
Czechoslovak Mathematical Journal

Katsumi Numakura
On q-ideals in compact semigroups

Czechoslovak Mathematical Journal, Vol. 28 (1978), No. 2, 312–323

Persistent URL: http://dml.cz/dmlcz/101533

Terms of use:
© Institute of Mathematics AS CR, 1978

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/101533
http://dml.cz


Czechoslovak Mathematical Journal, 28 (103) 1978, Praha 

ON ^-IDEALS IN COMPACT SEMIGROUPS 

KATSUMI NUMAKURA, Saitama 

(Received May 15, 1976) 

A semigroup is a non-empty Hausdorif space together with a continuous associative 
multiplication, denoted by juxtaposition, (x, y) -^ xy. In what follow S will denote 
a semigroup. If S contains a zero. i.e. an element 0 such that xO = 0 = Ox for all 
X e S, S is said to be a semigroup with 0. In this paper, to make the explanation 
more concise, we treat only semigroups with 0, so we shall use the term semigroup 
to denote semigroup with 0. However, the results obtained in this paper are valid 
for semigroups without zero elements. 

Our main objective of this paper is to generalize a number of results of Hoo and 
SHUM [1] and SHUM [9] dealing with radicals and compressed ideals in a compact 
semigroup. After elementary preparations in § 1, we shall give, in §2, the definition 
of q-ideal in S (Definition 2.1). This concept is a generalization of the concepts of 
radical and open semiprime ideal of a compact semigroup. And we shall give a neces
sary and sufficient condition that an ideal in a compact semigroup be a ^-ideal 
(Theorem 2.6). We shall also introduce, in this section, the notion of Q-primitive 
idempotent, where ß is a ^-ideal of S (Definition 2.8). And we shall extend a result 
of KOCH [2] concerning primitive idempotents in a compact semigroup (Theorem 
2.9). In § 3, we shall discuss about ß-divisors in S. If Ö is a ^-ideal in S, then for any 
element a of S, the set [xe S : xSa cz Q} is called the Q-divisor of a, and we denote 
it by ( ß : a). This concept is an analogy of the topological Б-divisor defined by Shum 
[9]. Some properties of the set ( ß : a) will be treated and some results in [1] and [9] 
concerning topological Б-divisors in a compact semigroup will be generahzed. The 
last section § 4, is devoted to examples of ^-ideals in compact semigroups. 

For most of the terminology used in this paper we refer to A. B. PAALMAN-DE 
MIRANDA [8]. Unless otherwise stated, the word "ideal" shall mean two-sided ideal 
ofS. 

I. PRELIMINARIES 

Throughout this paper we shall adhere to the following notation. 
Я = the topological closure of a subset A of S. 
X ~ Y == the set-theoretical complement of 7 in X, X and У being any sets. 
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E = the set of idempotents of S. 
J[A) = A^j AS ^ SA u SAS, i.e. the smallest ideal containing A, A being 

a non-empty subset of S. 
R(A) = A и AS, i.e. the smallest right ideal containing A, A being a non-empty 

subset of S. 
L[A) = A KJ SA, i.e. the smallest left ideal containing A, A being a non-empty 

subset of 5. 
It is clear that if e is an idempotent of S, then J{e) = SeS, JR(e) = eS and L(e) = Se 

hold. Furthermore it is obvious that if S and A are compact, then J{A), R{A) and 
L[A) are compact. 

JO{A) = the union of all ideals contained in A, i.e. the largest ideal contained in A 
i f O e ^ . 

It has been shown in [3] that if A is open and S is compact, then Jo(^) is open. 
We define T"" and Г{а) as follows: 

00 

T"' = f] T", where T is a subsemigroup of S . 

Г[а) = {a" : n == 1,2, ...] , a being any element of S . 

Generally we shall not distinguish between x and {x} if confusion of meaning is 
unlikely, so that we write xA in place of {x]A, x u A. in place of {x} u A and A — x 
in place of A — {x}. 

The following two propositions, Propositions LI and 1.3, are well-known results 
in the ring theory (refer to Theorems 4.3 and 4.12 in MCCOY [4]). 

Proposition 1.1. / / P is an ideal of S, then all of the following conditions are 
equivalent: 

(i) If A and В are ideals of S such that AB a P, then A a P or В a P. 
(ii) If a, b E S such that aSb с P, then a e P or b e P. 

(iii) / / R^ and Ri are right ideals of S such that R1R2 ^ P, then R^ a P or 
R2 CI P . 

(iv) If L^ and L2 are left ideals of S such that L1L2 с P, then L^ a P or L2 cz P. 

Definition 1.2. An ideal P of S is said to be a prime ideal if it satisfies one (hence 
all) of the conditions of Proposition 1.1. 

Proposition 1.3. / / Ô0 is an ideal of S, then all of the following conditions are 

equivalent: 

(i) If A is an ideal of S such that A^ a QQ, then A cz Q^. 
(ii) If a E S such that aSa cz QQ, then a e Qo-

(iii) / / R is a right ideal of S such that R^ ^ Ô0, then R с бо-
(iv) / / L is a left ideal of S such that Z? e Qo^ ^^^^ ^ ^ 6o-
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Definition 1.4. An ideal QQ of S is said to be a semiprime ideal if it satisfies one 
(hence all) of the conditions of Propostion 1.3. 

It is obvious that a prime ideal is semiprime. Furthemore it follows easily by 
induction that if QQ is a semiprime ideal and Л a one-sided ideal such that Л"* с Q^ 
for some positive integer n, then A с Q^. 

The next propostion is McCoy's Corollary 4.16 in [4]. 

Proposition 1.5. An ideal QQ of S is a semiprime ideal if and only if it is an inter
section of prime ideals of S. 

We conclude this section by presenting known results concerning the radical and 
open prime ideals of S, which will be used later. 

An element b of S is said to be nilpotent if b" -> 0, that is, if for every neigh
borhood I/ of 0 there exists a positive integer n^ such that b„e l / for all n ^ n^. 
We denote here the set of all nilpotent elements in S hyNQ. Clearly, NQ is not empty, 
because 0 e NQ. 

Definition 1.6. (Numakura [5]). The largest ideal contained in NQ is called the 
radical of -S and is denoted by iV, namely N = Jo(^o)-

The next proposition is the author's Theorem 1 in [7]. 

Proposition 1,7. / / S is compact, then N is the intersection of all open prime 
ideals of S. 

The following proposition is also the author's Theorem 2 in [7]. 

Proposition 1.8. / / S is compact, then each open prime ideal Р(ф5) has the form 
p = JQ(^S — e) for some non-zero idempotent e, and conversely for each non-zero 
idempotent e, JQ{S — e) is an open prime ideal. 

II. ^-IDEALS AND ß-PRIMITIVE IDEMPOTENTS 

In this section we first present the concept of ^-ideal in the following definition. 

Definition 2.1. An ideal g of S is said to be a q-ideal provided Q can be expressed 
as an intersection of open prime ideals. 

In view of Proposition 1.5, it is evident that a ^-ideal is a semiprime ideal. More
over, from Proposition 1.7, it can easily be seen that the following theorem holds» 

Theorem 2.2. The radical of a compact semigroup is a q-ideal. 

We shall next prove the following result. 

Proposition 2.3. / / / is an ideal of S, then all of the following conditions are 
equivalent: 
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(i) Every ideal of S which is not contained in I has an idempotent e such that 
еф1. 

(ii) Every right ideal of S which is not contained in I has an idempotent e such 
that еф1. 

(iii) Every left ideal of S which is not contained in I has an idempotent e such 
that e ф1. 

Proof. It is obvious that (ii) implies (i) and (iii) implies (i). 
We shall show that (i) implies (ii). Suppose that JR is a right ideal of S not contained 

in /. Certainly L[R) = R KJ SR is an ideal of S not contained in / , and so it has an 
idempotent e such that e ф1. If e E R , there is nothing to prove. Otherwise, e e SR 
and so e can be written in the form e = ab, where we may assume that a — ea e eS 
and b ~ be e Re. Let f — ba. Then we have 

/ ^ = b[ab) a = bea = ba = f 
and 

f =bae {Re) {eS) с R . 

That i s , / i s an idempotent contained in R. Moreover we h a v e / ^ / . For, otherwise 
we obtain 

e = ^^ = a{ba) b = afb e alb c: / , 

and this contradicts to the assumption. Hence JR has an idempotent / such that 

Analogously it can be shown that (i) implies (iii). 
It will be convenient here to give the following definition. 

Definition 2.4. (Property S). We say that an ideal / of 5 has the property S if / 
satisfies one (hence all) of the conditions of Proposition 2.3. 

The next lemma gives a class of ideals in a compact semigroup having the prop
erty S. 

Lemma 2.5. / / ß j is an open semiprime ideal of a compact semigroup S, then Q^ 
has the property ê. 

Proof. Let M be an arbitrary ideal of S which is not contained in Q^. Take an 
element x from M — g j , and consider the ideal J(x). Clearly J(x) is a compact ideal 
contained in M but not contained in Ç^. We shall show that J(x) has an idempotent e 
which is not contained in g j . Assume now, by the way of contradiction, that 
E n J{x) с g j . By Lemma 7 in [7], we have /{x^ = J{x) (E n J(x)) J{x) с ß , . 
Since Ö] is open and J(x) is compact, there exists a positive integer n such that 
J(x)" c: Qj. Using the fact that Q^ is a semiprime ideal, we obtain J(x) с g j . 
This gives the desired contradiction, which completes the proof. 

We can now easily prove the following theorem which characterizes a ^-ideal in 
a compact semigroup. 
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Theorem 2.6. Let I be an ideal of a compact semigroup S. Then I is a q-ideal if 
and only if I has the property ê. 

Proof. Only if part: Suppose that / is a ^-ideal of 5. Let M be an arbitrary ideal 
of S' which is not contained in /. We shall show that M contains an idempotent e 
such that e^ I. Since / is an intersection of open prime ideals and M is not contained 
in / , there exists an open prime ideal P which contains / but does not contain M. 
By Lemma 2.5, there exists an idempotent e in M such that e^F. It is clear that e 
is a desired idempotent. Therefore / has the property S. 

Jf part: Suppose that / is an ideal of S having the property ê. Let /j denote the 
intersection of all open prime ideals containing/. We shall show that / = / i . Certainly 
/ c: /^, so let us assume that / Ф / j and seek a contradiction. Since /^ is not con
tained in / , there exists an idempotent eel^ such that e^l. Let Pj = JQ{S — e). 
Then Pi is an open prime ideal containing / but not containing / , . This gives the 
desired contradiction. Hence we obtain I = I^, so that / is a ^-ideal. 

The next theorem is an immediate consequence of Lemma 2.5 and Theorem 2.6. 

Theorem 2.7. An open semiprime ideal of a compact semigroup is a q4deaL 
We now define another concept whose significance will be indicated in the next 

section. 

Definition 2.8. (Shum [9]). Let / be an ideal of S. An idempotent e of S is said 
to be an I-primitive idempotent if e ф1 and e is the only idempotent in eSe — I. 

We remark here that (O)-primitive or N-primitive idempotents are non-zero 
primitive idempotents in an ordinary sense. 

The following result gives a generalization of Koch's Theorem 1 in [2]. 

Theorem 2.9. Let S be a compact semigroup and Q a q-ideal of S. If e is an 
idempotent of S, then all of the following conditions are equivalent: 

(i) e is a Q-primitive idempotent. 
(ii) SeS is a minimal ideal not contained in Q. 

(iii) Se (^eS) is a minimal left {right^ ideal not contained in Q. 
(iv) eSe — Q is a group. 
(v) Every idempotent in SeS — Q is a Q-primitive idempotent. 

(Let A and В be ideals (right, left or two-sided) of S. The expression "A is a minimal 
ideal not contained in Б " means that ^ is a minimal member among the ideals of S 
which are not contained in B.) 

Proof, (i) => (ii): Suppose that e is a ß-primitive idempotent in S. Let M be an 
ideal of S contained in SeS. Assume that M ф Q, then, since Q has the property S', 
there is an idempotent / e M such that / ^ Q. As / = / ^ ef{SeS)f = (fSe) (eSf\ f 
can be written in the form / == ab, where a efSe and b e eSf. From this it follows 
that 

{baf = b{ab) a = bfa = ha . * 
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Hence ba is an idempotent in eSe. Moreover, ba is not contained in Q. For, other
wise we have f = f^" = a{ba)beaQb с g, a contradiction. Therefore, ba is an 
idempotent in eSe ~ Q, and so ba must coincide with e. It follows that 

SeS = SbaS == SbfaS с 5/5 cz M . 

Hence M = SeS, and so M is a minimal ideal not contained in Q. 
(ii) => (iii): Suppose that 5e5 is a minimal ideal not contained in 6. Let L be a left 

ideal of 5 contained in Se. Assume that L ф Q, then there is an idempotent feL 
such that f4Q. From 5e з L з 5;/, it follows that 5^5 з SfS. As SfS ф Q, the 
minimality of 5^5 implies that SeS = SfS. Therefore there exist elements a and b 
such that e = afb. Here, we may assume that a e eSf and b efSe. Now, 5 / c Se 
implies/ = fe; hence for any positive integer n, 

ajb" = {а""-^/) {afb) fe"~^ = «""^(/e) b""^ = a'^'^fb''-^ = - = afb = e . 

Using Lemma 1 in [6] or Lemma LL4 in [8], we can find an idempotent g e Г(а) 
and an element h G Г[Ь) such that e = gfh. We note gf = g, hence 

e = ge = gfe = gf = g 
and 

e = g = gf-

This implies e e 5/, and so Se a Sf с L. Hence Se = L, so that Lis a minimal left 
ideal not contained in Q. 

Analogously it can be shown that eS is a minimal right ideal not contained in Q. 
(iii) => (iv): Suppose that 5^ is a minimal left ideal not contained in Q. 
We shall first show that for any x e eSe — Q there exists a left inverse x' in eSe — Q 

with x'x = e. As L(x) с Se and L(x) Ф ß , it follows that L(x) = Se. Therefore, 
X = e or there is an element х'Чп 5 such that x"x — e. In the former case x is the 
identity element of eSe — Q. In the later case let x' = ex"e. Then x' e eSe and 
x'x = [ex"e) X = ex"(ex) = e{x"x) = e^ — e. It is clear that x' ф ß , because e ф Q. 

We shall next show that if x and у are in eSe — ß , then xy e eSe — Q. Let x' 
and y' be left inverses of x and у in eSe — ß , respectively. Clearly, xy e eSe. If 
xy e Q, then we have 

e^{/x'){xy)EQ, 

a contradiction. Hence xy e eSe — ß , and we can conclude that eSe — ß is a group, 
(iv) => (i): Trivial. 
(v) => (i): Trivial. 
(ii) => (v): Let / be any idempotent in SeS — ß, we have to show that / is a ß-

primitive idempotent. Since SeS is a minimal ideal not contained in ß and 5/5 is 
an ideal of 5 contained in SeS but not contained in ß , it follows that 5/5 = SeS. 
This implies that 5/5 is also a minimal ideal not contained in ß . From the equi
valency of (i) and (ii), we can conclude that / is a ß-primitive idempotent. 
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III. Ö-DIVISORS 

We begin this section with the following lemma. 

Lemma 3.1. / / QQ IS a semiprlme ideal of S and x, y e S such that xSy cz Q^^ 
then y Sx с QQ. 

Proof. Let go = n{Pa " a e ^} be an expression of QQ as an intersection of prime 
ideals (see Proposition L5). If P^ is any prime ideal in {P^ :ae A}, then xSy a 
cz Q d P^ implies that x e P„ or j ; e P^. From this it follows that у Sx ci P^. Since P^ 
is taken arbitrary, we can conclude that ySx a f]{P^ : осе A} = QQ. 

We now define the concept of g-divisor in S. 

Definition 3.2. Let g be a g-ideal and A a non-empty subset of S. The Q-divisor 
of A is defined to be the set 

{Q:A) = {xeS: xSa cz g for all a e A} . 

In view of Lemma 3.1, we can easily see that 

( g : У4) = {x 6 S : aSx cz Q for all a e A} . 

If A = [a], we abbreviate the notation ( g : {a}) by ( g : a). 
From the definition of g-divisor one can quickly verify the following proposition. 

Proposition 3.3. Let Q be a q-ideal and A a non-empty subset of S. Then each of 
the following assertions is true. 

(i) ( g : A) is an ideal of S containing g. 
(ii) A cz Q if and only if ( g : A) == S. 

(iii) / / g is closed, then ( g : Л) is closed. 
(iv) / / g is open and if S and A are compact, then ( g : A) is open. 

Lemma 3.4. If S is compact and g a q-ideal of S, then (g : Ä) is a q-ideal for any 
non-empty subset A. 

Proof. We shall first show that for any element ae A, [Q : a) is a ^-ideal. If 
a e Q, then ( g : a) = S, and so ( g : a) is certainly a ^-ideal. Suppose that a ф Q, 
and let M be an ideal of S not contained in (g : a). Then there exists an element 
X e M such that xSa ф g. Since g is an intersection of open prime ideals, we can 
find an open prime ideal P containing g such that xSa ф P. Hence J(x) ф P, and 
J(x) -- P contains an idempotent e. As P is a prime ideal and e, a ф P, it follows 
that eSa ф P. Therefore eSa ф g, and so we obtain eф{Q : a). Thus M contains 
an idempotent e which is not contained in ( g : a). In view of Theorem 2.6, ( g : a) 
is a ^-ideal, 
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From ( ß : A) = П{(о - a) : a e Л], [Q : Л) is also expressed as an intersection of 
open prime ideals. This completes the proof. 

We shall next prove the following theorem which is an extension of Shum's 
Theorem 2.8 in [9]. 

Theorem 3.5. Let S be a compact semigroup and Q a q-ideal of S. If e is a Q-
primitive idempotent, then {Q '• e) is an open prime ideal of S, more precisely, 
{Q:e) = Jo{S - e). 

Moreover, (Q : e) is a minimal prime ideal containing Q, that is, if P' is a prime 
ideal (not necessarily open) such that Q a P' a (Q \ e), then P' — (Q : e). 

Proof. We shall first show that ( ß : e) = JQ{S - e). From eSe ф Q, it is clear 
that eф{Q: e), and therefore {Q:e) a J^^S - e). To prove Jo{S - e) = (Q : e), 
let us assume that JQ(S — e) ф (Q : e) and seek a contradiction. Since (Q : e) is 
a ^-ideal (see Lemma 3.4), Jo('^ -̂  ^) contains an idempotent / such that f ^{Q: e). 
From f $[Q\ e) it follows that eSf Ф ß and so eSfS Ф ß . Therefore there exists 
an idempotent g e eSfS such that g Ф Q. We have now 

(gef = g{eg) e = gge = ge , 

e(ge) = (eg) e = ge 
and 

(ge) e = ge . 

Hence ge is an idempotent in eSe. Furthermore, ge ф ß . For, otherwise we have 

g = g^ = {egf = e{ge) g ^ eQg cz Q , 

a contradiction. Thus ge is an idempotent in eSe — Q, therefore ge must coincide 
with e, i.e. ge = e. From this it follows that 

e = gee eSfSe с J ( / ) с JQ{S - e) , 

so that we arrived at a contradiction. Hence we have ( ß : ^) = Jo{S — e). 
Let us next assume that P' is a prime ideal such that ß с P ' с ( ß : e). Let x be 

an arbitrary element in ( ß : e). Then xSe cz Q a P' and so x e P' ox e e P' since P ' 
is a prime ideal. But eф{Q : e) and P' ^ {Q: e) imply that e ф P\ Hence we have 
X e P\ therefore (Q : e) a P\ Thus ( ß : e) is a minimal prime ideal containing ß. 
This completes the proof of the theorem. 

Suppose that P is an open prime ideal of S (containing a ^-ideal ß). We say that P 
is a minimal open prime ideal (containing Q) if P is a minimal member among the 
open prime ideals of S (which contain ß). 

The following theorem gives a partial converse of the preceding theorem. 

Theorem 3.6. Let S be a compact semigroup and Q a q-ideal oj S. If P is a minimal 
open prime ideal containing Q, then P = S or P = (Q : e) for some Q-primitive 
idempotent e. 
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Proof. Suppose that P Ф 5, then according to Proposition i.8 there exists an 
idempotent e such that P = Jo{S ~ e). We shall show that e is a ß-primitive 
idempotent. Certainly e ^ ß , so let us assume that e is not a ß-primitive idempotent 
and seek a contradiction. By Theorem 2.9, there exists an ideal M such that M с SeSy 
M ф SeS and M ф ß . Let / be an idempotent in M such that f ф Q. Then the open 
prime ideal JQ{S — / ) contains ß and it is properly contained in JQ{S — e) = P, 
because SfS a M a SeS, M ф SeS (in this connection see Lemma 9 in [7]). This 
contradicts to the minimality of P, and e must be a ß-primitive idempotent. Hence 
we have (Q : e) = Jo{S - e) = P. 

According to Theorem 2.2 and the fact that every open prime ideal contains the radi
cal (see Proposition L7), we have the following immediate corollary to the preceding 
theorems: 

Corollary 3.7. Let S be a compact semigroup and N the radical ofS. If e is a non
zero primitive idempotent, then (N : e) is a minimal open prime ideal of S. Con
versely, If P is a minimal open prime ideal of S, then P — S or P = {N : e) for 
some non-zero primitive idempotent e. 

The following theorem is a generalization of Corollary 1 to Theorem 3.1 in [9] 
and Lemma 3.1 in [1]. 

Theorem 3.8. Let S be a compact semigroup and Q a proper q-ideal of S. Then Q 
is the intersection of all Q-divisors ( ß : e), where e runs through the set E — Q. 

Proof. Since S itself is an ideal not contained in ß , there is an idempotent e in S 
such that еф Q. Hence we have £ — ß ф 0. Let Q' be the intersection of all the sets 
( ß : ß), where e runs through E — Q. Clearly Q' => ß , and so to prove ß ' = ß let 
us assume that Q' Ф Q and seek a contradiction. L e t / b e an idempotent in Q' such 
that fфQ. Then, since / e £ - ß , we obtain ß ' с: ( ß : / ) and so / e ( ß : / ) . This 
impl ies /5 / cz ß, so t h a t / G ß . Thus we arrived at a contradiction, which completes 
the proof. 

Corollary 3.9. Let S be compact and S Ф N, then N is the intersection of all 
N-divisors [N : e), where e runs through the set of non-zero idempotents. 

We now proceed to consider the existence of ß-primitive idempotents. Let us recall 
that open semiprime ideals in a compact semigroup are ^-ideals (Theorem 2.7). 

Lemma 3.10. Let S be a compact semigroup and Q an open semiprime ideal of S. 
If M is an ideal of S not contained in ß , then M has a Q-primitive idempotent. 

Proof. Take an element x from M ~ Q and consider the ideal J{x). J(x) is 
a compact ideal such that J(x) a M and J{x) ф ß . To prove the lemma it is enough 
to show that J{x) has a ß-primitive idempotent. Therefore we may assume, without 
loss of generality, that M itself is a compact ideal. 
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Let Jl be the set of all compact ideals contained in M but not contained in Q. 
Ji is partially ordered by inclusion and is nonvoid, because M e Л. We now assert 
that the intersection of an arbitrary chain ^ in Л is an element of Л, because ideals 
in ^ are compact and Q is open. By Zorn's lemma, Л has a minimal element, say M^. 
Namely, M^ is a compact ideal contained in M but not in Q such that if M' is 
a compact ideal contained in M but not in Q and if M' c: M^, then M' — Mj . 
We shall show that the ideal Mj is a minimal ideal not contained in Q. Suppose 
that M" is an ideal of S such that M" с M^ and M" ф Q. For any у e M" — Q, J[y) 
is a compact ideal contained in Mj (hence in M) but not contained in Q. Hence J(y) 
is an element of Jf. Since M^ is a minimal element of .//, we obtain J(y) = Mj , 
Therefore we have Mj = /(y) с M" and so M^ = M". Thus Mj is a minimal ideal 
not contained in Q. Take an idempotent e from M^ — Q. Clearly SeS coincides 
with Mj , therefore SeS is a minimal ideal of 5 not contained in Q. From Theorem 
2.9 we can conclude that e is a ß-primitive idempotent. This completes the proof of 
the lemma. 

We can now easily prove the following theorem. 

Theorem 3.11. Let S be a compact semigroup and Q a proper open semiprime 
ideal of S. If P' is an open prime ideal containing Q, then there exists a minimal 
prime ideal P containing Q such that P c: P'. Furthermore, P has the form P = 
= JQ(^S ~ e) = ( 2 : e) for some Q-primitive idempotent e. 

Proof. Suppose, first, that P' ф S. In view of Proposition 1.8, P' has the form 
P' =z JQ(^S — f) for some idempotent / . The ideal J ( / ) is not contained in ß, and so, 
by Lemma 3.10, there exists a ß-primitive idempotent e in / ( / ) . Using Theorem 3.5, 
we can conclude that {Q \ e) = JQ(S — e) and ( ß : e) is SL minimal prime ideal 
containing ß . According to Lemma 9 in [7], from J(e) cz j ( / ) it follows that 
Jo{S — e) cz P\ Therefore P = ( ß : e) = JQ(S — ^) is a required prime ideal. 

If P' = S, S contains a ß-primitive idempotent e by Lemma 3.10. In this case, 
it is evident that the ideal P = JQ(S ~ e) = (Q : e) is also a required prime ideal. 

This completes the proof of the theorem. 
We conclude this section with the following theorem and its corollary, which 

generahze the result of Hoo and Shum [1; Theorem 4.6]. 

Theorem 3.12. Let S be a compact semigroup and ß a proper open semiprime 
ideal ofS. Then Q is the intersection of all Q-divisors ( ß : e), where e runs through 
the set of Q-primitive idempotents. 

Proof. For any ß-primitive idempotent e it is evident that ß с ( ß : e). 
Since ß is a ^-ideal, ß has the form ß = C]P'a, where P^ runs over a set of open 

prime ideals containing ß . By Theorem 3.11, for any P^ we can find a minimal prime 
ideal P^ containing ß such that P^ cz P^ and has the form P^ = ( ß : e^), where e^ 
is a ß-primitive idempotent. Therefore we have 

Q = nPa = n ( ß : e,). 
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Hence we can conclude that Q is the intersection of all ß-divisors (Q : e), where e 
runs through the set of g-primitive idempotents. 

A semigroup S is said to be an N-semigroup if N is an open set in S. 
As an immediate consequence of the preceding theorem we have the following 

corollary. 

Corollary 3.13. Let S be a compact N-semigroup. If N ф S, then N is the inter
section of all N-divisors [N : e), where e runs through the set of non-zero primitive 
idempotents. 

IV. EXAMPLES 

4.1. An ideal JB of S is said to be compressed (Shum [9]) or completely semi prime 
if a^ e В implies that a e B, a being an element of S. The following is an example 
of a finite semigroup possessing a prime ideal which is not a compressed ideal ([8], 
p. 51). 

Let T be the semigroup consisting of five elements e, / , a,b and 0 with multiplication 
table 

e 
f 
a 
b 
0 

e 
e 
0 
a 
0 
0 

/ 
0 
/ 
0 
b 
0 

a 
0 
a 
0 
e 
0 

b 

Y 
0 
/ 
0 
0 

0 
0 
0 
0 
0 
0 

Then {0} is a prime ideal of T which is not a compressed ideal. 

4.2. We shall give here an example of a finite semigroup possessing a semiprime 
ideal which is not a prime ideal. 

Let Tbe the semigroup described in the preceding example. Let S be the set of all 
pairs (x, y) with x, y еТ. Under the discrete topology and the componentwise 
multiplication S becomes a semigroup. Namely, S is the direct product of the two 
semigroups T and T. By 0* we denote the zero element of 5, that is, 0* = (0, 0). 

We shall show that the ideal {0*} of S is a semiprime ideal which is not prime. 
Let A = {(x, 0) : X G T} and В - {(0, у):уЕТ}. It is not difficult to see that A 
and В are ideals of S distinct from {0*}. And straighforward calculation shows that 
AB = {о*}. Therefore {0*} is not a prime ideal of 5. Next, suppose that z* = (x, y) 
is an element of S such that z'^Sz'^ = {0*}. From this it follows that xTx = {0} and 
уТу = {0}. Since {0} is a prime ideal of the semigroup T (see Example 4.1), we 
obtain X = 0 and у = 0, and so z* = 0*. Hence {0*} is a semiprime ideal of S. 

4.3. Let A be an arbitrary infinite set of indices. To each element a e Л we associate 
a copy T^ of the semigroup T described in Example 4.1, and denote by S the direct 
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product (Cartesian product) of all the semigroups T ,̂ a e Л. Then S, endowed with 
the product topology, is a compact, non-discrete semigroup. We denote by n^ the 
projection from S onto T^. It is well-known that n^ is an open continuous homo-
morphism. The zero element of S is denoted by 0*, i.e. 0* is an element of S such 
that 71^0*) = 0 for all аеЛ. 

In exactly the same fashion with Example 4.2, it follows that {0*} is a semiprime 
ideal of S which is not prime. Let P^ = 7г~^(0). Using the fact that {0} is an open 
prime ideal of the semigroup T, it is not difficult to see that P„ is an open prime ideal 
of S. It is also easy to see that the intersection of all P^'s coincides with {0*}. From 
this we can conclude that {0*} is a ^-ideal of S. It is noticed that {0*} is not open, 
since the index set Л is infinite. 

Furthermore if we denote by x* the element of S such that 7î (x*) = x and 
Яд(х*) = 0 for ^ Ф a where x is an element of T, then it can easily be shown that e* 
a n d / * are {0*}-primitive idempotents for every cce A. 

4.4. Let S be the closed unit interval of real numbers. 5 is a compact commutative 
semigroup under the topology induced from reals and the multiplication defined by 

xy = min (x, j ) , X, y E S . 

For any number a (0 < a ^ 1), the set P^ == {x e S : 0 ^ x < a} is an open prime 
ideal of S. Let b be any element in S. The intersection of open prime ideals P^, 
b < a S 1, coincides with the closed ideal P ,̂, and therefore P ,̂ is a <?-ideal of S. 
In this case, however, there are no P^,-primitive idempotents. 
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