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ABSOLUTE POINTS IN BN\N

ANNA Kucta and ANDRZES SzZyMANskI, Katowice

(Received June 22, 1974)

The aim of this paper is the study of the space N* = N \ N in the situation when
Continuum Hypothesis (CH) not necessarily holds and Martin’s Axiom (MA) is
assumed. Now some distinctions of P-points are possible. We introduce a notion
of absolute points announced as P(c) points by BootH [2] (by CH absolute points
coincide with P-points). We prove that there exist 2° absolute P-points which are
minimal in the Rudin-Keisler ordering. Although this result can be obtained in a way
analogous to that of BLass [1] (the existence of 2° minimal P-points), we get the
mentioned result from some theorems of the Baire Category type (Lemmas 2 and 3).
These theorems allow to obtain further results concerning the structure of N*.
Namely, we prove that each cover of N* by means of nowhere dense subsets is of the
cardinality greater than c. In other words, the Novak number (introduced in § 3)
of N* is greater than c¢. It is known to the authors from Professor NOVAK’s oral
communication that, without any extra set-theoretical assumptions, the cardinality
of any cover of N* by disjoint nowhere dense closed subsets is greater than N,.

1. Basic Lemmas. A family T = {T, : « < f} of closed-open subsets of N*, where
and f are ordinals, is a f-tower (HECHLER [4]) if for all ordinals « < y < f we have
T, ¢ T,. A tower Tis said to be maximal if it is maximal with respect to the length
of T, 1.e., if NTis a nowhere dense set (Hechler calls such a tower complete). Hechler
[4] proved that if MA holds, then each maximal tower has the cardinality 2%°.

It is natural to ask whether there exist P-points which are maximal towers, i.e.,
P-points with linearly ordered (with respect to the inclusion) base in N*. It is obvious
that if CH holds, then each P-point in N* is a tower.

In the sequel, we use the usual convention that a cardinal is an initial ordinal, ¢ is
the cardinal of the continuum and free ultrafilters on N are regarded as points of N*.

Lemma 1 (MARTIN, SOLOVAY). If M A holds and B is a base for a free filter on N
such that card B < c, then there exists an infinite subset T of N such that T\'Y is

finite, for each Ye B.
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Note. This Lemma follows from the Sy hypothesis which is implied by MA (see
Martin, Solovay [5]). Because the Lemma is crucial when applying MA, we give
here a direct proof (cf. Both [2]).

Proof. Let P = {(F, Y): F is finite and Ye B} and for (F, Y), (F', Y')e P put
(F,Y)S(F,Y)iff FcF'cFuYand Y cVY. It is obvious that < establishes
a partial ordering on P. Note that, if (F, Y) and (F, Y’) are in P and have the same
first element and Yy € B is such that Y, = YN Y', then (F,Y, )€ P and (F,Y,) is an upper
bound for them both. Therefore, if L < P is an antichain, then elements of L have
different first members, hence Lis countable. It is to verify that the sets D, = {(F, Y) e
€ P: there exists m € F withm > n}and D, = {(F, Y)e P: Y < A} are dense subsets
of PforallneNand Ae B.Put4 = {D,:ne N} u {D,: Ae B}. Thus 4 is a family
of dense subsets of P and card 4 = card B < c. Let T'= U{F : (F, Y) € G}, where G
is a generic set for 4.

Tis an infinite subset of N, because for each n there exist (F, Y)e G n D, and m e
€ F < Tsuch that m > n. So Tis an unbounded subset of N.

T~ A is finite for each A € B. In fact, let (F, Y) € G n D4, let (F’, Y') be an arbitrary
element from G and let (F”, Y”) € G be greater or equal to (F, Y) and (F’, Y). Since
F'< F"< FuYand (F.Y') is an arbitrary element from G hence T < F U Y.
This implies that TN 4 = (FU Y)N A < F, because Y = A. This completes the proof.

Corollary 1. Suppose M A holds and R is an infinite family of open subsets of N*
such that R * 0. If card R < ¢, then Int R * 0.

Corollary 2 (HECHLER [4]). If MA holds, then each maximal tower in N* has the
cardinality c.

Lemma 2. Suppose MA holds and & is a family of nowhere dense subsets of N*.
If card &/ < c, then \J.oZ is a nowhere dense subset of N*.

Proof. Let o = {4, :a < y}, where y < ¢, be a well ordering of ./ and suppose
Intcl Yo/ + 0. Let V be a non-empty closed-open subset of N* contained in ¢l J.«7.
We define, by transfinite induction, a family {V, : « < y} of non-empty closed-open
subsets of N* such that

(i) Vye VoV, fora<f <y,

(i) V,n A, =90, for « <.

Let V, be an arbitrary, non-empty and closed-open subset contained in V such
that ¥, n A, = 0. Assume that we have defined V,, for « < f, which fulfil (i) and (ii).
In virtue of compactness of N* and Corollary 1, Int N{V, : o« < 8} # 0. Let V, be
a non-empty, closed-open subset contained in Int N{V, : « < B} such that V; n 4, =
= 0. In virtue of Corollary 1 again, we infer G = Intﬂ{V,j :p <9} *+ 0. This
contradicts to our assumption, G being a non-empty open set contained in V and
disjoint with J.«.
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Lemma 3. Suppose MA holds and </ is a family of nowhere dense subsets of N*.
If card .o/ = ¢, then N*\ U/ is a dense subset of N* of cardinality 2°.

Proof. Let &/ = {4, :a < ¢} be a well ordering of «7. For each ordinal x < ¢
we define, by transfinite induction, a family R, of disjoint closed-open subsets
of N* which fulfil the following conditions:

(i) UR,n A, =0,

(i) the family R, refines the family R, for « < 8 < ¢, i.e., for every Ve R, there
exists U € R, such that V < U,

(iii) if « < p < cand UeR,, then card {VeR,: V < U} = 2,

(iv) if y < ¢ is a limit ordinal and L is a y-tower consisting of elements of all
families R, for « < y, then (L contains at least two elements of the family R,.

Let R, be a family consisting of two disjoint, non-empty, closed-open sets which
are also disjoint with A,.

Assume that we have defined the families R, for o < f.

If B =o+ 1, then for every U € R, take two disjoint, non-empty closed-open
sets contained in U and disjoint with 4,,,. Let R, be the family of all these sets,
for each U € R,

If B is a limit ordinal and Lis a B-tower consisting of elements of all families R,
for o < 8, then, by Corollary 1, Int L+ 0. Take for every such f-tower two
disjoint non-empty closed-open sets contained in Int (YL and disjoint with 4;. Let R,
be the family of all these sets.

Conditions (i)—(iv) are in both cases obviously fulfilled.

Now, conditions (ii), (iii) and (iv) imply that the cardinality of the family of all
c-towers of elements of all families R, for « < ¢, is 2°. Moreover, if we take two such
different c-towers, then their intersections are non-empty and disjoint. Condition (i)
implies that the intersection of such c-tower is disjoint with {J.Z. The elements of R,
can be chosen as subsets of an arbitrary open set which implies the density of
N*\U.oA.

Remark. A more detailed version (although without further applications in this
paper) of Lemma 3 can be stated: N*\ s/ contains the space 2¢ with the box-
topology as a dense subspace.

2. Minimal and absolute points in N*. Let N be a cardinal and let X be a space.
A point p € X is said to be an N-point if N is the supremum of all cardinals such that
the intersection of each family of the cardinality less than N of neighbourhoods of p
is a neighborhood of p.

Let X be a space and let w(X, x) denote the weight of X at the point x. A point x
which is w(X, x)-point is called an absolute point of X.

In the sequel, F denotes the set of all N-points of N* and F denotes the set of all
absolute points of N*, i.e., if MA is assumed, the set of all ¢c-points.

6
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It is obvious that absolute points of N* can be characterized in terms of towers
as follows:

a point p e N* is an absolute point iff there exists a tower T such that {p} = NT.

Note that the set of all non-P-points of N* coincides with Fy,.

Theorem 1. Suppose MA holds. If N < ¢, then the set Fy can be covered by ¢
closed and nowhere dense subsets of N*.

Proof. Let B be a base in N* consisting of closed-open sets and card B = c.
If p is an N-point, then there exists a family R of neighborhoods of p with card R = N
and p e MR\ Int NR. We can assume that R < B.

For each family R < B with card R = N, let A, = NR\ Int NR. The cardinality
of the set of all subfamilies of the cardinality N from B is equal to 2% =2% In
virtue of MA, we have 2% = 2% (see Martin, Solovay [5]). Thus the family of all
such sets Ag gives the required cover of Fy.

Recall that an ultrafilter p e N* is a P-point iff each map f: N — N is either con-
stant or finite-to-one on an element of p. An ultrafilter p e N* is minimal (with
respect to the Rudin-Keisler ordering) iff each map f: N — N is either constant or
one-to-one on an element of p. It is obvious that the minimal points of N* are
P-points. The definition implies the following characterization of minimal P-points:

Lemma 4. A P-point pe N* is minimal iff for each finite-to-one map f : N - N
there exists a neighborhood U of p in N such that /)‘fl U is a homeomorphism
onto (Bf) (U), where Bf is the extension of f onto fN.

Let f : N - N be a finite-to-one map. Denote by O the family {cl,,NM \N:M <N
and f I M is one-to-one}. It is easy to prove the following

Lemma 5. If f : N = N is finite-to-one, then \JO, is dense and open in N*.

Theorem 2. Suppose MA holds. The set of all non-minimal points of N* can be
covered by ¢ closed and nowhere dense subsets of N*.

Proof. Let # be the set of all finite-to-one maps from N into N. The family
{N*\UO;,:fe F} is a family of closed and nowhere dense subsets of N* which
covers the set of all non-minimal P-points. The cardinality of this family is ¢. In
virtue of Theorem 1, the set of all non-P-points is covered by ¢ closed and nowhere
dense subsets of N*. Both these families give the required cover of all non-minimal
points of N*.

Theorem 3. There exists a dense subset D of N* of cardinality 2° consisting of
points which are both absolute and minimal, and such that N*\ D can be covered
by ¢ closed and nowhere dense subsets of N*.
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Proof. In virtue of Theorem 1, the set U{Fy : N < ¢} of all non-absolute points
of N* can be covered by a family R, of closed and nowhere dense subsets of N*
with card R, = ¢. From Theorem 2 it follows that there exists a family R, of closed
and nowhere dense subsets of N of cardinality ¢ which covers the set of all non-
minimal points of N. Thus the family R = R, U R, is a family of closed and nowhere
dense subsets of N* of cardinality ¢ and D = N* \ JR is contained in the set con-
sisting of points which are both absolute and minimal. In virtue of Lemma 3, the set D
is a dense subset of N* of cardinality 2¢.

Remark. It can be proved, using Remark to Lemma 3, that the space 2¢ with the
box-topology can be embedded as a dense set in the set of points which are both
absolute and minimal.

Question 1. Assume MA. Do there exist N-points in N* for Ng < N < ¢?

Question 2. Are all absolute points of the same type in N*, i.e., does there exist
for any absolute points p and q in N* a homeomorphism f of N* onto itself such that

f(p) = q?

3. Noviak Number of subspaces of N*. The Novdk number nX of a dense in itself
space X is the least infinite cardinal being the cardinal of a covering of X by nowhere
dense sets.

In this section we establish the Novdk number of some subspaces of N* and we
discuss the cardinality of some special families of nowhere dense subsets of N*. All
theorems in this section depend on Martin’s Axiom.

First we state same consequences of previous theorems.

Theorem 4. nN* > c. If D is a dense subset of N*, then nD = c.

Proof. The former inequality follows from Lemmas 2 and 3, the latter from
Lemma 2.

Theorem 5. n(F n M) > ¢ and n(N*\(F n M)) = ¢, where F denotes the set of
all absolute points and M the set of all minimal points of N*.

Proof. Let D « F n M be the same as in Theorem 3. If n(F n M) < ¢, then
N* = (N*\ D) u F n M can be covered by a family of closed and nowhere dense
subsets of N* of cardinality <c (nowhere dense subsets in a subspace are nowhere
dense subsets in the whole space). This contradicts Lemma 3.

The set N*N\ F n M is a dense subset of N*, so from Theorem 4 it follows that
n(N*NF n M) 2 c. In virtue of Theorem 3, N¥*\F n M <= N*\ D can be covered
by a family of closed and nowhere dense subsets of N*\ F n M of cardinality ¢
(nowhere dense subsets in the whole space are nowhere dense in a dense subspace).
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A cover & of X by closed and disjoint nowhere dense subsets of a space X is called
upper semicontinuous (lower semicontinuous) if for every open set U = X the set
Ulde o : A < U} (the set U{Ade o/ : AU + 0}) is open.

A cover o7 of a space X is said to be regular if for each non-empty open set G = X
there exist disjoint and non-empty open sets U, V contained in G such that the sets
{Aeod:AnU %0} and {Ae o : ANV + 0} are disjoint.

Theorem 6. If </ is an upper semicontinuous cover of a normal space X, then </
is regular. Assume MA.If < is lower semicontinuous cover of N*, then o is regular.

Proof. Let .o/ be an upper semicontinuous cover of a normal space X, and let U
be a non-empty open subset of X. Since the elements of .« are nowhere dense and .o/
is a cover, hence there exist 4,, A, e .o/ such that A, "nU 0 + A4, nU and
A, * A,.Since A, and A, are disjoint and closed subsets of a normal space X, hence
there exist disjoint open sets V; and V, such that 4; < V; for i = 1, 2. Since ./ is
upper semicontinuous hence B; = U{de & : 4 c v} for i =1, 2 are non-empty
and open. Moreover, since A; < B; hence B,nU % 0 for i = 1,2. It is obvious
thatthen U; = B, n U, i = 1, 2, are the open subsets of U desired for &/ to be regular.

Assume MA. Let o7 be a lower semicontinuous cover of N* and let U be a non-
empty open subset of N*. Let us suppose, on the contrary, that for any open sets
Vi, V, < U there is

Ufded :AnV, =0 n(Ufdesd AV, £0})*0.

The last assumption implies that for each open set V < U the set D, = Y{Ad e .o/ :
: A~ V=# 0} is a dense and open subset of U. Hence for each open V < U we have
that U \ D, is a nowhere dense subset of N*. Now, let B be a base in N* consisting
of closed-open sets and card B = c¢. The family R = {U\ Dy, : We B, W< U} is
a family of nowhere dense subsets of N* of cardinality ¢. R is a cover of U. To see
this, let A € o/ be such that A " U #+ 0. Since 4 is a nowhere dense subset of N*
hence there exists We B such that W< U and Wn A = . This means A n U <
< U\ Dy and hence U = (JR. The last inclusion contradicts Lemma 3.

Theorem 7. If .o/ is a regular cover of N*, then card o/ = 2°.

Proof. For each o < ¢ we define a family R, of closed-open subsets of N* which
are disjoint and which fulfil the following conditions:

(i) if U, Ve R, and U # V, then the sets {4e./:AnU * 0} and {4e o/ :
ANV + 0} are disjoint,
(i) if « < B < ¢, then Ry refines R,,

(i) ife < cand L={V,:y < az} is an a-tower consisting of elements of families
R, for y < o, then card {VeR,: V < (L} 2 2.
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Let R, consist of two arbitrary disjoint, closed-open sets U, V which fulfil (i) (the
existence is implied by regularity of .2/). Assume that we have defined the families R,
for each y < « which fulfil conditions (i)—(iii). Take an arbitrary a-tower L con-
sisting of elements of families R, for y < «. In virtue of MA we have Int L # 0.
Since .7 is regular hence there exist closed-open and disjoint sets U, V contained in
Int L such that the sets {Aes/:AnU 0} and {Ade s/ : ANV * 0} are
disjoint. Put R, to be the family of all such U, V for all a-towers consisting of elements
of all families R, for y < a. It is obvious that {R, : y < a} fulfils conditions (i)— (iii).

Now, conditions (ii) and (iii) imply that the set of all c-towers consisting of elements
of all families R, for « < ¢ has cardinality 2¢. For such a c-tower L, denote by A, the
element of ./ such that 4, n L+ 0 (such an element A4, exists because AL+ 0
and .« is a cover of N*). Moreover, if Land L' are distinct such c-towers, then there
exists an ordinal f < ¢ and sets Uye Ln Ry, Ve L' n Ry such that Uy n V) = 0.
In virtue of condition (i), we have 4, + A,,. Hence card &/ = 2°.

Added in proof. Question 1 was answered positively by the second author, On the existence
of P(N)-points for Ny <= N << ¢, Colloquium Mathematicum (in print).
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