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Czechoslovak Mathematical Journal, 29 (104) 1979, Praha 

A MODIFICATION AND COMPARISON OF FILIPPOV 
AND VIKTOROVSKIJ GENERALIZED SOLUTIONS 

JAROSLAV PELANT, Praha 

(Received June 3, 1976) 

This paper is an immediate continuation of Chapter III of the first part [3]. We 
present here the main result, which consists in such a modification of Viktorovskij's 
definition that the equivalence with Filippov's definition [ l ] in terms of differential 
inclusions can be estabhshed. 

Theorem 7. (MV=> CF). If an absolutely continuous function x{t) is an MV-
solution of the equation x = f(t, x) from Remark 5 on an interval T = (r^, ^2), 
then the condition CF from Definition 1 holds for x(t) on T. 

Proof. Let an absolutely continuous function x{t) be given on the interval Tand 
let x[t) be an MF-solution of i; = f{t, x) on Г. Hence for every e > 0 and every 
N cz G, /i(iV) = 0, there exists a function ф on T which satisfies (6) —(10) with the 
norm ||x|| = {max |xf|: i = 1, ..., n}. The condition CF can be written in the form 

\f{Bj) V(0 3(Ti c: T : /x(Ti) = fi{T)) y{t e T,) {a v ß} (cf. Remark 6 ) . 

The negation of this condition has the form: 

3{Bj) 3(0 V(T, с T : /i(r,) = ti{T)) 3(f e T,) {non (a v ß)} . 

This is equivalent to the condition 

3{Bj) 3(ï) 3 ( r с T : / i* ( r ) > 0) V(̂  G Г ) {non-(a v ß)} , 

where ju* is the outer measure. 
The remaining part of the proof is identical with the proof of Theorem 6, where 

we insert (6) —(10) instead of (l)--(5). The contradiction obtained proves the theorem. 

R e m a r k 7. For brevity, let us introduce K^{f, t,x) = f) П /(^, U{x, ô) - N) 
ô>0 N,ßiN) = 0 

for an arbitrary (t, x)e G analogously to K^{f, t, x) in Remark 2. 
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Lemma 9. Let us suppose that x{t) is a continuous function on the interval T = 
= <(ti, ^2) ^^d [t, x^t)) e G holds for every t e T. Then there exists a subset T^ с T, 
/i(Ti) = ii{T) such that K^{fy t, x{t)) is compact and nonempty for every te T^. 

Proof. Let us choose ÔQ > 0 small enough so that the compact set 

и (r, U{x{t), Ô0)) с G. For this set there exists a subset T[ a T, fi{T[) = fi{T) and 
teT 
a function m(t) defined on T[ with the properties from Remark 5. 

Consequently, K^{f, t, x(t)) is compact for every t e T[. Further, there exists 
a subset T^ a T, //(Тг) = fi{T) such that X^(/, t, x{t)) ф 0 on T2 because we can 
prove a lemma analogous to Lemma 6 for closures. Now, we choose T^ = T[ n T2 
and the proof is complete. 

Corollary 2. Lemma 9 holds also for the sets K^{f, t, x[t)). 

R e m a r k 8. Let a function z(t) be defined and measurable on T and let 
z(r) G K^(/, t, x[t)) a. e. on T for a given continuous function x{t) on T. Then the 
function z[t) is integrable on T. This assertion follows from Remark 5. 

Lemma 10. For every [t, x)e G we have the following equivalence: y e X^(/, t, x) 
if and only if 

V(e > 0, ^ > 0) fi{z e U{x, Ö) : \\y - f{t, z)|| < e} > 0 . 

Proof. Let V(e > 0, ^ > 0) ii{z e t/(x, ô) : \\y - f{t, z)\\ < e} > 0 be satisfied. 
Let us fix ^ > 0; then the preceding condition yields U(y, e) n f(t, U(x, ô) — iVg) ф 0 
for every e > 0, where the set N^ of measure zero has the same meaning as the set NQ 
in Lemma 5. Consequently, yeK^{f,t,x) holds because у ef{t, U{x, ô) - N^) 
for an arbitrary ô > 0, Now let us suppose y e K^(/, t, x). This yields that 
y ef{t, U[x, Ô) — N5) for an arbitrary <5 > 0. Let us choose a neighbourhood U{y, s) 
for a certain г > 0 and êt us choose a certain ô > 0. This neighbourhood contains 
at least one point y ef(t, U(x, ô) — N^). Then there exists a point x E U{X, S) — N^ 
such that y = f(t, x) and the function / ( / , z) is weakly asymptotically continuous 
(cf. Definition 1) at the point x with respect to the variable z (cf. Lemma 4). Then 
it holds: 

V(e' > 0) V(^' > 0) 3(0 < Ô0U ^') 3(iV' : fi^N') < fi{U{x, So))} 

{\\z - 3c|| <ôo, zфN' => \\f\t, z) - f{t, x)\\ < 8'} . 

Let us choose ^' > 0 and e' > 0 such that U(x, ô') a U{x, 3) and U(y, e') c= U[y, e). 
Then it can be proved that fi{z e U(x, ^) : ||>' — f(t, z)j| < e} > 0. 

Lemma 11. / / a set A cz E„ is open, then the set [t e T : K^{f, t, x(t)) n zl Ф 0} is 
measurable for any measurable function x[t) defined on the interval T, where 
[t, x[t)) e G for every teT. 
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Proof. An open set Л can be written in the form A = \J Qm-u where öm-i are 

closed sets fulfilHng бо ^ Go ^ ... c= ß^ cz Q^ с ß^+i с ... where ß^ is the 
interior of ß^. Let us denote A^ = {teT:K\f, t, x{t)) n ß^_i + 0} and A = 

00 

= {teT: K'^if, t, x{t)) n z1 Ф 0}. Then A = \J A^, 
m = l 

Now we must prove that the set A is measurable. Let us choose a fixed index m. 
The sets {x e U{x(t), ô) :f[t, x) e Q^} are measurable for almost all t e T. First of 
all we shall show that the sets T^ == {t e T: p{x e U(x{t), ô) :f{t, x) e Q^] > 0} 
are measurable for an arbitrary ^ > 0. The set T x E„ is measurable in the space 
£„ + 1 and M = {(t, X)E T X E„ : x e U(x(t), Ô), f{t, x) e ß^} is a measurable set in 
£„ + 1 as well. M(t) is the projection of a section of the set M into £„ with a fixed t. 

Hence we can write T^ = {teT: p(M(ty) > 0} and this implies that T^ is mea
surable set because M is a measurable set in £„+1. There exists a limit T^ == lim T^^ 

«5->0 + 

it is measurable and T,^ = f) T^ holds. Let t e A^, then for this t there exists. 

y eK^(f, t, x{t)) n ß^_i and from Lemma 10 we obtain that t e T^ for an arbitrary 
^ > 0 and also teT^so that A^ с T^. 

Now, on the contrary, let t e T^. This means that V(<5 > O) fi{x e U(x{t), ô) : 

:f{t, x) G ß^} > 0 and that 7(r7I7(x(r), ô) - N^) n ß ^ Ф 0 for an arbitrary ô > 0 

and also K^{f, t, x(t)) n ß^ Ф 0. This implies t e A^^+i and we obtain T^ a A^^^. 
GO 00 

This yields that A = (J A^ = (J T^is measurable. 
m = 1 m = 1 

Lemma 12. Let a measurable function z(^) be defined a. e. on T so that 
z{t) e K^{f, t, x[t)) a, e, on T, where x{i) is a continuous function on Tand (t, x(t)) e G 
for every te T Then there exist p functions yi{t), г = 1, ..., jp ^ n + 1, defined 
a. e. on T, measurable and locally integrable, with these properties: yi{t)e 

p 

eK^{f, t, x(t)) holds a. e. on T for each index i, z(t) = X! °̂ »(0 )^i(0 ^- -̂ ^" ^' 
i=l 

p 

where а (̂г) are measurable real functions satisfying 0 ^ а̂ (̂ ) ^ 1 and ^ а̂ (̂ ) = 1 
i=l 

a. e. on T. 

Proof. Let z[t) eK^{f, t, x{t)) and let K^{f, t, x[t)) be a compact set for every 
t e TQ cz T, where /^(TQ) = fi(T) (cf. Corollary 2). We shall find measurable functions 
yi{t) on this set To with the properties of this lemma. 

It is sufficient to find measurable functions, then the integrabihty follows from^ 
Remark 8. The function z{t) is integrable on T as well. There exist p points 2^(г), 

p 

i = 1, ..., p in K^{f, t, x{t)) for every t e TQ such that z{t) = ^ ßlt) zlt), where 

P 

ßi{t) are real numbers satisfying ^ ß^t) = 1 and 0 ^ ßlt) ^ L 
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Let us introduce the following sets. Let H^ be the set of all rational points from 
£„ and H2 the set of all p-tuples a^, ..., ap of rational numbers. Now we introduce 
the cartesian product Щ x H2, where the points of that product have the form 
(r^, ..., Гр, a^, ..., (Xp) and r̂ , i = 1, ..,, p are points from H^. We define a subset 
С с Я? X Я2 by 

p 
С = {(r^, ..., Гр, ai , ..., ар) e Hf X Я2 : X ^i = 1, 0 ^ â  ^ 1, i = 1, ..., p} . 

The set С is countable. Hence we can arrange its elements into a sequence, say С = 
= {{rij, ..., Грр a^j, ..., apj)}f=i. Let us choose any fixed positive integer k. Now 
we define the following sets for each positive integer ; . 

to',- = j r e To : \\z{t) - Да , , . г , . | < H , 

f̂ -̂ = L e To : ufr^j, Л n X^(/, f, x(r)) Ф 0J , 

where m = 1, ..., jp. The sets toj are measurable because the function z(f) is mea
surable on To. According to Lemma 11 the sets t^j are measurable. We introduce 

p °o 
sets fj = f] fmj for each j and we prove that TQ = U fj- We choose any t e TQ. 

m=0 j = l 

To that t there exist points 2^(г), i = 1, ..., p from K^{f, t, x(t)) so that z{t) = 

= i ßi{^ ^i{tl where i5,(r), i = 1, ..., p satisfy f i?,(0 = 1 ^nd 0 ^ J?,(0 ^ 1. 

Moreover, this t satisfies the inequality 

(23) \\z{t) - E a,,r,,|| = I 1 ßit) zit) - X a,,r,,.|| ^ 
i = l i = l i = l 

Now we can choose such an index j that the element {г^ ..., Грр a^y, ..., a^j) from 
the set С satisfies the inequalities 

Щ - t «ü'-dl й t \ßii) - а<,| ||z..(0| + t |a,,| \\zit) - г, . | < \ 

and 

CO 

1 = 1, . . . , p. For this index j it holds ^6 ï"/. Hence TQ = U ^ / holds. Let us set 
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successively Т^^ = f^ Т^ = f | ~ T^ ..., Т/ = t / - U T^ Then To = (J Т/ is 

a disjoint covering of the set To by measurable sets. The following formula defines 
measurable functions zj(^), aj(r) on TQ, i = l,...,p: z^(r) = Vij, (x\[t) = â y for 

t e T/. These functions fulfil \\z{t) - ^ а^(0 z%t)\\ < Ijk, ^ а?(0 = 1, 0 g aj(r) ^ 1, 
i = i i = i 

i = l , . . . , p and Zi(^) e 17(X^^(/, f, x(^)), 1/̂ ) on TQ. We have found measurable 
functions z.(r), (x]{t) which form a sequence {(^^(r), ..., z^(r), ai(r) , . . . , ap(r))}^=i. 
Let us denote yj,[t) = (zj(r), ..., z^(r), al{t), ..., a^r)), where j^ff) e £J x £„. 

Now we shall introduce^ the sets Mj^t) = {у^(0}?=5 and Q(r) = П-^s(0 = 

= П ( и {Ук{^)}) oil ^0- The sets Q[t) are nonempty for every te TQ because the 
s=l k = s 

sequence {yk{t)}k'=i is bounded for every ^GTO- Further, MJ^t) are compact sets 
for every t e TQ. This implies that the sets Q{t) are compact as well. If y{t) = 
= (zi(f), ..., zjf), a,(r), ..., aXt))eQ{t), then Zi(r)GX^(/, Г, x{t)) for i = 1, ..., p 

and 0 ^ а (̂г) ^ 1 for i = 1, ..., p and ^ ^,(0 = 1- It holds z{t) = ^ a^(r) Zi(f) on 
i = l i = l 

To as well. We shall prove that the set function Ô(^) is measurable on TQ, It suffices 
to show that the set Б = {? e To : Q{t) n T Ф 0} is measurable for every closed set 
F in the space E^ x E„. We introduce the auxiliary set 

^ = n n n \teTQ:yj{t)eu(F^)\, 
„=l i=i j=i [ \ nj) 

which is measurable. Now we shall prove that A = B. First, let t e A, then V(n) 
V(ï) 3(j ^ i) such that yj{t)e U{F, 1/n) and yj{t)e Mit). Hence for each index n 
there exists such an index ;„ that yjr,{t) e U{F, l/n) and hence Q{t) n F ф 0. Con
sequently, it is t e Б which proves A a B. 

On the other hand, let te B.lt means that Q{t) n F Ф 0. This implies that there 
exists y E Q(t) n F. With respect to the definition of Q(t) there exists a subsequence 
{Ук($){^)}Т=1 whose limit is y. For each n and i there exists an index k{s) ^ i such 
that ykis){t) e U{F, 1/n), and this yields t e A. Thus we have proved that A = B. 
This is sufficient for the measurability of the set function Q{t) on To. Now we shall 
find a measurable function \l/[t) e Q{t) on To and the proof will be complete. The 
set Q{t) is compact and nonempty for every t e TQ and Q{t) c: F^ = F^ x F„ of the 
dimension m = np + n. Let us write the points y of the space F^ in the form y = 
= (y\ ..., j;'"). We introduce the function (p'{t) = sup {y\t) : {y\t),..., y'"{t)) e Q{t)} 
on To- We show that the function (p^{t) is measurable on To. This immediately 
follows from the measurabihty of the set 

{t : cp\t) ^X} = {t: 0(0 n {{y\ ..., y'") : / ^ Я} + 0} 
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for every real value X. Further, we define the set function 

Zli) = {{y\ ..., r ) : y^ ^ q>\t), \\y\\ й c{t)} . 

This set function is measurable and Zi(f) is nonempty for c(t) = max (m{t), 1) with 
the norm | | j ; | | = max {\y'\ : i = 1, ..., m}. The sets Zi(f) and Q(t) have a nonempty 
intersection for every t e TQ. Hence the set function ô i ( 0 ~ 6(0 ^ ^ i ( 0 ^̂  Plea
surable on To since both Q[t) and Zj(0 are measurable set functions. Let us introduce 
analogously the function (p^{t) = sup {y^(t) : (y\t), ..., y"'{t))e Qi{t)} on 7o. The 
function (p^'(t) is measurable on TQ as well as the function (p^(t). Further, we define 

Z,{t)=^{{y\...,y-'):y'^cp\t),\\y\\uc{t)} 

and 62(0 "̂  Öi(0 ^ ^2(0* I^ ^^i^ ^^y ^^ ^^^ obtain functions (p\t) on To for each 
index i = 1, ..., m in the form (p\t) = sup {y\t) : (}̂ (̂0» •••> j '"(0) ^ 6 i - i (0} ^̂ <̂̂  
measurable set functions 

Zlt) = {{y\.,,,y-):r^cp\tl \\y\\ uc{t)] 

and Qi{t) = ß i - i ( 0 <̂  2i(0 with ßo(0 = Q(0- ^^^ ^^^ functions Qilt) are measurable 
on To- This construction implies that the function cp{t) = {(p^(t), ..., ^'"(O) ^ ô(0 ^^^ 
every r e To is the desired measurable function. 

Theorem 8. (F => MV), Let a function x(t) he defined and absolutely continuous 
on T = <fi, ^2)? l^t it map the interval Tinto E„ and let (t, x[t)) e G for every t e T, 
where G a £„+1 is an open connected set. If the function x(t) is an F-solution of the 
equation x = f{t, x) from Remark 5 on T, then x(t) is an MVsolution on T. 

Proof. Let us choose e > 0 small enough so that the compact set (J (t, U[x(t), e)) 
fer 

is a subset of G and let us choose an arbitrary set N a G, fi(N) = 0. We shall find 
a function 1̂ (0 on T with respect to г and N such that the function ф satisfies the 
following properties: 

(24) {t,il/{t))eG on T, 

(25) /(r, \l/{t)) is integrable on T, 

(26) \\x{t) - ф{t)\\ < s on T, 

< e on T, (27) L(t)-{x{t,)+ r / (T,^(T))dT) 
II j t i 

and 

(28) (t, il/{t)) Ф N almost everywhere on T. 

Let T с T, /x(T') = fi{T) be a set, where x{t) e K^{f, t, x{t)) and K^{f, t, x{t)) are 
compact sets. According to Lemma 12 the function x(t) can be written on T in the 
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form x{t) = Ya ^i{^) yi^)^ where 0 ^ a^t) ^ 1, ^ ^i^) = Ь P ^ " + 1 and a (̂f) are 
i = l i = l 

real measurable functions defined on the interval T while yi{t) are local integrable 
on Tand yi{t) G X^(/, t, x(f)) for every t e T, First of all we shall find an approxima-

p 
tion of the function x(t) on T which has the form ^ ^^(t) ^̂ »(f), where ßlt) are simple 

measurable functions defined on T with rational values satisfying 0 ^ ßlt) g 1, 

X ^i(0 = I 01̂  ^ ' while the functions g If) are step functions on T. 
1 = 1 

Now we shall construct the functions ßlt) and gl}) with these properties so that 
the inequality 

(29) \UA-)-tm9h))à. < en 

is satisfied for every ( e T, where 80 = б/З. The inequality (29) can be expressed in 
the form 

llJti ^=1 I! 

^ 1 f \ t Ф) yh) -1 Ф)/{^^ ФШ A 

\\Jtг^='^ ^ = 1 II 

We must find functions xj/'if) on T, i = 1, ..., p such that the inequality 

+ 

+ 

(30) \[\t<^) ViW -1Ф)/(^'ФЬ))) A 
I I J e i ^ = l » = l II 

< 

is satisfied for every t e Tand, at the same time, the functions ф^ satisfy the conditions 
(24), (25), (26), (28). Let us choose 5 = 8. According to Lemma 10 it holds 
V(e' > 0) fi{Mll%) > 0 on T' for each i = 1, . . . , p, where 

Ml!% = {x e U{x{t), Ô) : \\ylt) - f{u x)\ < в'] . 

Let e' > 0 be such that д(Т) г' < г^\Ар. Lemma 8 implies the existence of functions 
\lf\t) on T which for each i = 1, ..., p fulfil the following condition: f(t, ^\t)) is 
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integrable on T, (t, фЩ фМ B..Q. on T, ^\i) e Mp% on Г and xj/^t) e U{x{t), 8) 
on Г — v. Since ô = e, the functions ф\t) satisfy (24) and (26). Hence the functions 
ф\t) satisfy the conditions (24), (25), (26), (28). We can write 

(31) 
t p 

I 
i = l 

< 
i = l II 

^ r II№iW^)-/(->'A'-W)l|dT = 

We have proved that the inequality (30) holds for every t e T. Further, we can 
find an approximation o f / ( ^ Ф\^)) by step functions git) on Tsuch that 

\\f{x,nr))-gix)\\àx<'f-
4p 

holds for every t e T. Hence 

»t p 

(32) 

ll/(t,^^(T))~^.(T)i|dr<i:f = 5 . 

То each function a^t) there exists a sequence of simple measurable functions {a-{{t)}f= 1 
defined on T which converges uniformly to (Xi(t) on T. It is sufficient to introduce 
a function ß(t) equal to a certain member of the sequence {a--(f)}JLi so that the ine
quality 

(33) 
2 4pk fi[T) 

holds for every t e Twhere к = max {l, \\gi{t)\\ : i = 1,..,, p, t e T}. Hence 

(34) f ' ( i («iW - ßl^)) вк^)) dt|| utk\' HT) - ßix)\ dt < ^ . 

Let us choose sets Ту,..., T„, (J T̂  = Tsuch that the functions ßi(t) are constant 

on each 7}, j = 1, . . . , m. These sets are measurable. We shall find functions ^,(f) 
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p 

E assuming rational values on each set Tj such that ßli) are constant on Tj, YJ ?lf) ^ ^' 

0 ^ ^i(r) ^ 1 on T' and, at the same time, the inequality 

en 
(35) \ßit) - ßity\ < Apkpi{T) 

holds on T. It is sufficient to define auxihary functions ß^[t) = caltj) on each T,- for 
i = ! , . . . , ; ? , where tj is any fixed point in each Tj. It holds 

(36) t i9*(0 = 1 , 0 ^ i9*(0 ^ 1 on r n Tj 

and (33) implies the inequahty 

(37) W , ) - « , ) l < i . J ^ , on T,. 

where j = 1,,.,, m and f = 1, ..., p. 
If the function ßf{t) assumes rational values on Tj then we define ßi{t) = ßf{t) 

on TJ. Let ее {2, .,,, p] be the number of irrational values of ßf{t) on a given Ту 
for i = 1, ..., p and let us change the order of indices so that the values ßf(t) are 
irrational for f = 1, ..., e. We shall find ßi[t) for these values ßf{t), i = 1, ..., e. 
Let ^' = max {ßt{t) :i = 1, ..., e}. Then the inequality 0 < 5' < 1 follows from 
(36). Now we shall define rational values ßi(t) for each г = 1, ..., e — 1 so that the 
inequahty 

(3S) o<ffl.)-W)<^..{^,^,(/°.)^,^.^} 

holds. We shall construct ß^{t) on Г n Tj in the form Д (̂̂ ) = 1 - ^ ß^t). It holds 

ße{t) = 1 - Z i^f(0 on r n Ту. Further, 

1 = 1 
1Фе 

i = l 
1Фе 

.̂(0 - ?̂(o = t ißtit) - m) < i min {i ^°. , - ^ j = 
.;=!. ;=i [2 4pk(p - 1) At(r) p - Ij 

= min I - — ^ 5 — , b\ on r n T,-. 
l 2 4pfc//(T) J 

We shall define the function ß^ on Ту n (Г — T') so that ^̂ (̂r) assumes a rational 
value and satisfies the inequahty (38). Consequently, the inequality 

(39) \m-m\<^ "̂ 
2 4ркц{Т) 
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is satisfied on each Tj, j = 1, ..., m and for each i = 1, ..., p, and Y^ßi{t) = 1, 

0 ^ ßi{t) й 1 hold on r n Tj, j = 1,..., m. The inequalities (37) and (39) yield 
the inequality (35) for an arbitrary t e T. Then it holds 

(40) II [ t ißiT) - ßlT)) g IT) dri ^ E /с f Щг) - ^,(т)| dr < -̂V 

From (30, (32), (34), (40) we derive that (29) is satisfied for an arbitrary t e T. 
p 

We have found an approximation of the function x{t) on T in the form ^ ßi{t) git) 
i=i 

defined on T. The functions g^t) are step functions on T, ßi{t) are simple measurable 
p 

functions defined on Tand assuming rational values and 0 ^ ßi{t) ^ 1, ^ ßi{t) = 1 

hold on T', Further, we must prove the inequality 

(41) 
P 

1 (^(T)-Zy.<T)/(T,r(T)))dT < e 

for a certain t e T, where the functions у̂ (г) are defined and measurable on T. The 
functions yi(t) satisfy the following condition: for every teT there exists a single index 
ijE {1, ..., p} such that yij^t) = 1 and 7̂ (?) = 0 for each ie {1,..., p} — {/J. The 
inequality (41) can be expressed in the form 

J<, '=1 II llj<,'=1 '=1 + 
' p 

1 
и '=1 

ilyl-)^)-lßi^)9l^))dT 

The first member on the right hand side of this inequahty satisfies 

i t P 

1 
и '=1 

{1у1т)Аг,фЩ-^.у1х)д1х))ат 
P z 

i=l 

< So = 

on T. To prove it, we proceed as in (32). The third member is smaller than eo for 
every t 6 T (cf. (29)). This assertion has been already proved. Now it is sufficient 
to construct the functions y^t) on Tsuch that 

(42) 
\\jt,i=^ 

< Sn 

holds on T. Then the inequahty (41) will hold on T. There exist disjoint intervals 
s 

/2, z = 1, ..., 5, г = и 4 such that the step functions gi{t), i = 1, ..., p are constant 

on each/2, z = 1,..., s. 
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The inequality (42) can be expressed in the form 

If (EW-)- .̂W) .̂-W)dT < 

m s 

( I (7,(г)-Д,(т))^,(г))аг 
r_ ,n /zn<f i , f> 

< en 

We shall find the functions y (̂̂ ), Î = 1, . . . , p on each Tj n I^ n T, y = 1, ..., m; 
z = 1, ..., 5 so that 

<43) J ( 1^ {yir)-ß,{r))g(r))dr^ 
TjnJzr^<ti,t> 

< 

Then the inequality (42) will hold. 
Let us choose a certain set Tj from the sequence {Tj, ..., T^}. Let к ^ p hQ the 

number of the indices i such that ßi{t) =j= 0. Let us change the order of indices so 
that ßi{t) Ф 0 for each f = 1, . . . , k. For /c = 1 we define y^{t) = ß^{t) on Tj. Let 
к > 1. The functions Д (̂?) are constant on Tj. We can write these functions ßi(t) 

к 
without the variable t. Then J] ßi 9i{^) î  ^^ approximation of the function x{t) 

к 
on the set Tj n T'. The function ^ ^^ ^̂ (̂f) is defined on the interval Г, where YJ ßi ^ Ь 

Q < ßi < I, ßi are rational values and gi{t) are step functions on T. 
Now, let us choose a certain /^ from the sequence [l^, ..., 4} and g It) = QI on /^ 

for each /. There exists a constant KQ > 0 such that 

max {\\gXt) -Y.ßi дЩ : v = 1, ..., к] й Ко 

holds for every t e T. The last inequality implies 

(44) 
WJ TjnIzn<to,t> ^~^ II 

J gor{r)-j:ßigi{r)\\dTeKo{t- to) 

for 1̂ ^ 0̂ < ^ = ^2' where v^ is an arbitrary simple measurable function on T and 
VjE {1, ..., k}. Further, we choose S2 > 0 such that 

(45) K0Ö, < -^ 
ms 
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holds. The interval T = <^i, ^2) can be divided into a finite system of intervals 

(46) <ri, fi + (52), < î + ^2. 1̂ + 2(^2),..., <fi + (Z - 1)(52, t, + IÔ2), 

where the last interval contains the point 2̂- We divide each interval (^t^ + {u — I) 62^ 
h + UÔ2), и = 1 , . . . , / from (45) into the following parts: 

If n{Tj n 12 n {̂ 1 + (w — 1) Ô2, t^ + M{52)} = fij^z.u^ then we divide the interval 
< î + (M - 1) (̂ 2, t^ + UÔ2) into /: parts 

(47) it, + (w - 1) ^2, h+{u- 1) ^2 + ^1"), . . . , 

O, +{u- 1)02 + J:Alt,+{u- 1)02+t^%'"> 
i=i i = i 

fc-i 

<fi + (w - 1) ^2 + E ^?, 1̂ + UÔ2). 
1 = 1 

The values A", r = 1,..., k; и = 1, ..., I are defined by the equations 

fi{Tj nl^n Ol +{u-l) 02 + i A^i. h+{u- 1) 02 + 1 J?)} = 

= ßrßj,z,u • 

We define functions %{t) on Tj n I^ by 

^^(t) = 0 for r e (Г,. n / ,) - O, +{u- 1)02 + 

+ Y.^"i^ti+{u-l)S2+iA^, 
i=l i=l 

%{t) = 1 for te Tj nl,n it, + (M - 1) ^2 + 

ï = i 

where r = 1, . . . Д . We define %+,{t) = ... = yp{t) = 0 on Tj n I,. We shall prove 
that these functions f^O satisfy the inequality 

(48) dt 
ms 

for every t e Г. First of all we prove the identity 

(49) 
k к и 

If (,ЕМт)5((т)-2:д,^..(г))с1т =0 
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at the points t = t^ + Ô2, tz + 2(̂ 2, . . . , ? ! + (/ - l)(52. It holds 

к и k I r ^ n / z H < f i , f i + u 5 2 > 

for each w = 1, . . . , / - - 1. 
This implies the validity of (49) for each t = t^ + UÔ2, w = 1 , . . . , / - 1- From 

(44), (45), (46) and (49) we obtain (48). 
The functions %(t), i = 1, ..., p are defined analogously on Tj nl^ n T for each 

7 = 1, . . . , m; z = 1, ..., 5. Then the inequality (42) holds. Further, we get the ine
quality (41) for %{t) defined on Tfor / = 1, ..., p. Then it holds 

If 
p 

1 Ш-Т.ША^^Ф'Шщ <8 

for certain t e T, where y^t) are measurable simple functions with the following 
property: 

For every t e Tthere exists an index7 e {1 , . . . , p} such that ^j(t) = 1 and %{t) = 0 
for z e { l , . . . , p} - {j}. 

Now we define a function î (f) on T: ^{t) = il/\t), where i is the index for which 
%(t) = 1. We have constructed a function ij/(t) on Г with the properties (24), (25), 
(26), (28). Finally it holds 

Iko - Uh) + f V(T, ^(T)) dT̂ II = II Г(х(т) - / (T, Ф{Т))) dt 
Il \ J ti / II iijfi 

If Ш-Т.ШЛ'^^Ф'Шах 
i=l 

< s 

for every teT.lt means that the inequahty (27) holds for the function i?(f) on T, 
This completes the proof. 
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