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BIFURCATIONS AND BIOLOGICAL OBSERVABLES 

ROBERT ROSEN, Halifax 

(Received October 23, 1979) 

INTRODUCTION 

It is a truism that biological systems are complex. It has further come to be 
regarded as axiomatic that complex systems in general are "counter-intuitive". To 
set the stage for the subsequent discussion, it will be helpful to study these two propo
sitions a bit further, and establish some relationships between them. 

The term "complexity" is almost as hard to define as is life itself. Many approaches 
to complexity attempt to treat it as if it were an intrinsic property of a system, or class 
of systems, related somehow to entropy or "information". These approaches seek 
to obtain a single quantitative measure of complexity, in terms of the number of 
elements, interactions or operations required to characterize some aspect of system 
behavior. I would rather suggest that complexity is not an intrinsic property of a sys
tem; it must also reflect something about the manner in which we, as observers, 
can interact with the system. 

Roughly, then, I would suggest that complexity is a property of system descriptions 
rather than of systems themselves. Indeed, we may say that a system appears complex 
when it is possible to generate many apparently independent descriptions of its 
behaviors. Each such independent description must arise out of a different process 
for observing the system, and hence out of a distinct available mechanism for us to 
interact with the system. Thus, a stone usually appears simpler than an organism, 
because we have only a few ways to interact with the stone, and many ways to 
interact with the organism. As we multiply our capabihties for interaction with the 
stone, its complexity grows; as we narrow our capability to interact with an organism, 
its complexity diminishes. Thus, complexity appears as a contingent rather than as 
an intrinsic property, and ultimately reflects interactive capabilities expressed in 
observation or measurement. It is these capabilities which provide the elements for 
corresponding system descriptions. 

With this as background, let us consider what is meant by the proposition that 
complex systems are "counter-intuitive". Roughly, such a proposition connotes the 
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absence of an expected imphcation between two or more aspects of system behavior. 
If each such behavior arises from a particular mode of interaction or observation, 
and generates a corresponding system description, then the assertion of "counter
intuitive" behavior imphes a logical independence between these modes of description. 
Let us be more precise about this: imagine a class К of systems, each of which can 
be described in two ways. Suppose that a body of experience exists which indicates 
that in some available subclass K' с К, one of these descriptions imphes something 
about the other. We then come to expect that such an implication will hold for every 
system in K; such an expectation provides the intuitive basis for relating the two 
descriptions. However, as soon as we encounter a system not in K\ the implication 
relation breaks down and we can say that such a system behaves in a "counter
intuitive" manner. 

Such a breakdown of an expected implication between modes of system description 
is what we shall call a bifurcation. In general, a bifurcation indicates a situation 
in which distinct modes of system description are logically independent; i.e. in which 
properties of one description do not imply corresponding properties of the second. 
As will be seen, this usage subsumes the traditional mathematical definition, but 
substantially extends its scope. In general terms, a bifurcation manifests a situation 
in which the incompleteness of a given mode of system description becomes manifest, 
and hence must be supplemented or replaced by another. In the study of natural 
systems, such as biological organisms, the fundamental problems all ultimately 
concern the inter-relationships of different modes of description, and for this purpose 
the notion of bifurcation, or the absence of bifurcation, becomes a crucial tool. In 
the sections which follow, we wish to explore some of the ramifications of such ideas, 
treating bifurcation phenomena in the context of natural systems, and arising out 
of the comparison of differing modes of description of such systems. 

SYSTEM OBSERVATION AND DESCRIPTION 

In the preceding section, we suggested that each mode of description of a system 
arises from a corresponding behavior or interaction of the system which we can 
observe; conversely, each mode of observing a system generates a system description. 
In the present section, we shall develop some general properties of the relation between 
system interactions (observations) and the descriptions to which they give rise. 

The basic unit of system description, and of system measurement, is a single 
observable. Intuitively, an observable of a system is a quantity which can induce 
dynamics in some appropriate meter; i.e. in some other system with which the given 
one can interact. A system can be regarded, at least in part, as simply a collection 
of observables; i.e. as a family of capabiHties to induce dynamics in other systems. 

A closely related concept is that of state. For present purposes, it is sufficient to 
regard a state s of a system S as connoting the specific dynamics which S can induce 
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in any particular meter at a specific instant of time. That dynamics, or its correspon
ding attractor, or some parameter value associated with that attractor, represents 
the value of the observable in question, evaluated on the state s. 

Modern physics is dominated by the proposition that all "physically real" events 
involve observables evaluated on states. Furthermore, it is usually supposed that it 
suffices to consider observables which take their values in real numbers; i.e. the 
attractor states of all meters can be eff'ectively parameterized by real numbers. Thus 
for present purposes, an observable is simply a mapping f : S ^ R from states to 
real numbers. The image f(S) is what is usually denoted as the spectrum of the 
observable/. More generally, however, an observable represents a mapping from a set 
of states of a system S to a set of attractor states of some other system with which 5 
can interact. 

Clearly, if our only access to the system S were through the single observable / , 
we could not distinguish two states s and s' for which f(s) = f{s'). Thus, we would 
in fact not be observing S itself, but rather a quotient set SJRf, where Rf is the equi
valence relation on S defined by writing s Rf s' if and only if/(5) = /(s ' ) . By defini
tion, there is a 1 — 1 correspondence between SJRf and the spectrum f{S); in these 
circumstances, / (S) would be for us "the state space" of the system S. 

Now / (5 ) is a set of real numbers, and hence comes equipped with a variety of 
natural structures. In particular,/(5) is a metric space. We can employ such structures 
in / (S) to impute corresponding structures to SJRf, and thence to S itself. In particu
lar, via the metric structure on / (S) , we can say that two states s, s' of S are "close" 
if the corresponding values /(5), f{s') are close in f(S). It cannot be too strongly 
emphasized, however, that such a topological structure is not intrinsic to 5, but is 
imputed to S through a process of system description derived ultimately from 
observation in the fashion we have described. 

Suppose now that we are given another observable g. We can repeat the above 
argument; g can be regarded as a mapping g : S -^ R with spectrum g{S); this 
spectrum is in 1 — 1 correspondence with the quotient set SJRg, and we can impute 
another topology to SJRg, and thence to S, through the metric properties of g{S). 
Using the observable g alone then, we have another "state space" representation of S. 

We can now ask: how does the description of S obtained from the observable/ 
compare with the corresponding description obtained with the observable gl We 
shair consider here primarily the metric properties, in the following form: if/(5') 
is close to /(5), under what circumstances will it be true that g(s') is also close to 
g(s)l Stated another way: if s' "approximates" to s under / , when will it also "ap
proximate" to 5 under gl 

This kind of question is closely related to the compatibility of the mapping g 
with the equivalence relation Rfi i.e. the capabihty of g to distinguish states in
distinguishable (or approximately so) under / . Basically, we proceed as follows. 
Given a state s in 5, consider the set of all states 5' for which |/(s) — /(s ' ) | is small. 
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Look at the image under g of this set of states. If this image hes in a sufficiently small 
neighborhood of g(s), we shall say that s (or more accurately, its equivalence class 
under / ) is a stable point of g with respect to / . It is clear that the set of all stable 
points of g with respect to / comprise an open set in SJRf, under the topology coming 
from/(S). The complement of the set of stable points will be called the bifurcation 
set of g with respect to / . Obviously, near a bifurcation point, the proximity of two 
states 5, s' of S as viewed by the observable/does not imply their proximity as viewed 
by ^; at a stable point this implication does obtain. Thus, on the stable points the 
/-description may be replaced by the Ö'-description; on the bifurcation points it may 
not be. Stated another way: on the stable points, the ^^-description conveys essentially 
the same "information" as does the /-description, and is hence redundant to it; on 
the bifurcation points, the ^^-description conveys "new information", distinct from 
that conveyed by the /-description. 

In the discussion of the previous paragraph, we can interchange the roles of / 
and g, and obtain the dual concept of the stable points and bifurcation points of/ 
with respect to g. These represent complementary subsets of SJRg (or g{S)), and are 
thus generally quite different from the corresponding subsets of SJRf considered 
in the preceding paragraph. Thus, given a pair of descriptions, we obtain two distinct 
notions of stability and bifurcation, depending on which of the descriptions is chosen 
as the reference. 

To illustrate these concepts, let us look at a well-known mathematical example. 
We may describe a dynamical system in two distinct ways: (a) in terms of a vector 
field on a manifold, or (b) in terms of the attractors of the system. Invariably the 
vector field description is taken as the reference; thus we say that two dynamical 
systems are close if their vector fields are close in some appropriate norm. The 
problem of structural stabihty revolves around determining when it is the case that 
two dynamical systems whose vector fields are close are also close in terms of their 
attractors. The implications of structural stability (e.g. in terms of the "robustness" 
of dynamical descriptions of real systems) are well known. 

On the other hand, we may interchange the roles of the two descriptions, and refer 
the vector-field description to that involving attractors. Intuitively, we would then 
ask: under what circumstances is it true that closeness in terms of attractors implies 
closeness of the corresponding vector fields in some norm? Such a question has 
profound implications, e.g. for modelling and simulation; it arises naturally out of 
the preceding considerations, but as far as we know it does not appear to have received 
any systematic study. 

Before proceeding to some simple applications of these ideas, let us draw one 
elementary consequence from them. Suppose that / and g are two observables such 
that the bifurcation sets of/ with respect to g, and of g with respect to / , are empty. 
Under these circumstances, it is appropriate to say that the two observables are 
equivalent; with respect to metric properties the two observables are everywhere 
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interchangeable. Moreover, in these circumstances, the relation between / and 
is one of conjugacy; i.e. we can establish a commutative diagram of the form 

(1) 

which allows us to "translate" the/-description into the ^'-description. This is again 
what we would expect from a study of purely mathematical examples of the concepts 
of stability and bifurcation. This equivalence (between observables rather than 
between states) will become important to us subsequently. 

To conclude this section, we may note that the results we have obtained for 
descriptions arising from single observables may be generalized to descriptions in
volving any number of observables. To illustrate this, let us indicate how we may 
construct a more comprehensive description from a pair of observables / , g than that 
arising from either observable alone. 

The utiHzation of a pair of observables essentially allows us to define a new equi
valence relation Rf^ on 5, where we define Rfg = Rf n Rg. We now observe that 
we can always define a mapping 

e-.SJR^^-^fiS) xg{S) 

which is in general 1 — 1 and into. This map arises from the fact that every equi
valence class in SJRfg is the intersection of a unique class in SJRf and a unique class 
in SlRgi we associate each of these classes with the corresponding elements in f(S) 
and g{S) respectively. The image of this map corresponds to a "two-dimensional 
state space", in which the observables / and g play the role of "state variables". 
It may be noted that the map в is onto if and only if every jR^-class intersects every 
K^-class and conversely; i.e. iff* the respective bifurcation sets are maximal. If these 
bifurcation sets are both empty, then as we would expect, the image of в collapses 
to a one-dimensional subset of f(S) x g[S). This kind of representation can be 
extended in the obvious way to any number of observables. In each case, we obtain 
a topological space, in which the arguments given above can be repeated word for 
word. 

Fuller details may be found in a forthcoming monograph [1]. 
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APPLICATION: ARE BIOLOGICAL DESCRIPTIONS 

REDUCIBLE TO PHYSICAL ONES? 

The prevailing idea among many biologists is that all biological descriptions are 
ultimately effectively reducible to physical ones; ot even more strongly, that all bio
logical descriptions are effectively derivable from physical ones. In the present section, 
we wish to explore how this idea can be tested, in the context of the discussion pre
sented above. 

To begin, let us cast the reductionistic hypothesis in terms of observables. A bio
logical system, such as an organism, is surely also a physical system, and hence may 
be described in terms of the traditional observables with which physics is concerned. 
A dominant role here is played by the energy (Hamiltonian) of the system. On the 
other hand, the biological behaviors of the organism can be described phenomeno-
logically; the ingredients for such descriptions are new observables of a fundamentally 
biological character. The reductionistic assertion is that each phenomenological 
observable arising in a biological description can be expressed in terms of the under
lying physical observables. From this we can conclude that such biological observ
ables cannot bifurcate with respect to the underlying physical ones. If such a bifurca
tion can be demonstrated, we could conclude that the corresponding biological 
observables could not be expressed as functions of the underlying physical ones, 
but rather comprise a logically independent mode of description of our system near 
the bifurcation points. 

As we have defined it, observables are simply quantities which are capable of 
inducing dynamics on other systems, such as meters. If we are given a system S, 
then the characterization of S as a physical system is obtained by causing the states 
of S to interact with appropriate meters, which in effect evaluate physical observables 
on these states. In this way, as indicated above, we obtain a description of S as 
a physical system. 

Now let us suppose that we use the states of S to induce dynamics on some other 
system S'. By definition, this dynamics must be expressible in terms of one or more 
observables of S. The question is whether the observables of S responsible for in
ducing the dynamics on S' are the same ones as we measure when we characterize 
the states of S with our meters (or more generally, are definite functions of these 
observables). 

To answer this kind of question, we must generate two descriptions of S, which 
are to be compared. One description of S is already given; it arises from the set of 
meters through which we physically characterize the states of S. Further, we can 
obtain a second description of S, through the fact that its states induce dynamics in S\ 
For we can also characterize the states of 5' through the employment of the same 
meters which characterize the states of S. Schematically, we have a diagram of the 
following form: 
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s ^s' 
meters meters 

(description of S) (description of -S'). 

Here the dotted arrow represents the association of a state of S with an asymptotic 
state (attractor) of S' generated by the induced dynamics. If we interpret the descrip
tion of these asymptotic states of 5' as also being descriptions of the states of S 
which generate them, we have the two descriptions of S which we require. One of these 
descriptions is obtained directly from our meters; the other involves the dynamics 
induced by S in S\ and hence essentially involves those observables of 5 which 
generate this dynamics. 

Clearly, if the second description bifurcates with respect to the first, it follows 
that the dynamics induced by S on 5' involves observables distinct from those mea
sured by our meters. Furthermore, these new observables are not reducible to those 
ŵe measure directly, at least on the bifurcation points. These "new" observables 
must then enter as independent elements of system description, on exactly the same 
footing as those defined by our meters. Indeed, we may use the dynamics induced 
by S on S' to construct a new meter, in terms of which the observables of S which 
generate the dynamics may be defined. Such techniques of "bio-assay" are in fact 
widely used to measure the activities of organic substances, such as hormones. 

It then becomes an empirical question to determine whether the observables 
manifested in biological interactions are distinct from those appearing in our physical 
descriptions of the system. A good place to look for such new "biological" observables 
is in situations involving specificity or discrimination mechanisms. We suggested 
long ago [2] that primary genetic processes would provide good candidates for the 
isolation of such observables (although the character of the argument given therein 
was quite diff̂ erent). More recently, Comorosan has applied the same circle of ideas 
to ane mpirical study of the observables involved in enzyme-substrate interactions [3]. 
From his work, he concludes that simple substrates for enzymes may exist in classes 
of states which appear indistinguishable to our physical meters, but which may be 
split (discriminated) by enzymes; the enzymic discrimination appears as a small but 
significant modification of reaction rate. Independent experimental confirmation of 
this work has been reported [4], and further study would be desirable. 

The implications of such considerations for reductionism in biology are obvious. 
It should be stressed, however, that there is nothing "unphysical" about such new 
biological observables, just as there was nothing "unphysical" about, e.g., spin. It 
is perhaps not surprising to find that interactions between complex systems reveal 
capabihties not manifested on interaction with simple systems; the concept of 
bifurcation of descriptions provides an expHcit probe of these capabilities, and of 
how they are logically inter-related. 
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ABSENCE OF BIFURCATION: MODELLING AND SIMILARITY 

In the present section, we wish to consider some of the ramifications of diagrams 
like (1), which represent the context for the development of concepts of similarity 
between systems. 

In general, suppose that f, g : Ä -^ В are conjugate maps, related by a com
mutative diagram of the form 

(2) 

We shall interpret such a diagram as follows: the expression b — f{a) is invariant to 

(i) the replacement of a by ф{а)\ 
(ii) the replacement of / by 0̂ ; 

(iii) the replacement of b by ф{Ь). 

We shall introduce the following terminology: for a in A, the element ф{а) will be 
called its corresponding element; likewise for Ъ in Б, \j/(b) will be its corresponding 
element. Then the assertion of conjugacy between / and g means precisely that 
corresponding elements are mapped by g onto corresponding elements. The invariance 
of the relation b — f(a) to these replacements is the abstract analog to the Law of 
Corresponding States in thermodynamics. 

Now let us suppose that S is a system, and that we are given two descriptions 
F = (/1, . . . , / ^ ) , G = (gI, ..., g„) of 5, where the/,- and gj are observables. Suppose 
further that the set of bifurcation points of the G-description with respect to the 
F-description is empty. Then as we have seen, there is a sense in which the F-
description implies the G-description on every state of 5. We saw also that (under 
mild assumptions) each such description can be regarded as giving rise to a manifold, 
in which thefi and gj respectively can be regarded as local coordinates. Under these 
circumstances, we can write a functional relation of the form 

(3) {gu^".9n) = Hfl^-'-Jm) 

valid for every state s in S. Such a relation can be regarded as an equation of state 
for S. It should be noted that the mapping Ф is not itself a system observable, but 
rather expresses a relation between observables (i.e. between descriptions of S). 

In general, a single function of m variables can be regarded as a 1-parameter family 
of functions of m — 1 variables, indexed by the range of one of the arguments. 

296 



Thus in particular, Ф(/1, .. . , /^) can be regarded as a 1-parameter family of functions 

where the index r runs through the spectrum/^ (5) of/^. Suppose it is the case that 
all the functions in this 1-parameter family are conjugate (the condition under which 
this is true can be expressed in terms of the bifurcation set of/^ with respect to each 
of the other/j); then given any two elements r, r' in the spectrum of / j , there is a dia
gram of the form 

with the properties we have noted above (here X is the manifold determined by the 
observables /2 , --.^fm^ Y is the manifold determined by the observables g^^, ..., g„). 

In terms of the system S, this process amounts to regarding S as being composed 
of a 1-parameter family of (sub)systems S^, each of which is described by the cor
responding equation of state determined by Ф^. The assertion that the Ф^ are all 
conjugate amounts intuitively to asserting that all the systems S^ are similar; this in 
turn means the following: the replacement of a given Ŝ . by S .̂ can be "annihilated" 
by replacing corresponding elements by corresponding elements in the equation of 
state; i.e. by coordinate transformations in the domain and range of the Ф^. 

We can imagine this process continued, in such a way that the original function Ф 
can be expressed as a p-parameter family of conjugate functions of m — p variables, 
of the form 

^Г1...Гр\У m — p + 1 ' ' ''^ J m) 

and that p is maximal for this property (i.e. any set of p + 1 of the observables /,• 
gives rise to non-conjugate functions). Then the system S has accordingly been 
decomposed into a p-parameter family of systems S^^ ^ , and all of these systems are 
similar. Once again, this means that an arbitrary transition (r^, ..., r^) -^ (r^, ..., r^) 
can be annihilated by replacing corresponding elements by corresponding elements. 

It may be noted that the above considerations can be regarded as an abstract form 
of the "Buckingham Я-Theorem" [5] which was originally obtained through very 
special dimensional arguments. 

Another way to express the above construction is the following: the bifurcation 
set of the description of S obtained from the observables ( / т -р+ь •••'/m) with 
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respect to the description obtained from the observables (/i, .. .,/p) is empty, and the 
value p is maximal for this property. 

Now let us introduce some picturesque but not entirely unjustified terminology. 
We shall call the set of parameter values r^, ..., Гр the genome of the corresponding 
subsystem ^̂ .̂..г̂ ; the domain of the map Ф̂ .̂..̂ ^ will be called the set of environments 
of the system, and the range of this map will be called the set of phenotypes. Then 
the equation of state asserts simply that a specification of a particular genome in 
a particular environment uniquely determines the corresponding phenotype. 

The D'Arcy Thompson "Theory of transformations" [6] asserts essentially thai 
closely related species are similar. In our terminology, this translates into the asser
tion that if the genomes of two systems are close in some appropriate norm, then 
the phenotypes are corresponding. This formulation permits a number of interesting 
and potentially testable conclusions to be drawn; space precludes us form entering 
upon a fuller discussion here, but details may be found elsewhere [7]. Moreover, 
the above discussion allows us to meaningfully extend the functional concepts of 
genome and phenotype to non-biological systems; this permits, for example, a better 
understanding of the significance of non-biological morphogenetic metaphors, such 
as critical phenomena and diffusion-reaction mechanisms, which seem at first sight 
to be devoid of any plausible genetic component. 

Another facet of the above formulation which may be mentioned is the following: 
if we keep the genome fixed and modify the environment, we obtain a corresponding 
change in phenotype governed by the equation of state. Likewise, if we keep the 
environment fixed and modify the genome, we again obtain a change in phenotype. 
Such phenotypic changes can be regarded as adaptations of the phenotype to the 
imposed modifications. They are imposed by the requirements of invariance of the 
equations of state. In general, if we study what varies when a perturbation is imposed 
on a biological system, we obtain a theory of adaptation; if we study what remains 
invariant under such a perturbation, we obtain a theory of homeostasis. What we 
wish to stress is that adaptation and homeostasis represent different aspects (descrip
tions) of the same basic phenomena. 

Let us now turn briefly to the concept of modeUing and model systems. Intuitively, 
we may say that some structure S' is a model for another structure S if, in a given 
set of circumstances, S' may be substituted for S with no observable change; i.e. if 
this substitution is invisible under the given circumstances. Thus, given an observable 
f :.S -^ IR,WQ may replace a state s by any state 5' for which/(s) = /(«0' î̂ der these 
circumstances we may say that s' models s. Likewise, we may replace an observable 
by a conjugate observable, if we simultaneously replace each element of the domain 
and range by the corresponding elements. We may likewise replace a system by 
a similar system. It is clear that the formahsm we have developed above, based on 
the comparison of system descriptions, is Hkewise a general theory of modelling. 
As noted above, the appearance of bifurcations indicates where a modelHng relation 
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breaks down. However, it is equally significant to note where such a relation is 
maintained; this is the province of the concept of similarity. 

Let us conclude with one final variation of the diagram (2). Let us suppose that 
we have a pair of conjugacy relations, of the form 

so that we may say that / , / ' are similar, g,g' are similar. As noted above, this 
means that we can replace/ b y / ' , and g by g\ as long as we also replace correspon
ding elements by corresponding elements, and observe no change. Now, however, 
let us compose the m a p s / and g, and let us ask whether the composite g fis conjugate 
to the composite gj'. It is evident that the conjugacy of the composites does not 
follow in general from the conjugacy of the factors. Moreover, even if the com
posites are conjugate, the elements of A and С which were corresponding in the dia
grams considered separately will no longer in general be corresponding when the 
maps are composed. This simple observation throws another kind of light on the 
problem of reductionism: in general, the availability of models (descriptions) of the 
components of a composite system does not allow us to construct a model for the 
composite system itself. Conversely, a model for a composite system does not allow 
us to construct models for the components. Hence we see in a particularly stark way 
the difficulties faced in the analysis and the synthesis (design) of complex systems. 
Furthermore, the failure of conjugacy to be preserved under composition of map
pings raises some deep questions of a category-theoretic nature. In category theory, 
composition of mappings is the basic operation, which is preserved by functors. 
Since conjugacy is not preserved under composition, it cannot be a functorial relation, 
and hence is not "natural" in the category-theoretic sense. Therefore it appears that 
category theory cannot by itself provide us with an appropriate tool for the analysis 
and synthesis of complex systems. 
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