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Czechoslovak Mathematical Journal, 29 (104) 1979, Praha 

ON SUMM ABILITY IN CONVERGENCE GROUPS 

CzESLAW KLI:^, Katowice 

(Received June 1, 1977) 

I. In Novak's paper "On some problems concerning convergence space and 
groups" (see [1]) the following problem is given: 

"Is there a sequence of points of a convergence commutative group such that in 
each subsequence of it there is a subsequence the limit sum of which exists and 
another subsequence the infinite sum of which does not exist?" 

An elegant example of a space containing a sequence whose subsequences have 
both summable and unsummable subsequences was given by C. RYLL-NARDZEW^SKI. 
The Continuum Hypothesis was essentially used in C. Ryll-Nardzewski's example. 

In the last section we give an example of a normed space without using the Con
tinuum Hypothesis. 

II. In this section we consider vector measures m : 2^ -> L. By an orthogonal 
measure ( = o.m.) we mean a measure m : 2^ -> L which transforms every family of 
disjoint, nonvoid subsets of iV into a system of Hnearly independent vectors in L. 

For each family se of subsets oïN we denote: 

m(j/) = ^ ^ { m U ) : ^ G J 3 ^ } , 
and 

L{sé) =^^ Lin {m{Ä) \Aesé]. 

By l{Ä) we denote the family {Б с Л : Б is an infinite subset}. Let us observe that 
each o.m. m : 2^ -> Lis a monomorphism. 

Lemma 1. Let m he any o.m. and let s^ be a finite family of disjoint nonvoid 
subsets of N. Then for each set A cz N, the set 

m{l{Ä)) n L{s/) 
is finite. 

Proof. Let s/ = [A^, ..., A„}. Moreover, we assume that В cz A, and 

(1) m{B) = «1 m{Ax) + ... + a„ m[A„) . 
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By the transformation (l) we obtain 

(2) Ца^ - 1) m{Ai n B) + ^fli ^(^4, \B)- m{B \ U^i) = 0 
i i i 

where all sets are disjoint. 
The orthogonality of the measure m together with (2) implies U^,- ^ B. Further, 

i 

for each i = 1, ..., n atleastoneofthesets Л̂  пВ от Ai\B is nonvoide.Hence the 
coefficient â  is 0 or 1, and the number of elements of the set m{l{Äf) n L ( J / ) is 
equal to the number of all n-element sequences of 0, 1. This proves Lemma 1. 

Lemma 2. Let m be any o.m. and let E be a subspace of Lof infinite algebraic 
dimension. Then for each infinite set A cz N we have card m(l{Ä)) n E ^ dim E, 

Proof. First we consider the case when F с Land F is a linear space of a finite 
dimension. Let u^, ...,u„ be one of the largest collection of linearly independent 
vectors in F n m(l{Ä)). 

By У we denote the family of all atoms of a ring generated by m" ̂ (wj),..., m~ ̂ (м„). 
It is clear that 

F о m{l{Ä)) cz L{J^) . 

Hence Lemma 1 implies that the set F n т(/(Л)) is finite. By the representation 
E = \JF, where ^ is the class of all finite dimensional spaces generated by a fixed 

basis of E, we have 

(3) HK^)) ^^ = öm{I{A)) nf 

i.e. the set т(/(Л)) n F is a union of finite sets. The equality 

card ^ = dim F 

together with (3) yields the assertion of Lemma 2. 

Let j / be a family of subsets of N. We say that a linear space F cz L is an m-dis-
section of s/ iïï for each Ae js/ there are vectors и e E, v фЕ such that 

m~^(w), m~\v) cz A. 

Theorem. Let m :2^ -> Lbe an orthogonal measure, and let Ж be the collection 
of all infinite subsets of N. Then there exists a subspace E с L which is an m-dis-
section of J^. 

Proof. Let œ denote the smallest ordinal number of a power of continuum, and let 
{'^a}<x<(o be a transfinite sequence of all members of Ж. We use transfinite induction 

114 



to define two increasing sequences {£ }̂„>o, (i = 1, 2) of linear subspaces of L such 
that: 

(i)ElnEl = {0}, 

(ii) dim {EI @ E^) ^ Ko + card a, 
(iii) for I = 1, 2 and for a > 0 there exists м* e E^ such that m~̂ (Wa) с Л .̂ 

Define £j as the space Lin {m(Ä) : Л is a finite set), and Eg = {O}. 
Suppose that 0 < a < со and that £^, f = 1, 2, have been defined for each ß, 

0 S ß <oi. 
Since m is a monomorphism, Lemma 2 imphes that we can choose two linearly 

independent vectors ŵ  (f = 1, 2) in т(/(Лд)), such that Lin (w ,̂ м )̂ n (J ^J ® ^ | = 

= 0. Let us define E^ as U ^j © Lin (i/̂ ) (i = 1, 2) and assume that E = [J E^. 
ß<a a<û> 

It is clear that E satisfies the assertion of the theorem. 

III. By fi we denote the orthogonal measure from 2^ into the Hubert space 
(/^ II II2), such that 

пеА П 

where (^„)„=i,2,... is an orthonormal basis of / .̂ Moreover, let £ с /̂  be a /x-dis-
section of JV. Then, by virtue of Theorem, it is easy to see that each subsequence of 
a sequence a„ = (l/n) e„ contains a subsequence which is summable in (E, \\ Цз), 
and a subsequence which is unsummable in (E, || II2). 

I wish to thank Dr. С FERENS for some very helpful discussions. 
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