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Let G be a graph (in the sense of BEHZAD and CHARTRAND [1] or HARARY [5])
with the vertex set ¥(G), the edge set E(G), the connectivity x(G), and the minimum
degree 6(G). Obviously, 0 < k(G) < &(G). We say that e € E(G) is a k-critical edge
of Gif k(G — e) = x(G) — 1. Analogously, we say that v € V(G) is a k-critical vertex
of Gif k(G — v) = k(G) — 1. R. HALIN 3] proved that if each edge of G is k-critical,
then 6(G) = k(G). G. CHARTRAND, A. KAUGARs, and D. R. Lick [2] proved that if
each vertex of G is k-critical and «(G) = 2, then §(G) < (3x(G) — 1)/2 (they also
proved that this inequality is — in a certain sense — the best possible). In the present
note, these theorems will be generalized and extended.

Itis clear that |V(G)| > x(G). If |[V(G)| = x(G) + 1, then 5(G) = x(G). We shall
assume that |V(G)| = «(G) + 2. We denote by Cut the set of all R < V(G) such that
the graph G — R is disconnected. Obviously, Cut # 0, and x(G) = min {|R|;
R e Cut}.

We say that a graph T is a territory in G if there exists R € Cut such that the
following conditions hold:

(1) Tis a component of G — R;

(2) if R, is a proper subset of R, then T is not a component of G — Ry;

(3) if T" is a proper subgraph of T and R’ e Cut such that T" is a component
of G — R/, then |R| < |R/|.

Let T be a territory in G. It is easy to see that there exists precisely one R € Cut
such that the conditions (1)—(2) hold; denote B(T) = R. We denote by C(T) the
graph G — B(T) — V(T). Moreover, we denote b(T) = |B(T)| Obviously,
b(T) = «(G).

The concept of a territory in G is a generalization of the concept of an end ot G
(Ende von G) studied by W. MADER in [6]; a territory Tin G is an end of G if and only
if B(T) = 1(G).

If x is a real number, then we denote by [x] the maximum integer i such that
i < x.
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We shall prove the following lemma. For b(T) = x(G), our lemma is closely
related to Theorem 6 in [4].

Lemma. Let T be a territory in G. If T contains a k-critical edge of G, then
IV(CA(T))]| = x(G) — max (W(T) + 3 — [V(T)|, [(5(T) + 3)2])-

Proof. Let T contain a k-critical edge of G. Then there exists S = V(G) such that
lSl = k(G) — 1 and that the graph G — S — eis disconnected. Let H be a component
of G — S — e. We denote by H’ the graph G — S — V(H). Obviously, there exist
u € V(H) and u’ € V(H’) such that e = uu’. Denote

(1) w,, =W(T)nV(H), Wy, =WV(T)nS, W3 = W(T)n V(H'),
Wy, = B(T)nV(H), W,,=B(T)nS, Wy =BT)nV(H),
We, = VC(T)) A V(H), Wi = V(C(T) AS, Was = V(C(T)) o V().

Moreover, for j, k = 1, 2, 3, we denote

) S =Wyl

Clearly, fiy,f13 21, foy + a2 +f23 =b(T), f31 +fr2 + 32 1, and fy; +
+ f22 + f32 = k(G) — 1. Since the graphs G — (W, U W,, U W,3) and G —
— ({e} v Wy, U W,, U W,,) are disconnected, it holds for any j, j’, k, k' =1,2,3
with either [j - j’| =2or Ik - k’] = 2 thatif v e Wy, v’ € W}, and 00" * e, then v
and v’ are not adjacent in G.

Since f,,; = 1 and fs; + f32 + f33 = 1, we have that G — ({u'} U Wy, U Wy, U
U W,,) is disconnected. Since T'is a territory in G, we have that f, + foz + S 0 2
> b(T). Therefore, f,, = b(T) — f21 — f22 = f,3. Analogously we obtain that
fiz + far + fo3 = b(T), and thus fi; 2 f;. Since |V(T)| Z f, + 2, we have that
|V(T)i 2 max (f21, f23) + 2-

Assume that fy, + fos + f21 2 K(G). Then b(T) + k(G) — 1 = for + /22 +
+ fas + f1a + faz + f3, = B(T) + «(G), which is a contradiction. Hence, f3, +
+ f22 + f>1 < &(G). Therefore G — (W32 U Wy, U Wy,) is connected. Thusf?l = 0.
Analogously we obtain that f3; + /22 + f23 < k(G) and f33 = 0. This implies that

V(C(T)| = fs2 £ 1(G) — max (fo5 + fo1, o2 + fo3) = 1 =

— k(G) — b(T) + min (f,, f5,) — 1.
We have
maX(lesfzs) Sfi2 £ [V(T)l -2.

[6(T)2]-

Since 1 + b(T) — [6(T)[2] = [(B(T) + 3)/2], the statement of the lemma follows.

=
=

/
min (f23 f21) N
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The lemma implies that if there exists a territory in' G containing a k-critical
edge of G, then k(G) = 4. An example for k(G) = 4 is in Fig. 1.

Let n = 0 be an integer, and let T be a territory in G. We shall write “P,,(T)”
instead of the statement

“either 6(T) < n or T contains a x-critical vertex of G”; analogously, we shall
write “Q,(T)” instead of the statement

“either 6(T) < n or T contains a k-critical edge of G”. (Note that 6(T) denotes
the minimum degree of T).

Fig. 1.

Proposition. Let n = 0 be an integer, and let T be a territory tn G. If Q(T),
then P,(T).

Proof. Assume that Q,(T). If (G) < n, then P,(T). Let §(T) > n. Then T
contains a k-critical edge e = uv of G. This means that there exists S = V(G) such
that |S| = x(G) — 1 and that G — S — e is disconnected. If either G — S — u or
G — S — v is disconnected, then P,(T). Assume that both G — S — u and G —
— S — v are connected. Then it is easy to see that V(G — S) = {u, v}. Therefore
|V(G)| = x(G) + 1, which is a contradiction. Hence the proof is complete.

We say that territories T; and T, in G are separated if there exist R € Cut and
distinct components H; and H, of G — R such that T, is a subgraph of H, and T,
is a subgraph of H,.

The following theorem is the main result of this note:

Theorem. Let m = k(G) and n = 0 be integers. Assume that
either (A) n < k(G) — [(m + 5)[2] and there exist separated territories T,
and T, in G such that Q,(T;), Q,(T,) and max (b(T,), b(T,)) < m;
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or (B) x(G) — [(m + 5)[2] < n < [(m — 2)2] and there exists a territory T,
in G such that Q,(To) and H(T,) = m;

or (C) [(m — 2)/2] < n and there exists a territory T in C such that P(T) and
b(T) < m.

Then

G) HG)<m+n.

Proof. (A) If either §(T,) < n or §(T,) < n, then (3) holds. Assume that both
8(Ty) > n and §(T;) > n. Since Q,(T;) and Q,(T;), the lemma implies

V()| = [V(Ty)| + «(G) — b(T,) — 3 < |V(Ty)|

and analogously |[V(C(T))| < |V(T3)|-

Since T; and T, are separated, there exist R e Cut and the graphs H, and H,
such that H, and H, are distinct components of G — R, T si a subgraph of H,
and T, is a subgraph of H,. We denote by H the graph G — R — V(H,) and by H),
the graph G — R — V(H,).

Assume that there exists u € B(T,) n V(H}). Then u is adjacent to no vertex
of T;. This implies that B(T;) — {u} € Cut and that T, is a component of G —
— (B(Ty) — {u}), which is a contradiction. Hence B(T;) n V(H}) = 0. This means
that V(H;) = V(C(T,)). Analogously we obtain that V(H3) < V(C(T3)). Since
V(H,) = V(H3) and V(H,) < V(H}), we have

V(T)| = |V(H))| = [V(H)] < [V(AT)| < [N(T2)] <
< V()| = V()] < (V(An)] < (T

which is a contradiction.

(B) If 6(T) < n, then (3) holds. Assume that §(T;) > n. Since Q,(T;), the lemma
implies

8(G) £ B(T,) + [V(C(To))| — 1 < b(Ty) + «(G) — [(B(To) + 3)[2] — 1 =
= b(T,) + k(G) — [(A(To) + 5)2] S m + x(G) — [(m + 5)2] =S m + n.

(C) If §(T) < n, then (3) holds. Assume that §(T) > n. Since P,(T), we have
that T contains a k-critical vertex u of G. There exists S € Cut such that IS] = «(G)
and u € S. Let H be a component of G — S. We denote by H’ the graph G — S —
— V(H). For j, k = 1,2, 3 we define W), and f}, by equalities (1) and (2). Clearly,
fiz 2 1, for + faz + f23 = B(T), f3, tfotfiz2Lfin+ o+ 2L fin+
+ f22 + f32 = K(G), and fy3 + fo3 + f33 = 1. Since the graphs G — (W, U
U W,, U W,3) and G — (W, U W,, U W,,) are disconnected, we have that for any
Jrj'> k, k' = 1,2, 3 with either ]j - j’] =2 or [k — k’| = 2 it holds that if ve W),
and v’ € W, then v and v’ are not adjacent in G.
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Assume that f»; = 0. First, let f5; = 1. Then W,, u Wj, € Cut. Since f1, 2 1,
we have f22 + f32 < x(G), which is a contradiction. Next, let f3; = 0. Then f;; = 1.
This implies that W,, is a component of the graph G — (W12 U W, U W,,), which
contradicts the fact that Tis a territory. This means that f,; = 1. Analogously we
obtain f,3 = 1.
If fio + /22 + 21> b(T) and f5; + fo2 + f23 2 K(G), then b(T) + K(G) =

= f1, + fa2 + fa2 + fa1 + S22 + f23 > b(T) + x(G) which is a contradiction.
Hence either f1, + f25 + f21 < b(T) or f3, + fy2 + f23 < ¥(G). Analogously we
obtain that either fi, + f,, + f23 < b(T) or f3, + f5, + f21 < k(G).

We distinguish the following cases:

(1) fi2 +fa2 + 21 = b(T) and f,, + f5, + fo3 < b(T). Since T is a territory,
f11 = 0 = f13. Hence, |V(T)| = f;,. Since fyy + fo, + f23 = b(T), we have
|V(T)| < min (f23, f>1) < [6(T)/2]- This implies that &(T) = [(b(T) — 2)2] £
< [(m — 2)/2] = n, which is a contradiction.

(@) fiz +faa +f21 = b(T) and fi, + f22 + f23 > b(T)- Then f,, < f,5. Hence,
f21 < [(B(T) — 1)/2]. We have f,, = 0 and f3, + f55 + f21 < ¥(G). Thus f3; = 0.
This implies that for each u € W,,, degg u < k(G) + [(b(T) — 3)/2] £ m + n.

(3) fiz + f2z + fa1 > b(T) and fi, + fo, + f23 < b(T). Then analogously
degg u’' = (G) + [(B(T) — 3)/2] £ m + n for each u’ € W,3.

(4) f12 + faz + f21 > B(T)and f1; + f55 + f23 > b(T). Thenfs, + fo; + f23 <
< x(G) and f3, + f2, + f21 < x(G). Hence, f3; = 0 = f33 and |[V(C(T))| = f3, <
< x(G) — [(b(T) + 3)/2]. This means that 5(C(T)) < «(G) — [(b(T) + 5)/2]. Since
n 2 [(m — 2)/2], we have 5(C(T)) £ n. Therefore, 5(G) < m + n.

Thus the proof is complete.

Fig. 2.

Remark. Let k, m, and n be integers such that 0 < k < m and n = 0. Assume
that G is formed by two copies G’ and G” of the complete graph K, ,+; which have
precisely k vertices in common. Hence [V(G)| = 2(m + n + 1) — k and «(G) = k.
Consider two copies F' and F” of K, such that F’ is a subgraph of G — V(G")
and F” is a subgraph of G — V(G"). It is clear that F’ and F” are separated territories
in G. Since §(F’) = n = §(F"), we have Q,(F') and Q,(F"). Obviously, b(F') = m =
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= b(F"). (An example for k = 1 and m + n = 3 is given in Fig. 2.) Since §(G) =
= m + n, the inequality (3) in the theorem is — in a certain sense — the best
possible.

The following corollary is an extension of a theorem of R. Halin [3] (for |V(G)| >
> x(G) + 1):

Corollary 1. Let there exist separated territories Ty and T, in G such that Qo(T}),
0o(T3), and b(T,) = k(G) = b(T,). Then 5(G) = «(G).

Proof immediately follows from the proposition and the theorem, if we put
m = x(G) and n = 0.

The next corollary is an extension of a result of G. Chartrand, A. Kaugars, and
D. R. Lick [2] (for |V(G)| > x(G) + 1); notice also the connection of this corollary
with Theorem 1 in [6].

Corollary 2. Let k(G) = 2 and let there exist a territory T in G such that
Pro6y-2y21(T) and b(T) = k(G). Then §(G) < (3x(G) — 1)/2.

Proof. The inequality follows from the theorem, if we put m = K(G) and n =
= [(HG) — D21 We get &(G) < x(6) + [(x(G) — 2)f2] = [(3(G) — 2)]2] <
< (3 %(G) — 1)/2, which completes the proof.

Note that each one-vertex subgraph of G whose vertex has degree x(G) in G is an
example of a territory Tin G with the properties that b(T) = (G) and Qo(T) (and
thus Py(T)).

Obviously, if 2 < x(G) £ 3, then [(x(G) — 2)/2] = 0. Thus we get

Corollary 3. Let 0 < k(G) < 3. Then 6(G) = (G) if and only if there exists
a territory T in G such that b(T) = k(G) and Py(T).
If 4 < k(G) £ 5, then k(G) — [((G) + 5)/2] = 0. Thus we get

Corollary 4. Let 4 < k(G) < 5. Then 6(G) = (G) if and only if there exists
a territory T in G such that b(T) = x(G) and Q(T).

Remark 2. Let G, be the graph in Fig. 1. Assume that G can be obtained from G,
by adding new vertices ', s, t" and u”, and new edges r'r, ¥'s, ¥'s’, ¥'s", ¥'t, r't’, r't’,
s"s, s"s', s"u, s"u’, s"u”", s"v, t"t, t"t', t"u, t"u’, t"u”, t"w, u"u, u"u’, u"v and u"w. Then
k(G) = 6, 6(G) = 7 and there exists a territory T in G such that b(T) = x(G) and
0(T).

Note that in [5] the present author gave a sufficient condition for a 2-connected
graph to contain a pair of distinct nonadjacent vertices of degree 2.
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