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Czechoslovak Mathematical Journal, 27 (102) 1977, Praha 

A REALIZATION OF D-GROUPS 

M I MOCKOR, Ostrava 

(Received May 29, 1975) 

T. NAKANO [6] introduced a ring-like system called an m-ring, which differs from 
the usual concept of rings by aditting a multivalued addition. In many cases, the 
results concerning m-rings can be apphed to the theory of rings and lattice ordered 
groups. 

The topic of this paper is an appHcation of ideal-theoretic methods to the theory 
of m-rings and d-groups. The main result is a theorem about a realization of a d-group 
as a subdirect product of simply ordered d-groups. Since any 1-group is a d-group, 
the theorem of Lorenzen (in commutative case) can be derived from our result. 

Finally, in Section 4 we give a new proof of a conjecture about 1-groups presented 
by W. KRULL. This proof is based on an approximation theorem for d-groups. 

1. INTRODUCTION 

In order to make this paper self-contained we repeat some basic facts about 
d-groups (see [6]). 

By an addition in a set M, we mean a multivalued function assigning to every 
ordered pair of elements (a, Ь)Е M^ a no-void subset a @ b of M which satisfies 
the following axioms: 

(i) a ® b = b @ a; 

(ii) a ®{b @ c) = {a ® b) @ c, where N @ К == \j {a @ b\ for any iV, 
К ^ M; «^ '̂̂ ^^ 

(iii) a E b ® с implies b E a ® с 
for any a, b, с E M. 

An m-ring is a commutative semigroup (M, •) which admits an addition © and 
satisfies 
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(iv) a{b ® с) = ab ® ас. 
In this paper all m-rings are required to obey the cancellation law and the existence 
of identity element. A d-group is a partially ordered group G which admits an ad
dition Ф such that (G, •, ®) is an m-ring and satisfies 

(v) a, b '^ с and xe a @ b imply x ^ c. 
Throughout this paper we denote by U[X) the group of units of a semigroup X. 

Let (A, % ©) be an m-ring and let Q[A) be the quotient group of the semigroup A. 
It can be easily verified that the addition © in Л can be extended to the addition 
in ß(^) . Then the factor group D[A) = Q{A)IU(A) can be partially ordered by di
vision with respect to a semigroup A and becomes a d-group with respect to the ad
dition 

{a U{A)) {b и{А)У' ©' (с U{A)) {d и{А)У' = 

= {{ad U{A) © {cb U{A)) {bd U{A))-^ . 

D{A) is then called a d-group relative to an m-ring A. 
In what follows we assume that any m-ring contains an element 0 such that 0 e 

e a @ b if and only if a = b. The element 0 is then uniquely determined. 
An m-ring jR is called local provided that a sum of non-units does not contain 

a unit. This is equivalent to the assertion that the d-group D{R) satisfies 

(vi) a > b implies a ® b = {b}. 
A subset J of an m-ring A is called an m-ideal of Л, if a © Ь ^ J, ar e J for any 
a, b E J, r E A. An m-ideal J is called prime if J satisfies the condition 

ab E J implies a E J or b E J 
for any a, b E A. 

It is easy to see that every maximal m-ideal is prime. Now for any m-ring A and 
a prime m-ideal P of Л it is easy to see that 

Ap = {ab-^ :aEA, b E A - P} 

is a local m-ring with the maximal m-ideal 

PAp = {ab~^ :aEP, b E A - P} , 

This m-ring is called an m-ring of quotients with respect to the multiplicative 
system A — P, 

An m-ring R is called a valuation m-ring provided that the d-group D{R) is simply 
ordered. Any valuation m-ring is local. 

An element p of a d-group G is called integral over an m-subring / of G, if there 
exist elements aQ, ..., a^EI, n "^ 0 such that 

р " + ^ е а „ / © . . . ©flo-
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An m-ring Ä is called integrally closed in a d-group G provided that every element 
of G integral over Ä is contained in Ä. 

If Я is a subgroup of a d-group G, then the factor group GJH becomes a d-group 
with respect to the addition 

аН @' bH = {аН @ ЬН)1Н , 

where © is the addition in G, and the order relation 

аН ^ bH ^ a' ^ b' for some a e аН , b' еЬИ 

if and only if Я is a d-convex subgroup, i.e. if it is a convex subgroup and G^H ф 
e G+H = G + H, where 

G+ = { ^ G G : ^ ^ 1} . 

A d-convex subgroup Я is called prime if the factor d-group GJH is local, i.e. (GIH)+ 
is a local m-ring. 

2. REALIZATION OF D-GROUPS 

In this section we shall prove a theorem about the embedding of a d-group G into 
a direct product of simply ordered d-groups in such a way that a group G is a sub-
ditect product of these d-groups. 

First, we shall prove several lemmas. 

Lemma 1. An m-ring A is a valuation m-ring if and only if there exist a simply 
ordered d-group G and a mapping w : Q{A) -> G which satisfy the following 
conditions: 

(1) w{xy) = w(x) w{y); 
(2) w(x ® y) = w{x) © w(v); 
(3) A = w-\G,) 

for any X, y e Q{A). A map w is then called an m-valuation associated with A, 

Proof. Assume that Л is a valuation m-ring and let w : Q(A) -> D(Ä) be the canon
ical mapping. Then we have w(x @ y) = w{x © y) lщJ^^ = w{x © y) w(t/(^)) = 
= (x U{A) © у U(A))IU(A) = w{x) © w(y). It can be easily verified that w satisfies 
the other conditions. 

Conversely, assume that w : Q{A) -^ G has the desired properties. Then the map
ping / : g U{A) I-> w{g) defines an order isomorphism of D{A) onto G. Therefore, 
D{A) is simply ordered and yl is a valuation m-ring. 
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Remark . If w is an m-valuation associated with a valuation m-ring A, then the fol
lowing conditions hold: 

(4) XE a @ b implies vv(x) ^ min {w(fl), w{b)]; 
(5) X E a ® b, w(a) Ф w{b) imply w(x) = min {vv(fl), vv(b)}. 

In fact, the condition (4) follows directly from the definition of a d-group. Now 
assume that x E a @ b and w(a) < w(b). Since о E x ® b, we have w(x) = w(a) 
by (4). 

Lemma 2. Let G be a d-group and let I be an m-ideal of G + . Then there exists 
a valuation m-ring R such that I ^ M(^R) and G+ Ç Ä с G, where M(X) is the 
maximal m-ideal of a local m-ring X. 

Proof. Put 

^ = {R' : R' is an m-ring, IR' Ф R', G+ ^ R' a 6} . 

It is clear that ( j / , ç ) satisfies the conditions of Zorn's lemma; hence there exists 
a maximal element R of j / . If we suppose that R is not local, there exists a maximal 
m-ideal M of i^ such that IR ^ M ^ R and R с R^^, where RM is the m-ring of 
quotients with respect to the multiplicative system R — M. This contradicts the 
assumption on R. Hence î  is a local m-ring. 

Let qE G Ы the element which is not integral over jR. By [7]; Lemma 3 there 
exists a local m-ring Rq which contains q ~ ^ and R but not q and all the inverses of 
non-units of jR. Especially, IR^ ф R^. Thus we have R = R^. By [7]; Lemma 4 the 
integral closure JR' of R is a valuation m-ring. 

Suppose that IR' = R'. Thus we have 1 — ub fox some и E I, b E R\ Hence 

(1) w(u) > 1 , 

b" + ^ еа„Ь" e ... © Ö0 , 

where the coefficients belong to R and w is the canonical mapping G -> D(R). (Evi
dently, w satisfies the conditions (l), (2) of Lemma L) Let the number n be the smallest 
that satisfies the above relation. Then 

1 = u^^^b"""-^ Eu^'-^^a^.b'' e . . . фи'^^^ао ; 

w(t/"+^fl,) ^ w(w"+^) > 1 . 
Thus 

1 E w{c„) w{by e . . . 0 M;(CO) , 

where и{с,) > L Since R is local, the rule 8); [7] implies 

1 G w{c„) w{by e . . . © w{ci) w{b) . 
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Multiplying by w{by on both sides we obtain 

w{by e w(c„) w(b)'" e ... e w{c,) Y.ibf^ . 

Using (l) repeatedly, we have 

w(fe)" G w{d„) w{by e . . . © w{do) , 

where w(J„b") > w(b"). Again, we have 

w{bf G w((i„_i) w(b)"-1 e .. . e w(4) 

by 8); [7]. Thus there exist p G (i„_ib"~^ 0 ... © О?О and ; e U{R) such that b" = pj\ 
hence we get 

b " e ( J „ _ j ) f o " - ^ © . . . © ( j J o ) . 

This contradicts the assumption on n. Therefore, IR' Ф R' and we have R' = R. 
Especially, / ç / P Ç M{R). 

Proposition 3. Let G be a d-group and let P be a prime m-ideal of G+. Then 
there exists a valuation m-ring R such that G+ ^ P cz G and M(R) n G+ = P. 

Proof. It is easy to see that P{G+)p = {pq~^ : pe P, qe G+ — P} is the maximal 
m-ideal of the m-ring of quotients {G+)p. By Lemma 2 there exists a valuation 
m-ring P such that {G+)p Я R and P(G4-)P ^ M{R). Thus P{G+)p = M{R) n{G+)p 
and we have P = P{G+)p nG+ = M{R) n G+. 

In what follows, G* will denote the core of an ordered group G, i.e. G* = 
= {gh-' :g,hEG+}, 

Lemma 4. Let G be a d-group and let H be a prime d-convex subgroup of G. 
Then there exists a valuation m-ring R such that G+ ^ P c: G and Я* = L/(P)*. 

Proof. Setting 
P = G+ -{H nG+) = G+ - Я+ 

we shall prove that P is a prime m-ideal of G+. In fact, assume that x, y e P, Then 
X, y Ф H and since H is prime, we have x © y Ç P by [6]; Lemma 6. Now assume 
that xe G+ and j^ G P. Thus x j ^ j ; ^ 1 and since H is convex, we have xy e P. 
The condition that P is a prime m-ideal can be verified easily. By Proposition 3 
there exists a valuation m-ring R such that G+ ^ R cz G and M(R) n G+ —P. 
Hence (7(P)+ = V{R) n G+ = {R - M{R)) nG+ = G+ - P = H+. Therefore, we 
have l/(P)* = Я*. 

A valuation m-ring R such that G+ я R cz G for a d-group G is called well 
centred on G provided that R = G+ U(R), 
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Lemma 5. A valuation m-ring R is well centred on G if and only if for any 
qe D(R)+ there exists qeG^ such that w(q) = q, where w is the m-valuation 
associated with R. 

Proof. Let R be well centred on G and assume that q e D(R)+. Then q = r U(R) 
for some r e R. Hence we have r = uq, where и e U{R), qe G+. Therefore, q = 
= w(r) = w(q). The converse is trivial. 

Lemma 6. Let G be a d-group and let A be an m-ring such that G+ я A с G. 
IfD(A)+ is integrally closed in D(A), then A is integrally closed in G. 

Proof. Assume that x is an element of G such that 

x""*-̂  ea„x" e .. . © «0. 

where the coefficients belong to A, and let w : G -^ ^ ( ^ ) ^^ ^^^ canonical homo-
morphism. Then 

w(x)"+^ G w{a„) w{xy 0 ... © w{ao) 

and we obtain w(x) e D(Ä)+. Therefore, there exist elements g E A,j e U(A) such that 
X = gj e A U{A) ^ A. Hence A is integrally closed in G. 

Lemma 7. Let G be a d-group and let A be an m-ring such that G+ ^ A c: G. 
Assume that a group U(R) is directed for every valuation m-ring R, G+ ^ R a G. 
Then the group U[R) is directed for every valuation m-ring R such that D[A)+ Ç 
^ R cz D{A). 

Proof. Assume that i? is a valuation m-ring such that D{A)+ !£ R CZ D{A), 
Setting 

R = {gEG:g U{A) E R} 

we shall show that i^ is a valuation m-ring in G containing G+. In fact, it suffices to 
prove that R is closed under the addition. But we have (a © b) U{A) ^ {c U{Ä) : с e 
Ea @ b\ a Ea V{A\ b' e V{A)] = a V{Ä) © b IJ{A). It is clear that V{R) = 
= {j 1]{А) : j E V{R)}, Now assume that a,bE U{R); hence a = a U{Ä), b = b U{A) 
for some a, b E U(R). Since U(R) is directed (in G), there exists an element с E U{R) 
such that a, b ^ c. Since G+ ^ ^ , we have a~^c, b~^c E A. Therefore a ^ с U{Ä), 
b S с U{A) in D{A) and U{R) is directed. 

An m-ring A is called a Prüfer m-ring provided that an m-ring of quotients Ap 
with respect to every prime m-ideal P of Л is a valuation m-ring. 
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Theorem 8. Let G be a directed d-group and suppose that U(R) is directed for 
every valuation m-ring R such that G^ ^ R с G. Then the following conditions 
are equivalent: 

(1) Ä factor d-group GJH is simply ordered for every prime d-convex subgroup H 

of G. 

(2) G+ is a Prüfer m-ring. 

(3) Every m-ring A such that G+ ^ A cz G is integrally closed in G. 

(4) Every valuation m-ring R such that G+ ^ R cz G and whose group of units is 
a prime d-convex subgroup of G is well centred on G. 

(5) Every valuation m-ring R such that G+ ^ R cz G is well centred on G. 

Proof. (4) => (l). We denote by Ш the set of prime d-convex subgroups of G. 
Assume that H еШ. By Lemma 4 there exists a valuation m-ring R such that 
G+ Ç i^ с G and U{Ry = Я*. Now, since U{R) is directed, we have 1/(Я)* = 
= U{R) and by [6]; Lemma 6 we obtain that U(R) is a prime d-convex subgroup 
of G. Hence R is well centred on G. Moreover, on the set G/(7(i^) = {g U(R) : g e G] 
we can define two order relations. First, GJU{R) can be ordered as the d-group 
relative to R; second, G/L/(R) can be ordered as the factor d-group. Hence 

X U{R) й У U{R) <^ w{x) ^ w{y) , 

X U{R) ^ у U{R) ox й y' in G for some x' e x U{R) , fey U{R) , 

where w is the m-valuation associated with R. We shall prove that these order rela
tions are identical. In fact, assume that x U(R) ^ y U(R). This means that xi ^ yj 
in G for some i,j e U(R). Thus there exists g e G+ such that x~^y = gij~^ e 
EG+ U(R) С R . Hence w{x) S w(y)- Conversely, assume that w(x) ^ w{y). Then 
y = xr for some reR=^Gj, U(R); hence there exist j e U{R) and g '^ 1 such that 
r = 9Ji У = jd^ ^ j ^ ' Therefore у U{R) Ъ X U(R). 

Now, since Я is a valuation m-ring, the d-group D(R) = {GJH^, ^ ) is simply 
ordred. Hence we obtain that a factor d-group GlH"^ is simply ordered. But, since 
Я* Я H, the d-group GJII is simply ordered. 

(1) => (2). Let P be a prime m-ideal of G+ and let H be the convex closure of 
a group generated by G+ — P in G. Since H is directed, it is a d-convex subgroup 
of G by [6]; Lemma 5. Now one may easily verify that D((G+)p) is isomorphic to the 
factor d-group GJH. Since {G+)p is local, Я is prime. Hence GJH is simply ordered 
and we have that {G+)p is a valuation m-ring. Therefore G+ is a Prüfer m-ring 

(2) => (5). Suppose that G+ is a Prüfer m-ring and let Rhea valuation m-ring such 
that G+ Ç /^ с G. Put 

P = M{R)nG^. 
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Then we have {G+)p с R and if we assume that xe R - {G+)P, we get x ^ e (0+)^, ^ 
Ç R. Hence x ' M s a unit mR,x~^ф M{R), Thus 

x-'e{G^)p~{M{R)n{G^)p), 
so that 

X = [X ) ^ {{G + )p)i(G^)p-M(R)niG + )p} = \G-i^)p 

and we obtain (G+)p = R. Finally, assume that as D(R)+ and let a be an element 
of G such that a e a. Hence a = QXQZ^ for some g^e G^, g2E G^ -' P ^ U{R), 
Thus a = w(öfi) and R is well centred on G by Lemma 5. 

(5) => (4). Trivial. 

(2) => (3). Suppose that Л is an m-ring such that G+ ^ A с G and let M be 
a prime m-ideal of Л. P = M n G+ is a prime m-ideal of G+ and (G+)p с Aj^. 
Since G+ is a Prüfer m-ring we obtain that Л is a Prüfer m-ring. 

Next, denote by A the integral part of D{A). If P is a prime m-ideal of A, one may 
easily verify that U{Ap) = U{Ap)jU{A) ç D{A), where 

P = {aeA'.a U{A) G P } 

is a prime m-ideal of A. Now we get 

i)(^p) = D{A)IU{Ap) = {GlU{A))l{U{Ap)IU{Ä)) ^ G/U(^p) = D{Ap) . 

Thus we obtain that ^ is a Prüfer mrring. By [7]; Theorem N we have 

A ^0 {AH : H e Ш{А)} 

where Ш{А) is the set of prime d-convex subgroups of D[A). By Lemma 7 the 
implication (2) => (5) can be appHed to the d-group D{A). Thus we obtain that every 
valuation m-ring R such that A Я R cz D(A) is well centred on D{Ä). Hence by 
Lemma 4, for any H e Ш{А) there exists a valuation m-ring R such that R is well 
centred on D{A) and U{R) = U(Ry = Я* ç Я . We get 

A 3 p^{AH : H E m{A)} ^ C){^ U{R) : R e ЩА)} = 

= f){R:ReЩA)} ^ A, 

where ЩА) is the set of valuation m-rings such that A ^ R a D(A) and for which 
U(R) is a prime d-convex subgroup of D[A). Hence 

A = n{J^:RGm{A)} 

and by [7]; Main Theorem A is integrally closed in D{A). Therefore A is integrally 
closed by Lemma 6. 
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(3) => (2). It suffices to prove that if G+ is a local m-ring, it is a valuation m-ring. 
The proof of this part is substantially the same as that of [2a]; Proposition 13, 
but in order to make this paper self-contained we repeat it. 

Let X e G — G+ and put 

^ = U ( M ' " e . . . e b o ) , b , e G + . 

Clearly, В is an m-ring and x is integral over B; hence xe B. Let 

X E ÜQX^'^ © . . . © a„_iX^ © a„ ; «i e G+ , 

where the number n is the smallest that satisfies the above relation. We have 

öo"" '(«o^)e(aoxf" © ••• © ^f,«^""' • 

This means that a^x is integral over G+ and by the assumption that G+ is integrally 

closed we obtain that ÜQEGJ^. 

Now suppose that n > \. Then 

a^"-^xe4(aoX^)" © ... © ao""4 - i ( : ^öo ) ' © on^o""' , 

so that 
al-'xe{aoX^y @ ,..® al-'a,. 

Since П > 1, we have a^Q~^x e G+. Hence 

(öox')" e a^{aoX^y~' © ... © {al~'a, © oTç^'x) 

and we obtain a^x^ e G+. Now 

xeflo^^" © ••• © Ö« == (flo^^)-^^'""^ © ••• © «n 

and this contradicts the assumption on n. Therefore n = 1 and x E QQX^ © a^ for 
QQX e G4.. Since a^E x{\ © aox) and x ^ G+ we have «QX = 1 and we obtain x~^ = 
= «0(^0^)"^ G ^+- Therefore G is simply ordered and since G = I>(G+) we obtain 
that G+ is a valuation m-ring. 

A set {Gf : f e /} is called a reahzation of a d-group G provided that Gf is a simply 
ordered d-group for any i e / and there exists an order isomorphism/of the d-group G 
into a group W Gi such that 

iel 

(2) / ( a © b ) ç / ( a ) © 7 ( b ) , 

where ©' is an addition defined in [6] and the group/(G) is a subdirect product 
of the groups Gj. Note that for any directed d-group in which all d-convex subgroups 
are directed there exists an order isomorphism into a product of local d-groups 
which satisfies (2) ([6]; Theorem 6). 
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Theorem 9. Let G be the same as in Theorem 8 and let all d-convex subgroups 
of G be directed. Then the conditions of Theorem 8 are equivalent to the condition 

(6) {GJH : H is a prime d-convex subgroup of G} 

is a realization of G . 

Proof. (6)=^(1). Trivial. 

(l) => (6). By [6]; Theorem 6 there exists an order isomorphism f : G-^ 
-> П { ^ / ^ : Я is a prime d-convex subgroup of G} which satisfies (2) and such that 

/ ( G ) is a subdirect product of groups GJH. Since GJH is simply ordered for every 
prime d-convex subgroup H, the set {GJH} is a realization of G. 

In Section 3 we shall show that there exist a d-group G and a valuation m-ring R 
whose group of units U(R) is not directed (in G), G+ ^ R a G, and Theorem 8 
is false for this d-group. 

Proposition 10. Let G be a d-group and let H be a directed d-convex subgroup 
of G. Then if G+ is integrally closed in G, the m-ring [GJH)^ is integrally closed 
in GJH. 

Proof . Assume that 

1 7 " ^ ^ Я е а „ р " Я е ' . . . © ' а о Я , 

where aß ^ H and ©' is the addition in GJH. From the definition of the order 
relation in GJH it follows that there exist /î *̂  e Я (i = 0, ..., n) such that 

at ^ h^'^ ; / = 0 , . . . , w . 

Further, from the definition of the addition © ' it follows that there exist bo e aoH, . . . 
..., b„G a^H such that 

(3) / ' • ' е / Ь „ © . . . ф Ь о , 

where © is the addition in G. Since Я is directed, we can find an element qeH such 
that 

Then we have a,- ^ h^'^ ^ q~^ for i = 0, ..., n. Multiplying the relation (3) on both 
sides by q" + i, we obtain 

(4) {pqy^' e {pqY {qa„) /i, © ... © (aoq) q'^h 0 •> 

where hi = bia^ ^ (0 ^ г ^ n). Again, since Я is directed, we can find an element 
he H such that 

h^\. {q%-,y\ / = 0,...,n. 
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Multiplying the relation (4) on both sides by /i '̂+i^ ^^ „^^ 

(pqh)"'^' e {pqhy d„hhn ® .. . e ^o^V/^o . 

where dt = a-.q ^ 1, dih''~^''^q'h„.i ^ 1. Since G+ is integrally closed in G, we have 
pqheG^, Thus we obtain pH ^ H and ( G / H ) + is integrally closed in GJH. 

3. APPLICATIONS 

In this section we shall give some applications of results from Section 2 to the 
theory of commutative integral domains and to the theory of abelian lattice ordered 
groups. 

First, T. Nakano [6] showed that for any integral domain Ä the family Ä = 
— {x = {x, — x} : X E A} is an m-ring with respect to the addition 

X ® y = {x + y, X - y} 

and the multiplication 

X . y = xy . 

Analogically, it was proved that every abelian lattice ordered group G is a d-group 
with respect to the addition 

a @ b ^ [cE G : a л b = a л с = b АС}. 

It has proved useful on occasion to phrase a ring-theoretical or lattice-theoretical 
problem in terms of d-groups, first solve the problem there, and then pull back the 
solution if possibleto the original situation. 

Proposition 11, (See [1]; Theorem 16.5.) Let A be an integral domain with the 
quotient field K. If P is a prime ideal of A, then there exists a valuation ring R 
of К such that M(R) n A — P, where M(R) is the maximal ideal of R. 

Proof. Let Ä denote the m-ring mentioned above. Put 

P = {XEÄ'.XEP} , 

One may easily verify that P is a prime m-ideal of Ä, Now, by Proposition 3, there 
exists a valuation m-ring M such that D{Ä)+ ^ ^ cz D{Ä) and M(^ ) n D{Ä)+ = 
— w{P), where w :K -^ KlU{Ä) = D[Ä) is the canonical homomorphism. We set 

R = {XEK:W{X)E^} . 

Now, one may easily verify that R is a valuation ring of К and M(R) n A = P, 
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Recall that a valuation ring R of the quotient field i^ of an integral domain A 
such that A ^ Ris called well centred on A provided that for any a e Г+ (the value 
group of R) there exists a e A such that vv(a) = a, where w is the valuation associated 
with R. M. GRIFFIN [2] proved that there exists an integral domain A such that every 
valuation ring of the quotient field of A is well centred on A, but A is not a Prüfer 
domain. This fact enables us to give an example of a d-group G such that U{R) is not 
directed for a certain valuation m-ring R and for which Theorem 8 is false. 

First, on the quotient field К of an integral domain A we can define a preorder 
relation 

where /^ denotes the division relation with respect to A. 

Next, the following proposition holds. 

Proposition 12. Let A be an integral domain with the quotient field К and let 
a group U{R) be directed with respect to ^^for every valuation ring R of К con
taining A. Then the following conditions are equivalent: 

(1) A is a Prüfer domain. 

(2) Every valuation ring R of К such that A ^ R is well centred on A. 

Proof. Let A be the same as in Proposition 11. We shall prove that и[Щ is directed 
for every valuation m-ring M such that D(Ä)^ с ^ с D{Ä). In fact, set 

R = [XEKIX U{Ä) G i^} . 

Clearly, i^ is a valuation ring of K, A ^ R and ^ = Rj^i^) ^ ^ (^ ) - Assume that 
y U{Ä), X U{Ä) G U{^). Evidently, x, y e U{R) and since U{R) is directed, there 
exists z e U{R) such that z ^ ^ x, y. Therefore x U{Ä), y U(Ä) S z (7(Л) G V{ß), 

Next we prove that Ш is well centred on D(A). In fact, assume that a G D ( ^ ) + . Thus 
we have 

a = (3c (7(Л)) V{m), 

where x IJ(Ä) e M, Let w \K -^ KJU(R) be the valuation associated with R. Since jR 
is well centred on A, there exists a e A such that w(a) = w(x). This means that 
xa~^ e U{R). Consequently, x .{ä)~^ U{Ä) e U{0î) and we have {x U{Ä)) U{m) = 
= (â V{Ä)) U{M). Therefore ^ is well centred on D{Ä), 

Finally, D{Ä)+ is a Prüfer m-ring by Theorem 8. Assume that В is an integral 
domain such that A ^ В cz K. Put 

^ = {x U{Ä) :хеВ} , 
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Evidently, J* is an m-ring in D[A), D(A)+ Ç ^. By Theorem 8, J* is integrally closed. 
Now assume that 

x"+i = b„x" + .. . + bo; biEB 

for some xe K. From the definition of addition in Ä we get 

3c" + i = b^x" + ... + boeb„r e ... e bo. 

Hence 

50"^-^^ u{Ä) 6 ь„зс" 1/(Л) e . . . e Ьо с/(Л). 

Since ^ is integrally closed, we obtain x U{Ä) e ^. But, since U[Ä) ^ >̂'̂ (̂ )» we have 
X e B. Therefore В is integrally closed and by [1]; Theorem 22.2 Л is a Prüfer ring. 

The converse is trivial. 
Note that Proposition 12 can be proved directly without using the notion of 

d-group. 
Now, if we assume that Theorem 8 holds for every d-group, we obtain from the 

proof of Proposition 12 that this one holds for every integral domain. However, 
this contradicts the result of Griffin. 

Proposition 13 (Lorenzen). Every abelian l-group has a realization. 

Proof. Let G be an abelian 1-group. As it was mentioned above, G is a d-group 
with respect to the addition 

a@b = {ceG: aAb = aAc = bAc]. 

Assume that i^ is a valuation m-ring such that G+ я R <=: G. We shall prove that R 
is well centred on G and U{R) is directed. 

In fact, assume that i, j e U(R), Then we have i A j e i @ j ^ R. Since (f A j)~^ ^ 
^ (i~* л jf'"^) e R, we get i л j , i v j e R. Especially, i л j , i v j e U(R). Therefore 
U{R) is directed. 

Further, let x e R. We set 

x' = xj A 1 , 

where j is a unit of i^. Since x' e xj @ 1 я R and {x)~^ e G+ Ç JR we have x' e U(R). 
Moreover, since xj ^ x\ there exists geG+ such that x = gj~^x e G+U{R). 
Hence R ^ G+ U{R). The converse inclusion is trivial. 

Since G is lattice ordered, one may easily verify that every d-convex subgroup of G 
is directed. Now, by Theorem 9, the d-group G has a realization. Hence G has 
a realization. 

308 



4. APPROXIMATION THEOREM 

W. Krull [3] conjectured: 

Let G be an abelian 1-group and let iV ,̂ ...,М^ be prime 1-ideals of G. Assume that 
a family (а^М^, ..., a,,Nf^) e GJN^ x ... x GJNi^ satisfies the conditions 

ûiNiNj = üjNiNj ; i, 7 = 1, ..., /с, / ф j . 

Then there exists an element a e G such that 

GiNi = aNi for i = 1, ..., /c. 

The first proof of this conjecture was given by D. MÜLLER [4]. In this section we shall 
give an approximation theorem for d-groups. Since any 1-group is a d-group, this 
theorem may serve a new proof of Krull's conjecture. 

Proposition 14. Let G be the same as in Theorem 8 and let G satisfy the equivalent 
conditions of this theorem. Assume that R^, R2 are valuation m-rings such that 
G+ Ç Ri с G. Then 

R^ A R2 = RiR2 , U{RiR2) = U{R,) U{R2), 

where the set of valuation m-rings is ordered by the relation 

R^R'oR^R'. 

Proof. First, to show that R1R2 = Ri л R2 it suffices to prove that ^1^2 is 
a valuation m-ring. Assume that D(R^R2) = GJU, where U is the group of units 
of RiR2- We denote by l/j the group of units of Ri. Now, since U ^ t/i.t/2 ^ ^ь 
the canonical mapping of D(Ri) onto D(i?ii^2) satisfies the relation 

xUi й yUi =>xU й yU . 

Hence JR1JR2 is a valuation m-ring. 
Secondly, we shall prove that Ui is a prime d-convex subgroup of G. In fact, 

since Ui is directed, it is d-convex by [6]; Lemma 5. Moreover, since Ri is well 
centred on G, it can be verified analogous as in Theorem 8 that {GJUi, ^ ) = D(Ri), 
where ^ is the order relation on the factor d-group G/l/j. But since D(Ri) is local, 
we have that Ui is prime. 

Evidently, U1U2 is a d-convex subgroup of G. Now the canonical mapping of 
a factor d-group G/t/,- onto a factor d-group GIU1U2 defines an order homomorphism. 
Hence GJU1U2 is simply ordered and we have that U1U2 is prime. 
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Finally, we shall prove that D(R^R2) = {GlU^U2, й\ where ^ is the order rela
tion on the factor d-group GlUxU2- In fact, let us assume that xU^U2 ^ ^1^/2-
Then there exists an element j = j i J2 e UiJJi such that x ^ j . Hence x/7 ^ e G+1/2 — 
Ç i?2 and we have x G А^Яз- Conversely, xU^U2 A t/it/2 = (-^^i ^ U^)U2 = 
= U1U2 for any X G jR .̂ Assume that w : G -^ GIU1U2 is the canonical 
homomorphism; then we have i^ii^2 — ^~4(^/^ iV2)+)- Therefore JRiî 2 = 
= W"~^((G/17IÎ72)+)- NOW, since [/i(72 is a prime d-convex subgroup, by Lemma 4 
there exists a valuation m-ring jR such that U(R) = l/il72- From the fact that R 
is well centred we obtain that a factor d-group G/t/iL/2 is order isomorphic to the 
d-group D{R). Therefore R = R1R2. 

In what follows, we shall denote by ^ the set of valuation m-rings R such that 
G+ ^ Re: G.lfRedlg = g U{R) G D{R), g Ф U{R), we set 

Щд) = {R'e^:g^ U{R) U(R')] . 

An element Я G 9̂  is called weakly independent provided that for any R' еШ and 
g G U(R) U{R') there is an a G U{R) satisfying a U{R') ^ g U{R'). It is easy to see 
that i? G 91 is weakly independent if and only if for any R' e^, ge D(R') such that 
R Ф Щд) there exists an element a e G such that a e U{R) and a U{R') ^ g. 

We say that a family (g^,..., g„) e G" is compatible with respect to (JR^,..., R„) G 
G 91" provided that for any 1 й hj ^ n, i ф j it holds 

where Ut = U(Ri). Finally, we say that G satisfies the approximation theorem 
provided that for any family (g^, ...,g„)e G" compatible with respect to a family 
(jRi,..., R„) G 91" there exists a e G such that 

giUi = aUi, Ï = 1, . . . , и . 

The proof of the following proposition is quite the same as that of [2]; Proposition 
5. Nonetheless, we repeat it in order to make this paper self-contained. 

Proposition 15. Let G be the same as in Theorem 8. Then the following con
ditions are equivalent: 

(1) G satisfies the approximation theorem. 
(2) Every valuation m-ring of 91 is weakly independent. 

Proof. (2) => (1). The proof is by induction on n. For n = 1 the approximation 
theorem evidently holds. Now assume that a family (g^, ..., g„) e G" is compatible 
with respect to {Ri,..., Rr) G 91". We may assume that if i ф j then Rt ф Rj. Indeed, 
lï Ri Я Rj then by induction there exists a e G such that all^ — guUk foi* each fc, 
1 g fc ^ «, к ^ j . Since (^/, gj) is compatible with respect to {Ru Rj), we have 
aUj = gtUj — gjUj and the induction is complete. 
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Now there exists b^ e G+ such that b^ e t/^ and bj ф Ui for / = 2 , . . . , n. In fact, 
since Ui Ф l/f, there exist b,-e (L/̂  — (7/) n G+ for each Ï, 2 g f ^ П. We set 
bi = b2 ... b„. 

By the induction hypothesis there exists а^е G such that a^Ui = QiVi for i = 
= 1, . . . , n — 1. We may assume that а^и^ = giU^, a^Ui ^ giUi for i = 2 , . . . , л. 
Indeed, if fli(7„ < ^„Î7„ we have gnü^W^ ф i7„. Since (gn^gi) and (0^1,01) are 
compatible with respect to (R„, R^) we obtain that {g„, a^) is compatible. Now, since 
Ri Ф ^{g„ciï^), there exists a[ e G+ such that a[ e Ui, a[U„ ^ gn^ï^^n ^^ virtue of 
the weak independence; letting a2 = a^a'^ we have 

0(2^/1 = ö'i t / i , 

^ 2 ^ i = ^ l ^ i = gi^i for ï = 2, . . . , И — 1 , 

Now a^biUi = üiUi = ^ lUi , ai^b^Ui > a^Ui ^ 0̂ ,17̂  for / = 2 , . . . , n. Similarly 
for each valuation m-ring Ri we may find affoj e G such that üibiUi = giUi, aibiU^ > 
> gkUk for к 4= i. Hence aUi = min {cijbjUj 'Л й j ^ n} = giUi for any a e 
ea^b^ © ... e a„b„. 

(1) => (2). Trivial. 
Now using the method used in Section 3 we shall give an approximation theorem 

for lattice ordered groups. 

Lemma 16. Let G be an abelian l-group. Then every valuation m-ring R such 
that G+ Я R CI G is weakly independent. 

Proof. Let Я be a valuation m-ring such that G+ ^ R a G. Let R' E*^ and 
g = g U{R') e D(R') be such that g e U{R) U{Ry Hence g = ij for some i e U{R'), 
j e U{R). NOW we set 

a = j V i . 

Then aeG+ ç Ä and a~^ = {j v l)~^ == 7"^ л 1 ej'^ @ 1 ^ R. Thus we have 
a e U(R). Moreover, there exists an element g' e G+ such that ag~^i = g'. Hence 
we obtain a U{R') ^ gi'^ U{R') = g U{Ry 

Theorem 17. KrulVs conjecture is true. 

Proof. Let G be an abelian l-group and let iV ,̂ ...,Nf, be prime 1-ideals of G. 
Assume that a^, ..., a^^e G are such that aiNiNj = ajNiNj. G satisfies the approxi
mation theorem by Lemma 16 and Proposition 15 and by [6]; § 8 any prime 1-ideal 
is a prime d-convex subgroup. Hence, by Lemma 4, for any Ni, 1 ^ i ^ к, there 
exists a valuation m-ring Ri such that U{Ri) = Ni. Consequently, the family 
(«1 , . . . , a^) is compatible with respect to the family (R^, ..., Rj,). Therefore there 
exists a E G such that aNi = fl,iVj- for i = 1, ..., /c. 
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