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I. INTRODUCTION

Suppose A is an n x n matrix over the complex field. The problem of factoring A
into a product LU, where L is a lower-triangular matrix, and U is an upper-triangular
matrix with specified diagonal, is of importance in solving systems of linear equations
and in the construction of compact schemes for matrix inversion [1]. In fact, Gaussian
elimination is concerned with effecting an LU factorization.

We shall concern ourselves with the following problem. Suppose A is an n x n
matrix. What are necessary and sufficient conditions that 4 can be factored as LU,
where U has a diagonal consisting entirely of ones?

II. LU FACTORIZATIONS

Let « and B be increasing sequences on {1, ..., n} We shall use the following
notation. A(x | B) denotes the minor of 4 with rows indexed by a and columns
indexed by B. A[« l B] is the submatrix of A contained in rows « and columns .
A principal minor is written A(«), and a principal submatrix A[«]. & is the comple-
ment of . Finally, R(+) denotes the range space.

Theorem 1. An n x n matrix A has an LU-factorization with u;; = 1 iff A[n"]
has an LO-factorization with ii;; = 1 and A[n" | n] e R(L) = R(A[n"]).

Proof. Assume A has an LU-factorization. Partition L, U, and 4 conformally so

that
Liy Z"\ (U Uy Ayy Ay
= =A=
Lu (L21 1 zZ 1 A, a,,
where Z is a 1 x (n — 1) zero vector and Lys, Uir, A1q are (n — 1) x (n — 1) in
dimension. Let L= L,; and U = U, then A[n"] = 4,; = LU and LU,, = 4,,,
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i.e. A[n"|n]eR(L). Note that since A[n"] = LU, L= A[n*}U"" and R(L) =
= R(A[n"]). On the other hand assume A[n"] has an LU-factorization with #;; = 1
and partition 4 as above. Since A,, = A[n" | n]eR(L), there exists ¥ such that
Lv = A,,. Since U is nonsingular, there exists an 1 x (n — 1) vector Y such that
YU = A,,. Choose | = a,, — YV. Now let

LzT ov
L=(Yl ) and U=(Z l>'

Then L is lower triangular and U is upper tiruangular with u;; = 1, and
1T = Lz UV=E(ZEV (A A\,
yi J\z1 YO YV + 1 A,y a,,

Theorem 2. An n x n matrix A has an LU-factorization withu;; = 1iff A[1, 2, ...
cok|k+1]eR(A[1,2,..,k]) for k=1,2,..,n — 1.

Proof. This statement is the result of iteration of the necessary and sufficient
condition of Theorem 1. Since A has an LU-factorization, A[1,...,n — 1|n]e
eR(A[1,...,n — 1]) and A[1,...,n — 1] has an LU-factorization. Now the same
argument applies to A[l,...,n — 1], obtaining A[l,...,n —2 | n—1]e
€R(A[1,...,n — 2]) and the process continuous until finally we have A[1|2]e
€ R(A[1]). Conversely A[1] has an LU-factorization trivially and A[1 | 2] e R(A[1])
implies that A[1,2] has an LU-factorization, which together with A[1,2 | 3]e
€ R(A[1, 2]) implies, in turn, that A[1, 2, 3] has an LU-factorization. The argument
repeats until we obtain that 4 has an LU-factorization.

Corollary 1. If an n x n matrix A has an LU-factorization with u;; = 1, then
A1, 2, .., k|1,2,.., k — 1,j) = 0 whenever A(1,2,...,k)=0forl Sk <n—1
and k < j < n.In particular, if a;; = 0, then the first row of A must be zero.

Proof. If A(1,2,..., k) = 0, then there is a nontrivial linear relation between
k

the columns of A[1, ..., k], say Y CiA[1,2, ..., k| i] = 0. Suppose C, = 0. Then
i=1

the first k — 1 columns in A[1, 2, ..., k] are linearly dependent and A(l,v ok l 1,...
... k = 1,j) = 0. If C, * 0, then the k-th column in A[1, 2, ..., k] depends on the
first k — 1 columns. Since it follows from the theorem that A[1,2, ...k |j]e
eR(A[L,2,...,k]) for k<j<n, A[1,2,..,k ]]] also depends on these k — 1
columns and 4(1,2, ..., k | ,2,..,k—=1,j)=0.
The converse of the last corollary is not true. The matrix
101 3
0000

3034
56738
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satisfies the condition of the corollary but not that of Theorem 2 and hence cannot
have an LU-factorization.

Theorem 3. An n x n matrix A has an LU-factorization with u,; = 1 iff
A[1,2, ...,k|k + 1]eR(4[1,2,..,k]) for m<k<n-—1 where m is the
smallest positive integer such that A(1,2,...,m) = 0.

Proof. Note that if A(1,2, ..., k) # 0, the columns of A[1, 2, ..., k] form a basis
of k-space and A[1,2,....k | k + 1]eR(A[1,2, ..., k]) is automatically satisfied.
Thus it follows from the Theorem 2 that 4 has an LU-factorization with u;; = 1
iff A[1,2,..,k | k + 1]eR(A[1,2, ..., k]) whenever A(1,2,..., k) = 0. However,

when A has an LU-factorization, A(1,2,...,k) = L(1,2,...,k)U(1,2,...,k) =
k

=[] lii. Soif A(1,2,..., m) = 0 where m is the smallest such integer, necessarily
i=1 '

lum =0 and A(1,2,...,k) =0 for m < k <n — 1. Hence it is required that

A[1,2, .., k|k +1]eR(4[1,2,...,k])form Sk <n — 1.

Corollary 2. If the proper leading principal minors of an n X n matrix A are
nonzero, then A has an LU-factorization with u;; = 1.

This corollary is well-known (see, for example, [3]) Also we can obtain the fol-
lowing corollary, which is given in Gantmacher ([2], p. 35).

Corollary 3. Let A be an n x n matrix of rank r and A(1,2, e k) £+ 0 for
k=1,2,...,r. Then A has an LU-factorization in which the last n — r columns
of L are zero and u;; = 1.

Proof. Such a matrix A4 satisfies the conditions of the theorem. It is sufficient
to show that A[1,2,...k|k+ 1]eR(A[1,2,..,k]) for k=r+1,r+2, ...
..., n — 1. Since A(l, 2,..., r) =+ 0, it follows that for k > r, the first r columns
in A[1,2,..., k] are linearly independent. Suppose A[l,2,..., k | k+1]¢
¢ R(A[1, 2, ..., k]); then A would have at least r + 1 linearly independent columns,
contradicting that rank (4) = r. Thus A has an LU-factorization with u, = 1.

Note that since U is invertible, rank (L) = r. A(1,2,...,r) =[] I;; # 0 implies
i=1

that the first r columns of L are linearly independent. Any of the last n — r columns

of L being nonzero would imply that L has more than r linearly independent columns,

contradicting that rank (L) = r.

Theorem 4. If an n X n matrix A has an LU-factorization with u;; =1, L and U
are unique iff all proper leading principal minors of A are nonzero.
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Proof. Note that in the conformal partitioning

L, 0 U, U Ay A
LU= 11 )( 11 12>=( 11 12)=A,
(LZI L22 0 U22 AZl A22
L,Uyy = Ay, ie.,if A has an LU-factorization with u;; = 1, every leading principal
submatrix of A does also. Since 4[1] is factored uniquely as (a,,) (1), it is sufficient,

by mathematical induction, to show that whenever 4, = A[l, 2,..., k] has a unique
factorization, the factorization in A,., is also unique. Consider the partitioning

(A C O\ (L. O\ (U, V
Ak+1 - (R ak+1,k+1> - Lk+1Uk+1 - (Y l) (0 1

where L,, U, are unique with LU, = A,. Note that for k = 1,2,...,n — 1, L is
invertible since both U, and A, are invertible. Now C = L,V and YU, = R imply Y
and V are both unique, and YV + | = a;,1 4+, implies [ is unique. Thus Ly, Uy 4
are unique.

Conversely, in the above partitioning, C = L,V and V is unique imply that L, is
invertible. Hence A, = LU, is invertible and A(1, 2, ..., k) = 0. This holds true for
k=1,2,...,n— 1.

Theorem 5. An n x n matrix A with a;; = 0 has an LU-factorization with
l;; = 0and u;; = 1iff the first row of A is zero and A[l ” I n*] has an LU-factoriza-
thl’l with ii; =1 and A[1* | n}eR(L) = R(4[1" | n*1). Furthermore, such a fac-
torization is unique iff all leading principal minors of A1 ‘n ] are nonzero.

Proof. First, assume A has an LU-factorization. By Corollary 1 the first row of L
is necessarily zero. Partition L, U and A conformally so that

_(Z 0 UgwUn _ , (Z 0
LU_(LZI ZT)(Z 1 =A4= Ay Az

where Z is an 1 x (n — 1) zero vector and L,;, Uy, A4, are all of dimension
(n — 1) x (n — 1). Then A[l |n"]= A = L,,Uyy. Let L= L,, and U = Uy,
implies A[1* | n"] has an LU-factorization with ii; = 1. Also A[1" | n] = Ay, =
= L,,U,, implies A[l ‘ n] € R(L,;) = R(L). Note that since A,y = LU and U is
nonsingular, L = 4,,07" and R(L) = R(4,,) = R(4[1" | n"]). For the converse,

.- . VA
partition A into <A21 Ay,
tion with &, = 1. Since A,, = A[1" | n]eR(L), there exists V such that LV =

= A,,. Let
ZO0 ov
L—<]:2T) and U—(Zl>.

> as above. Then A,, = A[1* | n*] has an LU-factoriza-
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Then L is lower triangular with I;; = 0 and U is upper triangular with u;; = 1, and

Z0\(OV Z 0 Z 0
LU“(E ZT><Z 1>‘(ZU IZV)“<A21 An)—A'

For the uniqueness statement, consider L, U and A partitioned as in the last equation.
If all leading minors of A,, are nonzero, it follows from the Theorem 4 that L, U
are unique. Also A4, is invertible implies Lis invertible, so it follows from LV = 4,,
that Vis unique. Hence L and U are unique. On the other hand, assume that L, U
are unique, then L, U are unique. So by the last theorem all proper leading principal
minors of A4,, = LU are nonzero. Also Vis unique and LV = A4,, implies that Lis
invertible. Hence A4, is invertible and det 4,,; # 0. This completes the proof.

Example.

0000 00 00\ /10
1031 10 00}/01 —
2541 25 00/100
101 10-20/\00

S = ouh W
|
— O G -

—
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