] and [4] are used 
throughout. In particular, we denote by S an ordered semigroup and by ^ the set of 
all archimedean classes of S. Also, for an archimedean class С of 5, we denote by C+ 
and C_ the set of all nonnegative elements of С and the set of all nonpositive ele
ments of C, respectively. 

In this paper we study the behavior of the set product AB of two archimedean 
classes A and В of S such that Aô В and the (5-class in ^ containing A and В is 
periodic. Thus, throughout this paper, we assume that A, В E^ such that A < B, 
A Ô В and the ^-class in ^̂  containing A and В is periodic. We denote by e and / 
the idempotent of A and the idempotent of Б, respectively. 

Lemma 1. For ae A and b E B, e -^ ab :^ f and e ^ ba ^ f. 

Proof. Since A < B, we have a < f and e < b. Also, since e is the zero element 
of A and / is the zero element of Б, we have 

e = ae ^ ab -^ fb = f, e = ea ^ ba S bf = f. 

Theorem 2. Suppose Aô = Во is of L-type [^R-type^. 

(1) AB [^v4] /5 contained in a single archimedean class if and only if AB с /t_ 
[BA Ç A.]; 

(2) BA [-/4Б] is contained in a single archimedean class if and only if BA ç B+ 
[AB ç Б+] . 

Proof, (l) Suppose AB is contained in a single archimedean class. By [3] Theorem 
2.7, we have eb = e E A for every b E B. Hence AB £ A. Moreover, by Lemma 1, 
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e s ab for every ae A and be B. Hence AB Ç У4_. Conversely if AB Ç Л_, then 
clearly AB is contained in a single archimedean class. (2) can be proved in a similar 
way. 

Theorem 3. Suppose Aô = Во is of L-type \_R-type]. 

(1) Suppose that BA [ЛБ] is contained in a single archimedean class but AB [Б/1] 
is not contained in a single archimedean class. Then there exists an idempotent g 
such that e < g < f, g Q^^e and e and g are consecutive in eO)^. Also AB Ç Л_ u 
u C+ [БЛ Ç Л_ u C+], where С is the archimedean class containing the idem-
potent g. 

(2) Suppose that AB [БЛ] is contained in a single archimedean class but BA [/1Б] 
is not contained in a single archimedean class. Then there exists an idempotent g 
such that e < g < f,g ^^ e and f and g are consecutive in eQ)^. Also В A ^ B+ и C^ 
[У4Б Ç Б+ U C _ ] , where С is the archimedean class containing the idempotent g. 

Proof, (l) Suppose that BA is contained in a single archimedean class but AB 
is not contained in a single archimedean class. By [3] Corollary 5.4, В * A = В 
and so, by [3] Lemma 6.7, there exists an idempotent g such that e < g < f, 
g &E^ ai^d e and g are consecutive in e^^. Now let x G Л and у e B.lï xy e A, then, 
by Lemma 1, e ^ xy and so xyeA_. Next suppose xy ф A. Then, by [3] (6.7.5), 

(3.1) xeA_\{e], 

and, by [3] (6.7.12)-(6.7.16), 

(3.2) xf = g. 

First, let у G Б+. Then, by Theorem 2, yx e В A ^ Б+ and so j ^ = min {у, yx) e B+. 
By [2] Lemma 1.13, the order of y^ is at most 2. H e n c e / = yl -^ (yx) у ^ f^- = f 
and so уху = / . Next let у e B_. Then, since yx e Б+, we have yx ^ f й У- S ince / 
is the zero element of Б, we have / = {yx)f ^ уху ^ fy = f and so уху = f. 
Thus, in both cases, we have 

(3.3) yxy=f. 

Hence (x} )̂̂  = ^{уху) = ^f = Q- Also, since e < g, WQ have A < С and so x < Ö'-
Further, since С ô A ô B, it follows from [3] Theorem 2.7 that gy = g. Hence 
xy ^ gy = g. Hence 

(3.4) xyeC+ . 

Thus we obtain AB ç >1_ u C+. 
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(2) can be proved in a similar way. 

Example 1. Let S be the ordered semigroup consisting of six elements ordered by 

e<a<c<g<b<f 

with the multiplication table 

e 
a 

' 
g 
b 
f 

^ 
e 
e 
9 
9 
f 
f 

a 
e 
e 
G 
9 
f 
f 

с 
e 
e 
g 
9 
f 
f 

9 
e 
e 
9 
9 
f 
f 

b 
e 
с 
9 
9 
f 
f 

f 
e 
9 
9 
9 
f 
f 

This example shows that in ordered semigroups S mentioned in Theorem 3 (1), the 
set product AB may contain an element of С different from g (Cf. [2] Theorem 6.8). 

Theorem 4. Suppose that Ad = Bo is of L-type [^R-type] and that neither AB 
nor BA is contained in a single archimedean class. Then there exist idempotents g 
and h such that e < g ^ h < f, e^E 9 ^E h ^E/ ^^^ ^oth {e, g] and {h,f] are 
consecutive in eQ^- Moreover AB ^ [^,6^] cind В A Ç [^,/] \^BA Ç [e, f̂] and 
AB ̂  [/!,/]]. 

Proof. By [3] Corollary 5,4, A* B = A and Б * Л = ß . Hence, by [3] Lemma 6.7, 
there exists idempotents g and h such that e^E 9 ^E^^ ^E/^ ^ < 9 < f^ e < h <f 
and both {e, g] and {h,f] are consecutive in e ^E- This implies e < g ^ h < f. 
Moreover for a e A and b e B, ab ^ gb = {gf) b = g{fb) = gf = g and, by Lemma 
\, e ^ ab. Hence AB ç \_e, g^. In a similar way we can prove that В A ç [ / / , / ] . 

It is easily seen that in an ordered semigroup S satifying the assumption of 
Theorem 4, [e, g^\[A_ u C+) is a convex subsemigroup of S, if it is nonempty, 
where С is the archimedean class containing the element g. The ordered semigroups 
constructed in [1] show that [e, g^ \ ( ^ - ^ C+) may be nonempty. The following 
example shows that the subsemigroup [e, ^] \ ( У 4 _ U C + ) may carry a much more 
general character. 

Example 2. Let T be an arbitrary ordered semigroup. Let S be the ordered semi
group consisting of elements 

{a{t); f e Г} u {u{t); t e T} KJ {v{t); t e T} и {b(r); t e T} KJ {ej, g, h} 

ordered by 

e < a(s) < a(t) < u{s) < u{t) < g < h < v{s) < v{t) < b{s) < b{t) < f 
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for s, t e Tsuch that s < t and with the multiplication table: 

u{s) 

e a{t) ii{t) g h v{î) b{t) f 

е е e e e e e e 
е е e е е a[st) u[st) g 
e a{st) u{st) g g g g g 

g 
h 

f 

G g g g g g g g 
h h h h h h h h 
h h h h h v{st) b{st) f 
h v{st) b{st) f f f f f 
f f f f f f f f 

where s, t e T. It can be seen that Л = [e] u {a(r); t e Т} is the least and В = 
= {b(t); t e T} Kj {/} is the greatest archimedean class of S which satisfy the assump
tion of Theorem 4, and \_e, g^ \{Ä_ U C + ) is equal to {u{t)', t e T}, which is o-iso-

morphic to T. Moreover, if T satisfies the condition that T^ = T, then [e, g'\ \ \(У4_ UC+) Ç AB. 
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