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TOPOLOGICAL CATEGORIES CONTAINING ANY CATEGORY
OF ALGEBRAS
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(Received October 16, 1975)

In [2], bE GROOT proved that each group is isomorphic to the group of all homeo-
morphisms of a topological space into itself.

A more general question, namely the representation of semigroups by means of
continuous mappings of a given type, was considered in [6], [9], [11]. For example,
it is proved in [6] that for each monoid M (= semigroup with a unit) there is a Ty-
space X such that all open'local homeomorphisms of X into X form a monoid iso-
morphic to M. By [9], the T,y-space in the preceding result cannot be replaced by
a Hausdorff space. Nevertheless, we prove in the present paper that the space X
can be always found to be T;. Moreover, we show that every monoid is isomorphic
to the monoid of all

— open continuous mappings of a suitable T,-space into itself,

— locally one-to-one continuous mappings of a suitable T;-space into itself,
— open uniformly continuous mappings of a suitable metric space into itself,
— open contractions of a suitable metric space into itself.

These results are formulated in a more general setting, namely in terms of representa-
tion of categories. We represent algebraic categories in various categories of topolo-
gical spaces or in categories of presheaves. The theorems have been announced in
[13]; propositions from [13] concerning semibinding categories are not explicitly
formulated here, but they are clear from proofs. Theorem 4 from [13] (concerning
presheaves in sets) is proved in [12].

I. Preliminaries and description of main results

1. We recall that a functor @ : K — H is called an embedding if it is one-to-one.
It is called full if it is onto a full subcategory.
A category K is called algebraically universal*) (abr. alg-universal) if the category

*) The older name is “binding categories”. Here it is replaced by a more adequate name
“‘alg-universal categories”.
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of graphs can be fully embedded into it [7]. An equivalent form of the definition is
that each category of universal algebras can be fully embedded into it, see [5] We
recall the following properties of alg-universal categories.

(1) Every monoid (= semigroup with unity) can be represented as the endomor-
phism monoid of an object of any alg-universal category. In other words, each one-
object category can be fully embedded into it.

(2) More generally, every small category (= a category objects of which form
a set) can be fully embedded into any alg-universal category, [10].

(3) Under the set-theoretical assumption that there is only a set of measurable
cardinals, each concrete category can be fully embedded into any alg-universal
category (communicated in [3], for the proof see [8]).

The results (1)—(3) show that the algebraic universality is one of the important
properties of categories. The question whether a given category is alg-universal
generalizes and strengthens the problems of representations of groups or monoids
as groups or monoids of all mappings of a given type (= morphisms of the given
category).

2. In the present paper, we show that some topological categories are alg-universal.
Denote by

T the category of topological spaces and continuous mappings,
P the category of proximity spaces and proximally continuous mappings,
U the category of uniform spaces and uniformly continuous mappings.

Clearly, none of them is alg-universal. Indeed, the monoid of all endomorphisms of
any object either consists of the unit or contains non-trivial idempotents, namely
constant mappings. Thus e.g. no non-trivial group can be represented as the endo-
morphism monoid of an object of any of them.

Consequently, we must consider other mappings as morphisms. This is done in
Sec. II and III of the present paper. We prove that each category K, satisfying one
of the following conditions, is alg-universal.

Tol.mCKCTo’ Tol,thKCTllAis M. cKcM,,

0,c

where T (or T' or M) means that objects are topological spaces (or T;-spaces or
metric spaces); morphisms are always continuous mappings with the property
described by the following abbreviation: o = open, lh = local homeomorphisms,
I;_{ = locally one-to-one, ¢ = contractions, u = uniformly continuous.

3. As we have seen, the basic topological categories T, P, U are not alg-universal.
How far are they from the alg-universality? We formulate one of the possible criteria
for it. Let k be a poset (= a partially ordered set)" As usual, k is also regarded as
a thin category (its objects are precisely the elements of k and there is a morphism
from a to b iff a < b). The category of all functors from a poset k to a category K
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is denoted by K* (morphisms of K* are transformations of these functors). Objects
of K* are called, as usual, presheaves in K over k. Denote by P the class of all non-
empty posets. Under very natural assumptions about K, K is alg-universal iff K*
is alg-universal for each k € P (see IV.1). Now, define P(K) as the class of all ke P
such that K* is alg-universal. Thus K is alg-universal iff P(K) = P; so, the bigger
P(K), the nearer K is to being alg-universal.

In Sec. IV—VI of the present paper, we describe fully the classes P(K) for many
topological categories. We prove, for example, that P(T) = P(P) = P(U) and this
is class of all posets containing one of the two posets below.

.
/ \ P s —— s —— s ——— » — -
L] [

P(Comp), where Comp is the category of compact Hausdorff spaces and continuous
mappings, is the class of all posets containing the first one (this result is proved
under the assumption of nonexistence of any measurable cardinal). P(H,), where H,
is the category of Hausdorff spaces and open continuous mappings, is the class of

all posets containing
A )

Notice that the class P(Sets) is described in [12].

II. Conventions and the basic construction

1. Let G be the category of all assymetric strongly connected graphs and com-
patible mappings. More in detail: objects of G are couples (X, R), where X is a set
with at least two elements, R < X x X and

(a) if (x, y)€R, then (y, x) ¢ R,
(b) for each x, y in X there are X, = X, Xy, ..., X, = y in X such that (x;, x;,,) €eR
for i=0,1,...,n — 1.

Morphisms from (X, R) to (X', R’) in G are mappings f:X — X' such that
(f(x), f(»)) € R" provided that (x, y) € R.

The category G is alg-universal, see [4]. Thus, for a category to be alg-universal
it is sufficient that G can be fully embedded into it. In the present paper, to prove that
a category is alg-universal, we always construct a full embedding of G into it.

If (X, R) is an object of G, r = (x, y) € R, denote m,(r) = x, n,(r) = y. m, and =,
are called, as usual, the first or the second projections, respectively.
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2. Let X, X’ be sets. If £ : X — X' is a mapping, denote by f: X x X — X" x X’
the mapping such that f(x, y) = (f(x), f(»))- Denote by #G the following category:
objects are all triples (X, R, d), where (X, R) is an object of G, d is a mapping of R
into the set Z of all integers; f : (X, R, d) > (X', R’, d) is a morphism of £G iff
f:(X,R) - (X', R") is a morphism of G and d(r) = d'(f(r)) for all re R. G will
be considered as a full subcategory of #G: we shall identify each (X s R) with (X , R,
¢y), where ¢,(r) = 1 for all re R.

3. In [1], a compact metric continuum K is constructed such that

if Lis a subcontinuum of K, f: L — K is a continuous mapping then either f is
constant or f(x) = x for all x € L.

Choose a collection {K, | n e Z} (Z is the set of all integers) of disjoint non-degenerate
(= having more than one point) subcontinua of K. Clearly,

if f:K, - K, is a non-constant continuous mapping, then n = m and f is the
identity.

For each n € Z, choose a metric g, on K,, such that g, defines the topology of K, and
diam K, = 1. Further, choose 'a”, 2a"€ K, with g,(*a", ?a") = 1. The spaces K,
and their points ‘a" will be kept in what follows. K, will be regarded as topological
spaces, sometimes also as uniform or proximity or metric spaces (with respect to g,).

4. Construction. Let 0 = (X, R, d) be an object of #G. Denote by .#(o) the space
formed from (X, R) by replacing each arrow r € R by a copy of K in the following
way: Put .#'(0) = {(x, r) ] re R, x € Ky} Let (o) be the metric space (determined
uniquely up to an isometry) such that

(i) there is a surjective map ¢ : .#'(0) — #(0);
(ii) if we denote x, = &(x, r) for r € R, x € Ky, then x, = y, iff either x = 'a*®,
y =1, 7 (r) = ns) or (x,7) = (¥, 5);
(iii) the metric o of .#(0) is defined by
a) U(xra )"r) = Qd(r)(x9 J’)§

n=1

b) o(x,, y;) = inf ), o(c;, ¢;+,), the infimum being taken over all sequences
i=0

Co = X, Cy5 ...y €, = Y, such that o(c;, ¢;4,) are defined by a).

The space .#(0) will be viewed as a topological or uniform or proximity or metric
space with respect to the above metric. For each r € R, denote by e, : Ky, = #(0)
the isometry, defined by e/(x) = x,. Put &, = e(K,,). Clearly, .#(0) =U A,

reR
A, meets A iff the arrows r and s have a common vertex; if r = s, then #, and 4’

have at most one common point (we recall that if r = (x, y) € R, then (y, x) ¢ R).
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Let o = (X, R, d), o’ = (X’, R/, d’) be objects, f: 0 — o’ a morphism of £G. Define
a mapping

M(f) : M(0) - M(0")
by [#(f)] (x,) = Xj¢y i-€. H(f) o €, = eg, for all re R. Then (f) is a contrac-
tion, which is an isometry on each &',.

5. Lemma. Let o = (X, R, d) be an object of #G, f : K, — #(0) a non-constant
continuous mapping. Then there exists r € R such that K, = K,y and f = e,.

This lemma is proved in [11] for d being a constant map. But this is not used in
the proof. The proof goes through for d general, too, and therefore it is omitted here.

The basic lemma. Let 0 = (X, R,d), o’ = (X', R’,d’) be objects of ¥G. Let
g: ./l(o) - .//l(o’) be a continuous mapping such that g is non-constant o neach A’,.
Then g = M(f) for a morphism f : 0 — o' of 4G.

Proof. By the previous lemma, for each r € R find r'€ R’ such that g . e, = e,..
For each x € X, choose r € R such that 7,(r) = x (this is possible by the definition
of G) and put f(x) = n,(r). One can verify that f : X — X" is well-defined and g =
= M(f).

III. Algebraically universal topological categories

Let K be a category of some topological spaces and all their continuous mappings.
Then K is not alg-universal, see 1.2. Nevertheless, if we consider only some types
of continuous mappings, we can obtain an alg-universal category.

1. We use the symbol < also for categories. K = H means that K is a subcategory
of H. Let us denote by T, (or T/;_, or T}}) the category of all T,-spaces and all
their open continuous mappings (or all locally one-to-one continuous mappings or
all open local homeomorphisms, respectively).

Theorem. Each category K such that either
) T,ycKcT,) or
B) Tol,u. =K < T111—1

is alg-universal.

Proof. Let K be a category satisfying either o) or B). We construct a full embedding
@ : G — K. Let us recall that the collection {K,, | n € Z} is introduced in II,3. We shall
need K, and K, only.

a) Given an object G = (X, R) of G, let ®G be a topological space defined as fol-
lows: Its underlying set is

H = (K; x R) U ((Ky\{?da*}) x X).
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The topology of @G is inductively generated by the collection of mappings ¢, : K; —
— Hand ¢, : K, - H, where r runs over R and x over {r,(r), n,(r)}, and

¢c) = (c,r) forall ceK,,
¢r1(c) = (¢, x) forall ceK,\{?a’},
¢raa®) = (a',7) for x=m(r).
Clearly, each ¢, :K; — ®G and each ¢, , : K, = ®G are homeomorphisms into

the space @G.

b) @G is a T,-space but not a Hausdorff space. Two points a, b € ®G are not
separated if and only if a = ¢, ,(%a?), b = ¢, ,(*a®) for some x€ X, r,s€eR, ie.
a = (‘a', ), b = (a', s) where n(r) = 7,(s).

c) Further, given a compatible mapping f : G — G', where G is as above, put

[®(F)](c,r) = (c,f(r)) forall ceK,, reR,

[®(f)] (e, x) = (c, f(x)) forall ceK,\{?a®}, xeX.
Evidently, ®(f) is an open local homeomorphism; in particular, ®(f) is a morphism
of K.

d) Clearly, @ is an embedding of G into K. It remains to show that @ is full. First,
define a functor
¥:G - %G

as follows. If G = (X, R), put ¥G = (X, R, d), where

X =X u(X x {0}) (where we suppose X N (X x {0}) =0,
R =Ru{(x 0),x)[xeX} ,

d: R — Z is defined by d(r) = 1 for all re R, d((x, 0), x) = 2 for all x e X. For
any compatible mapping f:G — G' define ¥(f) = f by f(x) = f(x), f(x,0) =
= (f(x), 0) for each x € X. One can verify that ¥ : G - #G is a full embedding. Put

b=uw.V.

e) If G = (X, R) is an object of G, define &; : G — ®G as follows: eg(c, r) = ¢,
for all re R, ce Ky, &(c, X) = ¢(z,0).0) for all xeX, ceK,\{?a?}. One can see
that ¢ = {eg} : ® > @ is a transformation of these functors.

f) Now, we are prepared to show that @ is full. Let g.: ®G — ®G’ be a morphism
in K. In particular, it is a continuous mapping which is either locally one-to-one or
open. One can verify that there exists a continuous mapping § : ®G — ®G’ such that
J o&g = &g o g, § is non-constant on any X', (r € R) and on any X ,0).x (x € X)-
Thus, § = (h) for a morphism h : ¥(G) » ¥(G’) of £G. Since ¥ is full, h = ¥(f)
for a compatible mapping f : G — G'. One can prove that g = @f.
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2. Let us recall that a map m : (P, ¢) — (P, ¢’) is called a contraction iff for every
p, g€ P, o'(m(p), m(q)) < o(p, q). Denote by M, . (or M, ,) the category of all metric
spaces and all their open contractions (or all open uniformly continuous mappings,
respectively).

Theorem. Each category K such that

M

o,c

cKcM,,
is alg-universal.

Proof. Let us construct a full embedding ® : G — K. For any object G = (X, R)
of G, put ®G = .#(G)\ {*a} I reR, i = 1,2}. Given a compatible mapping f : G —
— G, let ®f : ®G - ®G’ be the domain-range restriction of /l(f) Clearly, @f is
an open contraction. In particular, it is a morphism of K. Thus, ® is an embedding.
It remains to show that @ is full. Let g : ®G — ®G’ be a morphism of K. As g is
uniformly continuous and .#(G) (or .#(G’)) is a completion of ®G (or ®G’, respec-
tively), g can be uniquely extended to a uniformly continuous mapping § : #(G) —
— JM(G'). As g is open, g is non-constant on any ¥, = .#(G). By Basic Lemma
(I15), § = #(f) for a compatible mapping f: G — G’ and g is a domain-range
restriction of g, i.e. g = ®f. This completes the proof.

IV. Presheaves in basic topological categories

As noted in I, if the class of morphisms of a category K includes all constant
mappings, then K is not alg-universal. This is the case of the basic topological
categories

T of all topological categories and continuous mappings,

P of all proximity spaces and proximally continuous mappings,
U of all uniform spaces and uniformly continuous mappings,
M of all metric spaces and contractions.

In this part, we characterize those k for which the category T* of presheaves over k

is alg-universal. It appears that T* is alg-universal iff P* (or U*, or M¥) is.

1. We recall that an object 0 of a category K is called its initial (or terminal)
object if the set of all morphism from o into any object of K (or from any object of K
into o, respectively) contains precisely one morphism.

Proposition. Let a category K have either an initial or a terminal object. Then K
is alg-universal iff K* is alg-universal for any non-void poset k.

Proof. If K* is alg-universal for each non-void poset k, then K is alg-universal,
K being isomorphic to K*, where 1 is the one-point poset. Conversely, let K be alg-
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universal and let a non-void poset k be given. Let ¢ be a terminal object of K. Choose
aek. For any object o of K define Q(0) as the functor from k into K such that
[Q(0)] (b) = 0 whenever b < a, [Q(0)] (b) = t otherwise. One can verify that Q
defines a full embedding of K into K*, so K* is alg-universal. If K has an initial object
instead of a terminal one, consider ‘‘the dual situation”.

2. Let I, I, be the following posets.
Iy =({a,b,c}, <), a<b>c,
L={o,|n=012.}<), 0g>0,>0,>....

Let us notice that both of them are sketched in 1.

Theorem. Let K be a full subcategory of T containing all metrizable spaces.
Then the following conditions on a poset k are equivalent.

(i) K* is alg-universal.

(ii) Either 1, or I, can be fully embedded into k.

Proof. a) Construction of a full embedding ® : G — K"'. Choose p e K, \ {1a’,
2a'}. For any object G = (X, R) of G, ®G is the functor Ag: I, —» K defined as
follows. Ag(b) = #(G), considered as a topological space; Ag(a) and Ag(c) are
subspaces of Ag(b) with the underlying sets

!Ac(a)‘ = {p

reR}, IAG(C)| = {ia}

i=1,2 reR};

Ag (Z) and Ag (Z) are inclusions. For any compatible mapping f: G — G’, the

transformation ®f : Ag > Ag- is defined as follows. ®f = {Aa), A{(b), Adc)},
where Ay(b) = #(f), Aj(a) and Ag(c) are the domain-range restrictions of Aj.
Obviously, ® is an embedding of G into K ' To show that @ is full, let us consider

. Vo a c . .
a transformation 7 : ®G — ®G'. Since Ag <b>’ Ag <b are inclusions, 7, and 7, are

domain-restrictions of 7,. Each 4, = Ag(b) meets both Ag(a) and Ag(c) so that
- () meets both Ag(a) and Ag(c). In particular, 1, is non-constant on any ',
and so 7, = () for a compatible mapping f : G — G’ by Basic Lemma IL.5. Hence
T = ®@f, which proves that @ is a full embedding.

b) Construction of a full embedding ¥ : G — K'2. First, choose a decreasing
sequence A;, 4,, A, ... of nonvoid subsets of Ky \{*a', 2a'} such that NA4; = 0.
Given an object G = (X, R) of G, put ¥G = Z; : I, - K such that Z4(0,) = .#(G),
Z4(0,) is the subspace of Z4(0o) with the underlying set |Z4(0,)| = {x,|x€ 4,

reR} foralln=1,23,..., Z¢ (Z" are inclusions (m > n); given a compatible

m

mapping f : G » G, let ¥f : 5 — ;. be the transformation X defined as follows.
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%,(00) = (f), Z((0,) is the domain-range restriction of £(0,) forany n = 1,2, ... .

¥ is obviously an embedding. We show that it is full. In fact, given a transformation

7: % = Zg, T,, is non-constant on any ', (if not, then the only value of 7,, on &,

is a point of £/(0,) for every n = 1, 2, ..., which is impossible because ) Z¢(0,) =
1

= 0). Thus, 7, = .#(f) for a compatible mapping f: G —» G'. As all I, (Zu>’

0 . . . . .
X\ ") areinclusions, any t, is a domain-range restriction of 7,, and so 7 = W¥f.

¢) Now, we show that K* is alg-universal whenever I, or I, can be fully embedded
into k. Let us suppose that I, is a full subcategory of k. Each presheaf ®G over I,,
described in a), can be extended to a presheaf ®*G over k and each @f : ®G — ®G’
can be extended to a ®*f: ®*G — ®*G’ such that ®* is a full embedding of G
into K*. It suffices to put

(©*G) (0) = Ag(b) whenever o0 >a and o >c,
(9*G) (0) = Ag(a) whenever o >a butnot o> c,
(*G) (0) = Ag(c) whenever o >c butnot o> a,
(©*G) (0) = 0 otherwise ;

all the mappings (®*G) (;) are to be defined as inclusions or identities.

The full embedding ¥ of G into K", described in b), can be quite analogously
extended to a full embedding ¥* of G into K* for any k containing a full subcategory
isomorphic to I,. Put

(¥*G) (0) = Zg(0,) where n is the smallest integer such that o, < o,
(¥*G) (0) = 0 provided that such n does not exist .

d) It remains to prove that K* is not alg-universal provided that k contains
neither I; nor I,. Let T' be a presheaf over k in K; denote k' = {o| T'o % 0}. Then
neither 1, nor I, can be fully embedded into k', so each component C of k' has
a smallest element, say oc. Choose x¢ € I'oc for each component C of k' and define
a transformation 7 : I' -» T by,

t(x) = (r (‘;“)) (xc) forany oeC, xeT,.

Thus, each 1, is constant and so t - 7 = 7. Consequently, the endomorphism monoid
of any presheaf I' over k either is trivial (i.e. T = 1p and 1 is the only endotransfor-
mation of T') or contains non-trivial idempotents. Thus, any non-trivial monoid
without non-trivial idempotents cannot be represented as the endomorphism monoid
of some I'" : k —» K. The proof is complete.
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3. Theorem. Let K (or L) be a full subcategory of P (or U, respectively) containing
all metrizable spaces. Then the following conditions on a poset k are equivalent.

(i) K* is alg-universal.
(i) L* is alg-universal.
(iii) M* is alg-universal.
(iv) Either 1, or I, can be fully embedded into k.
Proof. The proofs of the equivalences (i) <> (iv), (i) < (iv), (iii) <> (iv) follow
the same lines as the proof of the previous theorem. Regard only the spaces .#(G)
as proximity or uniform or metric spaces, respectively.

V. Presheaves in categories with open mappings

As has been proved in [6], the category of all Ty-spaces and local homeomorphisms
is alg-universal. We have shown in Sec. III that this can be strengthened to T,-spaces
with various local-homomorphism-type morphisms. By [9], T,-spaces in the result
of [6] cannot be replaced by Hausdorff ones. Nevertheless, we show that the category
of Hausdorff spaces and local homeomorphisms is relatively near to being alg-
universal in the sense that the class of all posets k, for which the corresponding
presheaf category is alg-universal, is “large”. The result is formulated in a more
general setting.

1. A subcategory K of the category T of all topological spaces and all continuous
mappings is said to be regular if it is closed under finite direct sums and direct
summands. This means: If a space X (or X') is a topological sum of spaces 4, B
(or 4’, B') and if f : X — X’ is a mapping such that f(4) = A’ and f(B) < B’, then
the domain-range restrictions f, : A —» A’ and f : B > B’ of f are morphisms of K
iff f is.

2. Let h be the following poset.

h=({ab,c},<), a>b<c,
i.e. h is dual to ;. The categories

H, of all Hausdorff spaces and all open continuous mappings and

H75 of all metrizable topological spaces and all open local homeomorphisms

are considered in the folloWing theorem.
3. Theorem. Let K be a regular category such that
H})Y <K cH,.
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Let k be a poset. Then the following conditions are equivalent.

(i) K* is alg-universal,
(ii) h can be fully embedded into k.

Proof. a) Let us consider the graph (Z, S), where Z is the set of all integers and
S={nn+ 1)|neZ}. Define d;:S— Z, i = 1,2, by dy(n,n + 1) = 2n,
dy(n,n + 1) = 2n + 1 for all ne Z. Thus (Z, S, d,), i = 1,2 are objects of £G.
Put H; = .//{(Z, S, d,-), where H, is considered as a topological space, denote '} =
= e,(Kdi(,)) for any re S, i=1,2 (we recall that the mappings e, are introduced
in IL,4). Consider H = H, u H, (notice that H, and H, are disjoint) endowed with
the topology of the sum of H; and H,. Let Lbe the space formed from H by adding
two (distinct) points s, s, such that sets of the form U (# g ns1) U Hpns1))

n=<no

form a local base at s, and sets of the form U (# {ns1) YU H tpn+1)) form a loca
nno

base at s, n, running over Z. Let M (or N) be the subspace of Lwith the underlying
set L\ {s,} (or L\ {s,}, respectively).

b) By means of the spaces H, M, N, we construct an embedding ® : G — K" as
follows. Let G = (X, R) be an object of G. Consider X and R as discrete spaces and
define ®G = Ag : h —» K, where

Agla) =M x X, Agb)=H x R, Agc)=N xR,

[46()] 0 = Gm. [4a(2)] 00 = )

for he Hy, i = 1,2, re R. Clearly, all Ag(0), o€ {a, b, c}, are metrizable spaces, all
Ag <‘;) are open local homeomorphisms, so they are morphisms of K. Given a com-

patible mapping f : G - G', put ®f = Ay, where

[Afa)] (h, x) = (h,f(x)) forall heM, xeX,
[Afb)] (h,r) = (h,f(r)) forall heH, reR,
[Afc)](h,r) = (h,f(r)) forall heN, reR.

Clearly, all A ,(o) are open local homeomorphisms. Thus ® is really an embedding
of G into K".

¢) We show that @ is a full embedding. Let 7 : ®G — ®G’ be a morphism of K*,

= (X, R), G’ = (X', R’). We have to find a compatible mapping f : G — G’ with
Of = 1. As © = {1, 74, 7.} : A¢g > Ag- is a transformatipn in K, each mapping 7,
is an open continuous mapping. The mapping 7, maps each component M x {x}
of Ag(a) into a component M x {y} of Ag(a). Put y = f(x). Thus f: X — X’ is
a mapping such that

(M x {x}) =« M x {f(x)} forall xeX.
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. b\. .
Since 7, maps the image of Ag into the image of Ag- b , we have, moreover,
aMap a a

T (H x {x}) = H x {f(x)} .
Since 1, is open, we obtain by Basic Lemma that
t(h,x) = (h, f(x)) forall heH, xeX,
and, because of the density of H in M, also for h € M. Analogously, thereis g : R —

— R’ such that
t(h,r) = (h,g(r)) forall heN, reR.

Now it is easy to verify that g = f (see the definition of Ag <z> and Ag (f) !>
and 7 = @f.

d) Now we show that K* is alg-universal whenever h can be fuli, embedded into k.
Let us suppose that h is a full subcategory of k. Each presheaf ®G over h, described
in b), can be extended to a presheaf ®*G over k and each ®f : ®G — ®G’ can be
extended to a ®*f : ®*G — ®*G’ such that ®* is a full embedding of G into K*. It
suffices to put

@) (*G) (0) = L whenever 0 > a and o > c,

B) (2*G) (o) = Ag(a) whenever o > a but not o > c,

7) (©*G) (0) = Ag(c) whenever o > ¢ but not o > a,

8) (©*G) (0) = Ag(b) whenever o > b but neither 0 > a nor o > c,

g) (®*G) (0) = 0 otherwise;

if o, p €k, p < o then (®*G) <5) is defined as follows. If o is as in &) while p is as in B)

[(q)*a) (f)’)] (hz)=h:

otherwise (®*G) (5 ) is the identity or the inclusion (according to the cases for o

or ) or §), then

and p). ®* just defined is obviously again a full embedding.

e) Now we show that if h.cannot be fully embedded in k, then K* is not alg-
universal. In fact, we prove that the monoid M = {1, ¢, ¢* = ¢’} cannot be represent-
ed as the endomorphism monoid of an object of K*. Given a presheaf I in K over k
and a transformation y: T — I such that 1y # 7 + y? = y® + 1, we shall find
a transformation 7 : T' — T such that 7 ¢ {1r, 7, ¥*}.
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f) We recall the following assertion proved in [9]. Let H be a Hausdorff space,
g : H—> H an idempotent continuous mapping which is either open or locally
one-to-one. Then g(H) is open-and-closed in H.

g) Thus, let T' : k — K be a presheaf, y : ' - I a transformation such that 1.
+ 7y + 92 = 9* % 1. For each o in k put

G, = y(T(0)), D, =7,%G,).

By f) G, (and consequently also D,) is open-and-closed in I'(0). Consider the fol-
lowing two cases.

Case I I:F(;)] (F(o)\D,) = (I(p)~D,) U G, for all o, p in k with o < p.

Then define 7 : " - I by

7(x) = x forall xeT(o)\D,, ‘to(x)=7p(x) for xeD,

for all o in k. Obviously, each T, is.a sum of the identical map on I'(0) \ D, and the
domain-range-restriction of y, to D, and so 7, is a morphism of K because of the
regularity of K. Now, it is routine to prove that 7 is a transformation and 7 ¢
¢ {11‘, 7, ,))2}

Case IL <[F<0°>] (T(oo) D,,o)) N Dy NG, * 0 for some 0g, po in k with

)
0o < po- Here, put

7,(x) = 7,(x) whenever o0 <p,, xe€ (F ( 0))
Po

1,(X) = x otherwise .

" 6(po)

Then 1, is a morphism of K. One can verify that 7 is really a transformation. Indeed,
if 0 < py and o < o' for some o', then, since h cannot be fully embedded into k,
either o’ £ p, or p, < 0, hence

Toror<0,)=r(0/>o’fa.
o o

(In the other cases, this equality holds trivially.) We show that t ¢ {1, y, ¥*}. Since 7,
is the identity, T = y as well as = = y?. Since 7,, is distinct from the identity, t + 1.
This completes the proof.

4. We consider the categories

H,, _, of all Hausdorff spaces and all locally one-to-one continuous mappings and

metr

oqn of all metrizable topological spaces and all open local homeomorphisms

in the following theorem.
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Theorem. Let K be a regular category such that
HYG <« K e Hy .
Let k a poset. Then the following conditions are equivalent.

(i) K* is alg-universal.
(ii) & can be fully embedded into k.

The proof is the same as that of the previous theorem.

VI. Presheaves in categories with closed mappings

In this part, we shall characterize the classes of all posets k such that the presheaves
categories Comp* and T'{,c, are alg-universal, where

Comp is the category of all compact Hausdorff spaces and all continuous map-
pings.
T, .; is the category of all T,-spaces and all closed continuous mappings.

The corresponding class of posets for T, ., appears to be the same as that for T but

the proof requires different constructions. Both the following theorems will be proved
under the assumption of non-existence of measurable cardinals.

1. In fact, we shall assume that each metrizable space is realcompact. This makes
it possible to use following

Lemma [11]. Let M, M' be metric spaces, M connected, M’ realcompact. Let
g:Y—> Y be a continuous mapping where M <« Y<BM, M' < Y < BM'".
Then g is a constant or g is the unique extension of a continuous mapping g’ :
‘M —> M.

2. Let us recall that the poset [; is described in VI.1.

Theorem. Let k be a poset. The following conditions are equivalent.
(i) Comp" is alg-universal.
(i) 1, can be fully embedded into k.

Proof. a) First, we prove that Comp' is alg-universal. Denote by K the category
of all metrizable spaces and all continuous mappings. Let ® : G — K" be the full
embedding described in the proof in IV.2. Let us use the notation of this proof, i.e.
®G = Ag. Put &G =BoAg, Bf =Bo A, (more in detail (BG) (o) = BAG(0),

(®G) (5 ) = BAg (;) , o,pe{a, b, c}), where B denotes the Cech-Stone compacti-
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fication functor. ® is obviously an embedding of G into Comp''. To prove that &
is a full embedding it suffices to show that for each continuous transformation
7:®G - DG’ there is a transformation ¢ : ®G —» ®G’ such that © = Bo (i.e. 7, =
Ba,, 0 €{a, b, c}). Let us observe that Ag(a) and Ag(c) are functionally separated

C-embedded subspaces of Ag(b); remember that Ag <Z> and Ag f) are embeddings.
This implies that (®G)(a) and (®G)(c) are disjoint subspaces of (®G)(b) and
(®G) (Z), (®G) (2) are also embeddings; analogously for G’. Thus, 7, is non-constant
and 1, 1, are domain-range-restrictions of 7,. Now, apply the above lemma to g = 7,.

b) Let k be a poset such that I, can be fully embedded into it. To prove that Comp*
is alg-universal, we proceed as in V.2 c); replace only ® by ®.

c) Let k be a poset such that I, cannot be fully embedded into it. We have to show
that Comp* is not alg-universal. We show that, in this case, a presheaf I" (in Comp
over k) possesses a non-identical idempotent endotransformation t provided that
card I'(0) > 1 for some o in k. It will follow that no non-trivial monoid without
non-identical idempotents can be represented as the monoid of all endomorphisms
of an object of Comp*. Thus, let " and o be as above. Denote by k' the component
of k containing o. Put

k"= {pek|p <o, I(p) +0}.

As k does not contain I, k” is linearly ordered and so

[r (ﬁ)] ). pek

is a collection of closed subspaces of F(o) with the finite intersection property.
Hence 4 = [F <p )] (T(p)) is non-empty. Choose a € 4. Since all spaces I'(p) are
pek” o

compact, one can find a collection {a, | p e k"} such that a,eI(p) for all pek”,
a, = a and

*) | [r (Z)] (a)) = a,

for each p, ge k", p < gq. Further, let us define a, by (*) also for every q € k' for
which there is p € k” with p < q. Define 1 : I’ - T by

t(2) = a, Whenever a, is defined and zeIY(g),

7, = lr) otherwise.

Obviously, 7 has the required properties.
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3. Let us recall that the posets I, and I, are described in Sec. IV.

Theorem. Let K be a full subcategory of T ., containing all locally compact
ag-compact spaces. Let k be a poset. Then the following conditions are equivalent.

(i) K* is alg-universal.

(ii) Either 1, or 1, can be fully embedded into k.

Proof. a) The aim of the proof is to construct a full embedding of G into K".
Indeed, if k is a poset such that neither I, nor I, can be fully embedded into k, then K*
is not alg-universal, we can prove it as in 1V.2.d). If we have a full embedding
®:G — K" and a full embedding ¥ : G — K'? and k is a poset containing either I,
or I,, we can construct a full embedding of G into K* as in IV.2.c). G can be fully
embedded into K™ by V1.2, because K > Comp. Thus, we have only to construct
a full embedding ¥ : G — K".

b) First, we construct a full embedding © : G - ZG. For any object G = (X, R)
of G put ©G = (X, R, d), where

X = (X UR) x N, where N is the set of all positive integers, X and R are sup-
posed to be disjoint,

R = R, UR, URj;, where

Ry = {((m(r). ) (1) [ re R},
Ry = {((r, 1), (ma(r), 1) [ re R},

R3={((z,n),(z,n+1))|zeXuR,neN},
dg:R— Z isdefined by d(r)= —1 whenever reR,,

d(r) =1 whenever reR,,

d((z,n), (zzn +1)=n+1 for zeX,
d((z,n),(z,n +1)) = —(n+ 1) for zeR.

Given a compatible mapping f : G — G', put
(©f)(x,n) = (f(x),n) xeX, neN,
(©f) (r,n) = (J(),n) reR, neN.
O is obviously a full embedding.

c) Now we construct the embedding ¥ : G - K™ as follows. Given any object
G = (X, R) of G, consider the space .#(0©G) = .#(X, R, dg). If r € R, we denote
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A, = e(K,,(r)) as in I14. For i = 0, 1,2, ... put

Ab = U A,, Zg0) =04,

lda(n)|=i k>i

where the closure is taken in B.#(©G). Now, we define YG = Z; : I, » K, where

Z4(0;) are as above, I¢ (Z"‘) are inclusions. They are obviously closed. The spaces
"_ s+1 __
Z4(0;) are o-compact. Further, U A%, is a compact neighbourhood of each point
k=i+1

ye A in Z4(0;) so that all spaces Zg(o;) are locally compact. Given a compatible
mapping f : G — G, let £4(0,) : £g(00) = Z¢(0o) be the unique extension of .#(Of),
let (o) (i > 0) be the domain-range-restrictions of (o,). One can verify that ¥
is really an embedding.

d) We have to prove that W is full. Let 7 : 5 — Z5. be a morphism of K", It
suffices to prove that t,, is an extension of .#(g) for some g : ©G —» ©G’ in ZG.
First, 7,, cannot be constant because ﬂZG,(o,,) = (. Thus, by VL1, 7, is an extension

n
of a continuous mapping 6 : #(©G)—.#(©G"). By Basic Lemma, to complete the proof
we have to show that 7, is non-constant on any %', = .#(©G). Thus, let us suppose
that 7,, maps &, onto {q} for some r € R, g € #(®G’). Denote by T the set of all
dg (1) such that g e A,  M(OG'). It follows from the construction of @ that
card T < 3; if card T = 3, then either T= {—1,1,2} or T= {-1,1, —2}; if
card T=2, then T={n,n+ 1} forsome n=1orn+ 1< —1;if card T= 1,
then T = {n}, n + 0. In all these cases, by the first lemma in IL.5 and by the con-
struction of #(©G), (#",) = {q} for all s € R with either dg(s) > |dg(r)| or dg(s) <

< —‘dc(r)|. But then necessarily g € M(OG) N 0126(0,,,), which is a contradiction.
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