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Czechoslovak Mathematical Journal, 31 (106) 1981, Praha 

PRIME SELECTORS AND TORSION CLASSES OF LATTICE 
ORDERED GROUPS 

JÄN JAKUBIK, Kosice 

(Received January 25, 1980) 

In this paper, the relations between torsion classes ([13] and [15]) and prime 
selectors [16] of lattice ordered groups are investigated. The existence of the largest 
presentations of torsion classes by prime selectors vv̂ ill be examined. We prove that 
if X is a hereditary torsion class, then X has no largest presentation by prime 
selectors. Some problems concerning torsion classes and prime selectors proposed 
in [16] will be solved. 

L PRELIMINARIES 

Several classes of lattice ordered groups that have been thoroughly studied are 
not definable by identities, i.e., they fail to be varieties. As examples we can mention 
here (i) the class of all complete lattice ordered groups, (ii) the class of all archi-
medean lattice ordered groups, (iii) the class of all lattice ordered groups such that 
every bounded disjoint subset is finite or (iv) the class of all cardinal sums of linearly 
ordered groups. Thus, for classifying types of lattice ordered groups we need more 
general notions than the notion of a variety. 

The notions of a torsion class and a hereditary torsion class were introduced by 
J. Martinez in [13], [15], and they have been dealt with in [3], [5], [6], [8], [11], 
[12], [14]; for the notion of a radical class cf. [9], [10] (the definitions are given 
below). All the above mentioned examples are radical classes; (iii) and (iv) are 
hereditary torsion classes ((i) and (ii) fail to be torsion classes). 

One of the methods for studying torsion classes consists in using value selectors 
[15] or prime selectors [16] (rules that assign to each lattice ordered group G 
a system of values of G or prime subgroups of G, respectively, such that certain 
conditions are fulfilled). 
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In this paper we shall apply the standard denotations for lattice ordered groups 
(cf. Conrad [1] and Fuchs [4]). The group operation will be written additively. 

The system of all convex /-subgroups of a lattice ordered group G will be denoted 
by c{G); this system is partially ordered by inclusion. Then c(G) is a complete lattice; 
the lattice operations in c(G) will be denoted by л and v . 

Let ^ be the class of all lattice ordered groups and let Л be a nonempty subclass 
of ^ . Consider the following conditions for A: 

(a) If G e ^ and (Я,.}^^^ ^ An c(G), then Vtej ^ / e A. 
(b) If G e yl and Я 6 c{G), then H E A. 
(c) A is closed with respect to homomorphisms. 
(d) A is closed with respect to isomorphisms. 

The class A is said to be a torsion class if it satisfies (a) and (c); if, moreover, 
A fulfils also (b), then it is called a hereditary torsion class (cf. [16]; a different termi
nology has been used in [3], [5], [13], [14]). Every variety of lattice ordered groups 
is a hereditary torsion class (Holland [5]). 

If the class A fulfils the conditions (a), (b) and (d), then it is called a radical class 
[9] (such classes were considered (under another terminology) already in [7]). 

Let £Г and Ж be the class of all torsion classes or hereditary torsion classes, 
respectively. Both ^ and Ж are partially ordered by inclusion. Then ^ and Ж are 
complete lattices (cf. [13] and [16]). For G e"^ and Л e ^ we denote by A{G) the 
join of all convex /-subgroups of G belonging to A. 

The following hereditary torsion classes were examined by Conrad [3]: 

Ar — the class of all hyperarchimedean lattice ordered groups; 
Fb — the class of all lattice ordered groups G such that each bounded disjoint 

subset of G is finite; 
Fv — the class of all finite valued lattice ordered groups; 
Dc — the class of all lattice ordered groups whose regular subgroups satisfy the 

descending chain condition; 
Os — the class of all cardinal sums of linearly ordered groups; 
Rs — the class of all cardinal sums of archimedean hnearly ordered groups; 
Bp — the class of all lattice ordered groups G such that each prime of G exceeds 

a unique minimal prime. 

We shal use the following notation: NQ, Q and R are the sets of all positive integers, 
all rational numbers and all reals, respectively; each of these sets is linearly ordered 
in the natural way. Q and R are also considered as additive groups (and hence as 
linearly ordered groups). 
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2. PRIME SELECTORS 

The notion of a prime selector was introduced in [16]. Let us recall some defini
tions and results concerning prime selectors, which we shall need in the sequel. 

Let Ge*^, О Ф х е О . A convex /-subgroup of G maximal with respect to the 
property of noncontaining x is called a value of x in G. A convex /-subgroup of G 
is said to be a value (or a regular subgroup) if it is a value of an element of G. 

A convex /-subgroup N of Gis called a prime subgroup of G, if, whenever a, b e G 
and a A b EN, then a eN or b EN. Every value of G is a prime subgroup of G. 
Let M^(G) and P(G) be the set of all values of G and the set of all proper prime sub
groups of G, respectively. 

A prime selector is a function M which assigns to every lattice ordered roup G 
a subset M(G) of P{G) such that the following conditions are fulfilled : 

(1) If Ф is a homomorphism of G onto a lattice ordered group H and if iV G M(G), 
N ^ Ker {(p), then (p{N) E M{H). 

(2) If СE c{G) and N E P{G), then N ПСЕM{C) implies that N E M{Gy 

Let Ml and M2 be prime selectors. We put M^ ^ M2 if Mi(G) e M2(G) is valid 
for each G E^. Let {Mi}içj be a family of prime selectors; we put Mi{G) = П/ег ^»(^) 
and M2(G) = IJjgj Mj(G) for each G e ^ . Then A/f̂  and M2 are prime selectors and, 
moreover, Mj = Aiei ^ь M2 = Vie/ ^ r 

If M is a prime selector we define TOR(M) to be the class of all lattice ordered 
groups G with M(G) = P{G). For each torsion class Tand each GE^ WQ put 

h{T) (G) = {iV e P(G) : T{G) ф iV} . 

Then we have (cf. [16], Propos. 1 and 2): 

2.1. Proposition. For every prime selector M, TOR(M) /5 a torsion class. 

2.2. Proposition. For every torsion class T, h[T) is a prime selector and 
T O R ( / Ï ( T ) ) = T. Moreover, if M is a prime selector with TOR(M) = T, then 
h{T) й M. 

A prime selector is called hereditary, if it fulfils the condition 

(2') whenever G e ^ , C e c{G) and N e P{G), then we have N ПСЕ M{C) if and 
only if NE M{G) and N ^ C, 

2.3. Proposition. (Cf. [16].) / / M is a hereditary prime selector, then TOR(M) 
is a hereditary torsion class. If Tis a hereditary torsion class, then h(T) is a here
ditary prime selector. 

Let M be a hereditary prime selector such that for each G E^, all elements of M{G) 
are values in G; then M is called a value selector. 
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If Tis a torsion class and M is a prime selector with TOR(M) = Г, then we say 
that M presents T or that M is a presentation of T. For each torsion class T we 
denote by MQ{T) the class of all prime selectors presenting T. 

The following open questions 2.4, 2.6, 2.8 and 2.9 on the relations between torsion 
classes and prime selectors have been formulated by J. Martinez [16]. 

In [16] it is remarked that the map TOR preserves arbitrary meets, and the fol
lowing question is proposed: 

2.4. Question. It would be useful to know whether TOR preserves joins. If so, 
then every torsion class has a largest presentation. 

A lattice ordered group is said to be epiarchimedean if each of its homomorphic 
images is archimedean. Let Ar be the class of all epiarchimedean lattice ordered 
groups; Ar is a hereditary torsion class (cf [3], [16]). Let us denote by MQ the prime 
selector of minimal primes. 

2.5. Lemma. (Cf. [16].) TOR(Mo) = Ar. 

2.6. Question. /5 MQ the largest presentation of Ar? 

A value Я in G is called special if there exists g e G such that H is the only value 
of 0̂  in G. A lattice ordered group G is said to be finite valued if each element xe G, 
X Ф 0, has only a finite number of values. Let Fv be the class of all finite valued 
lattice ordered groups. Further, let F be the prime selector that picks all non-values 
and every special value. 

2.7. Lemma. (Cf. [16].) TOR(F) = Fv. 

2.8. Question. Is F the largest presentation o /Fv? 

It is also remarked in [16] that if T̂  (/ e /) are torsion classes and if Г = V/ei î> 
then /t(r) = Vie/ K^i)^ ^^^ t^^^ ^^^ ^^^^ P^^^ ^f hereditary torsion classes T ,̂ T2 
we have h{T^ л Тг) = h{T^) л h{T2). 

2.9. Question. In general, however, it is unknown whether h preserve finite meets. 

The question analogous to 2.4 concerning value selectors has been proposed by 
Martinez [15] and dealt with in the author's paper [12]. By modifying the con
struction from [12] we obtain here three types of constructions showing that the 
answer to all the above questions is 'No'. The intersections of the result implied by 
these constructions are nonempty. A further investigation using these (or analogous) 
constructions might perhaps enable one to shed light on the properties of partially 
ordered classes MQ(X), where X is a torsion class, and, in particular, on the charac
terization of those torsion classes X which have a largest presentation (if such torsion 
classes X do exist). 
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3. THE MAPPINGS s[ AND s'2 

Let G e ^ and У Ç G. We denote Y^ = {geG:\g\ л | j ; | = 0 for each у e Y}, 
It is well-known that Y^ is a convex /-subgroup of G. 

Let / be a linearly ordered set and for each i e I let Ĝ  be a lattice ordered group 
such that Gl is Hnearly ordered whenever i fails to be the least element of /. We 
denote by Ti^i G^ the lexicographic product of the lattice ordered groups Ĝ  (cf. 
Fuchs [4]). If all Gi are linearly ordered, then F^gj Ĝ  is linearly ordered as well. 

Let R^, R2 be dense subsets of Q such that R2 = Q\Ri. L e t / be a one-to-one 
mapping of Q onto iVo- Let P = {p„ : n e NQ} be the set of all primes. For each 
X G ß let K^ be the additive group of all rational numbers y which can be expressed 
as y = zp'"", where n = f{x), me NQ and z is any integer; the group K^ is hnearly 
ordered in the natural way. We denote by HQ the class of all lattice ordered groups Я 
which can be written in the form 

(3) H = r,,,H,, 

where (i) / is a convex subset of ß , and (ii) for each i e I, H^ is isomorphic with Ki. 
Further, let HQ be the class of all HEHQ such that the set / in (3) is a one-element set. 

Because each Я^ in (3) is lexicographically indecomposable and since for x, у e Q, 
X Ф y, the linearly ordered groups K^ and Ky are not isomorphic, it follows from 
Mal'cev-Fuchs Theorem (cf. [4], Chap. II, Thm. 9) that for a given H e HQ the set / 
in (3) is uniquely determined and that the corresponding lattice ordered groups Я^ 
are determined up to isomorphisms. 

Let Я be as in (3) and let 0 < x e Я . Let ÎQ be the least element of/ with x(io) Ф 0. 
If ÎQ E Ri{i = 1, 2), then x is said to be of type î ;̂ let Ri{H) be the set of all elements 
of Я of type Ri. A homomorphism cp of a. lattice ordered group G^ into a lattice 
ordered group G2 is called convex if (p{Gi) is a convex subset of G2. Let Я, Я ' G HQ 
and let Ф be a convex homomorphism of Я into H' with (p{H) Ф {0}. Then it follows 
from the structure of lattice ordered groups belonging to HQ that there is a dual 
ideal /^ of/ such that (under the notation as in (3)) (p{H) is isomorphic with T^^j^ Hi 
and Кег(ф) = Г.-̂ д̂ ^ Я^. 

Now let G be any lattice ordered group, i G {1, 2}. We denote by Ri{G) the set 
of all elements g e G which have the following property: there exist H e HQ and 
a convex isomorphism cp of Я into G such that x G (р{Н) and (p~^{x) e Ri{H). Further, 
let RQ{G) be the set of those g e Ri{G) u R2{G) for which there exists Я with the just 
mentioned property, such that Я belongs to HQ. 

3.1. Lemma. For each g e Ri{G) u R2{G), the element g has a unique value in G. 

This follows from [12], Lemma 3.2. 
If ^ G Ri{G) u R2{G), then the value of ^̂  in G will be denoted by VQ^g). We put 

So{G) = {VG{X) : X G RQ{G)}, S^G) = {%(x) : x G /^ , (G)} (i = 1, 2), 
s[{G) = slG) u SQ{G) (i = 1, 2). 
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3.2. Lemma. (Cf. [12], Lemma 4.2.) s[ and $2 are value selectors. 

For G e ^ let ro(G) be the set of all primes iV in G such that N fails to be a value 
in G. 

3.3. Lemma. IQ is a prime selector. 

Proof. The condition (l) is obviously fulfilled. The validity of (2) follows from the 
fact that if iV is a value in G such that N ^ C, then iV n С is a value in С (cf. [16]; 
cf. also 4.1 and 4.2 below). 

Let AQ be the class of all lattice ordered groups G such that either G = {0} or G 
is a direct sum of lattice ordered groups belonging to HQ. It is easy to verify that AQ 
is a hereditary torsion class. (This also follows immediately from Thm. 2.6 in [U].) 

Put ti = s[ V to {i = 1, 2). 

3.4. Lemma. TOR(^i) = TOR(r2) = Re

proof. Let G G AQ. Then each prime in G is a value in G. Thus from (5) in [12] 
we obtain AQ ^ TOR(5i). ^^ view of s[ ^ f̂  we get TOR(5i) ^ TOR(fi) implying 
^ o ^ T O R ( r , ) . 

Conversely, let G e TOR(ri) and let Я be a value in G. Then H e ti{G) = s[{G) u 
u to(G), hence H e s[{G), This and Lemma 4.6 in [12] imply G e AQ, thus TOR(ri) — 

The proof for 2̂ is analogous. 
Under the notation as above let H^ = r̂ ^Q Я^. From the definition of t^ and 2̂ 

we obtain 

(4) H^ e TOR{t, V Г2) , 

and obviously AQ n (HQ \ HQ) = 0; hence in particular 

(5) Н°фАо. 

In view of 3.4, (4) and (5) we have 

TOR{t, V Г2) Ф TOR(fi) V TOR(f2) = AQ , 

Thus the mapping TOR need not preserve joins. Also, according to 3.4, t^ and Г2 
are presentations of AQ, but in view of (4) and (5) t^ v 2̂ fails to be a presentation 
of AQI hence AQ has no largest presentation. Therefore Question 2.4 is answered 
negatively. 

The above result can be expressed as follows: 

3.5. Proposition. The class MQ[AQ) is not upper directed, hence it has no greatest 
element. 
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The value selectors s[ and s2 have been defined by means of the mapping / ; let 
us write now s[{f) and 52(7) instead of s[ and S2. Obviously there exists an infinite 
set of mappings/j (7 G J ) such that (i) every/y is a one-to-one mapping of Q onto NQ, 
and (ii) if Л /ce J and j ф /с, then Si^fj) = «» (̂Л) is valid for i^, 1*2 e {1, 2}. Thus 
3.5 can be sharpened in the following way: 

3.6. Proposition. There exists an infinite set of pairs {s[j, S2j) [j e J) such that for 
each j e J we have (i) 5̂ ^ and S2j are value selectors; (ii) s[j v ÎQ and s^j v tQ 
belong to MQ{AQ)\ (iii) the set {s[j v t^, S2j v Го} hxis no upper bound in Mo(^o)-

4. THE MAPPINGS t[ AND t'2 

For the following two lemmas cf. Conrad [3] and Martinez [15], [16]. 

4.1. Lemma. / / G,HE^ and if Ф : G -^ H is an epimorphism, then the map 
N -^ МФ~^ is a one-to-one correspondence between P{H) and the proper primes 
of G that contain Кег(Ф). 

4.2. Lemma. Let G e^, С e c(G). The map N -^ N n С is a one-to-one correspon
dence between the primes of G that do not contain С and P{C), 

Moreover, each of the above correspondences can be restricted to the appropriate 
sets of values (cf. [16]), and hence also to the appropriate sets of primes which fail 
to be values. 

Let С be a lattice ordered group. Consider the following condition for C: 

(a) If G e ^ , C e c(G), 0 < g^e G and if there exists c^e С with c^ S 9и then 
there are elements 0 ^ C2 e C, 0 ^ 0̂ 2 ̂  ^^ such that ö'i = ^2 + 0̂ 2-

It is easy to verify that every linearly ordered group fulfils the condition (a). 

4.3. Lemma. Let С be a lattice ordered group fulfilling the condition (a). Let 
Ge^.Ce c{G), N^ e P{C). Then N = N^ + C^ belongs to Р{0), 

Proof. Let 0 ^ X G G, 0 ^ jH 6 G and suppose that x A yeN, Thus there are 
elements 0 ^ x^ eN^, 0 ^ y^e C^ with x A y =^ x^ + y^ = x^^ v yi. Now N^ e 
e P{C) implies С ф {0}, hence there is 0 < X2 e С such that ^2 > Xj. Hence we infer 
that X A у "^ X2', therefore either x or 3̂  does not exceed C. We may suppose that 
у does not exceed С Hence there are elements 0 ^ Cj G C, 0 ^ ^1 e C' with y = 
= Cj -{- ^ 1 . Clearly y = Ci V g^. Thus 

X A y — X A (ci V gi) = (x л Cl) V (x л gi), x А CIE С, x A g^e C^, 

From this and from x A y = x^ v y^^ V^Q easily obtain x^ = x A Ci, Ух = x A gi. 
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Assume that x exceeds С. Then х^ = с^ eiV^, hence у = х^ Л- g^eN. Now 
assume that x does not exceed C. Hence there are elements 0 ^ C2 e C, 0 ^ 0̂2 ̂  C'' 
with X = C2 + ^2 = ^2 V 02- This implies 

X л y = (C2 V ^ 2 ) A (Ci V 0^1) = (Ci л C2) V (öfi л ^ 2 ) = -^1 V Ĵ ^ , 

whence Xj = c^ л C2. Since iV^ is a prime in C, we infer that either c^ or с2 belongs 
to Nj . Therefore either x or j belongs to N. 

From 4.2 and 4.3 we obtain: 

4.4. Lemma. Lef G e ^ anJ С e c(G). Suppose that С fulfils the condition (a). 
Let N be a convex l-subgroup of G such that iV ф С Then N is prime in G if and 
only if it fulfils the following conditions: 

(i) N n С is a prime in C; 
(ii) N = {N n C) + C\ 

Let Jf Ы 3. class of lattice ordered groups and for each H e Ж IQX h{H) be a subset 
of P{H), For each G G ^ we define /i'(G) to be the set of all primes N of G which have 
the following property: there exist H e Ж, a convex homomorphism (p of H into G 
and a prime H^ e h{H) such that (p{H) Ф {0}, (p(Hi) = (p{H) n iV and Кег(ф) ^ Я^. 

4.5. Lemma, h' is a prime selector. 

Proof. From 4.1 and 4.2 it follows that h' fulfils the conditions (l) and (2). 
For every positive integer n we put 

Hi,2n = ^ 2 . 2 n - l = б > 

^ l , 2 n - l = ^ 2 , 2 M = ^ • 

Next we denote 
Hi — "^ieNo Нц , H2 ~ Tiçj^^ H2i 

Let 0 < xe Hj (j e {l, 2}) and IQ be the least element of NQ with x(io) Ф 0. The 
element x is said to be of type Q or type R, if Hji^ = б or Hj^i^ = R, respectively. 
Let Ж = {Я1, Я2} and for ; e {1, 2} let ti{Hj) and Г2(Я )̂ be the set of all values 
Vjjj(x) in H J such that x is of type Q or of type R, respectively. From 4.5 we obtain: 

4.6. Lemma. t[ and t'2 are prime selectors. 

Each homomorphic image of Hj (j e {1, 2}) distinct from {0} is isomorphic either 
to Я1 or to Я2; thus in the definition of t[ and 2̂ it suffices to consider convex 
isomorphisms of H^ or Я2 instead of convex liomomorphisms. Hence 4.4 and the 
fact that each prime subgroup in HJG Ж is a, value in Hj yield the following lemma: 
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4.7. Lemma. Let G e^ and let N e t'j{G) (j = 1 resp. j = 2). Then there exist 
H e J>f, a convex isomorphism cp of H into G and 0 < xe G such that (i) x e (p{H) 
and ф~^(х) is of type Q resp. R; (ii) N = M^ + ((р{Н)У, where M^ is the value of x 
in [x]. 

4.8. Lemma. Let Ge^. Then t[{G) n t2{G) = 0. 

Proof. By way of contradiction, assume that N e t[(G) n r^G). Hence there exists 
X E G with the properties as in 4.7 such that x is of type Q; further, there exists 0 < 
< y E G having analogous properties as x with the distinction that y is of type R. 
Because (p{H) is linearly ordered and 0 < XE (p{H), we have {(р{Н)У = {ху. If x 
and у are comparable, e.g., if x < y, then xe My ^ My •}• {yY = N = M^ + 
+ {x}^, which is a contradiction. If x and у are incomparable, then x A у = 0, 
whence x E [уУ Ç N, which is impossible. 

4.9. Lemma. Let X be a torsion class. Then TOR{t[ v h{xy) = X. 

Proof. According to 2.2 we have X = JOK{h{X)) ç JOR[t[ v h{X)). Assume 
that there exists G G T 0 R ( ^ ; V h{X)) such that GфX, Thus there is N E P{G) with 
N Ф h{X) (G). Hence N ^ X(G). Since G e TOR(^; v /i(Z)), we must have N e t[{G). 
Let Я, (p and x be as in 4.7; then N — M^ + {x}^. There exists y E (р(Н) with x < j ; 
such that (p~\y) is of type R. Put N' = My + {уУ = My + {(р{Н)у. According 
to 4.4, iV' e P(G). Moreover, My e t2{H) and therefore N' belongs to t2{G). From 
X, у G (р{Н) it follows that {уУ = {x}^ Clearly M^ с My. We infer that N' ZD N 
and hence iV' з Z(G). Thus iV' ^ h{X) (G) and this implies that iV' e r;(G); with 
regard to 4.8 we have a contradiction. 

Analogously we can prove 

4.9'. Lemma. Let X be a torsion class. Then TOR(r2 v h{X)) = X. 

4.10. Proposition. Let X be a torsion class such that {H^, H2} ф X. Then MQ(X) 
is not upper-directed; hence X has no largest presentation. 

Proof. According to 4.9 and 4.9', both t[ v h(X) and 2̂ v h(X) are presentations 
of X. Let s be a prime selector with t'l v h(X) ^ 5 (i = 1, 2). Then t\ v t'2 S s. 
The definition of t\ and 2̂ immediately yields (Я^, H2} ^ TOR(ri v ^2), whence 
{Я1, Я2} Ç TOR(5). Therefore TOR(s) ф X. 

We obviously have Я^ ^ Ar and H^ ф Rs for г = 1, 2. Thus 4.10 implies the fol
lowing corollary (answering Question 2.6): 

4.1L Corollary. Let X be a torsion class, Ye {Ar, Rs}, X ^ Y. Then X has no 
largest presentation. 

Let us remark that instead of R and Q we can take in the above consideration 
any pair of non-isomorphic /-subgroups of R distinct from {0}. Further, for each 
G E^, all primes belonging to t](G) are values in G, but t'l and 2̂ fail to be hereditary, 
hence they are not value selectors. 
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5. THE MAPPINGS r[ AND r^ 

Let G e ^ and G^ e c(G), G^ Ф G. Assume that for each 0 < g e G\Gi and each 
g^e G^ we have g > gi. Then G is said to be a lexico extension of G^ and we write 
G = <Gi>. A lattice ordered group G' is called a lexico extension if there exists 
G ; G C(G) such that G' = <Gi>. 

For the following two lemmas cf. Conrad [2]. 

5.1. Lemma. Every lexico extension fulfils the condition (a). 

It is easy to verify that if Я is a lexico extension and if H' Ф {0} is a homo-
morphic image of H, then H' is a lexico extension as well. 

If G 6 ^ and if there exist lattice ordered groups G^ Ф {0}, G2 such that G = 
= Gl о G2 (the symbol о denoting the operation of the lexicographic product), then G 
is a lexico extension. 

Let I = Q and for each i e I let Я^ be the linearly ordered group isomorphic 
with R. Put Gl = Ti^j Hi, G2 = Цш Hi, H = G^o G2. Denote 

Г1(Я) = M\H) , Г2(Я) = P{H) \ M\H) . 

Put Ж = { я } . Let r'l and Г2 have analogous meanings as t\ and 2̂ in §4 with the 
distinction that we take r^ and Г2 instead of t^ and 2̂- According to 4.5, ri and r'2 
are prime selectors. 

5.2. Lemma. Let Ge^. Then r\{G) n r^iG) = 0. 

Proof. Let Ner[{G), Then assertions analogous to 4.1 and 4.2 that concern 
the values of a lattice ordered group imply that iV is a value in G. Similarly, if N' e 
G r2(G), then N' is not a value. Thus r[{G) n r2(G) = 0. 

5.3. Lemma. Let X be a torsion class. Then TOR(ri v h{X)) = X, TOR(r2 v 
V h{X)) = X. 

Proof. We proceed analogously as in 4.9. Clearly X Ç TOR(ri v h{X)), Assume 
that there exists GeTOR(r i v h{X)) such that G^X. Hence there is N e P{G) 
with N Ф h{X) (G); thus N 3 X{G) and N e r[{G), There exist N^ e M\H) and 
a convex homomorphism (p of H into G such that Ker((p) e N^ and Л'̂  n (p{H) = 
= (p(iVi). 

There is N2 e P{H) \ М\Н) with N2 :D N^, Put 

iV' = cp{N2) + {ср{Н)У . 

Then according to 4.4 and 5.1, N' is a prime in G. Moreover, from 4.1, 4.2 and from 
the analogous results concerning values we obtain that iV' fails to be a value in G. 
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Thus N' e r^G). In view of 4.4 we have also 

N = cp{N,) + {<p{H)y, 

hence N' ^ N. Therefore N' ^ X(G), implying N' ф h{X) (G). From this and from 
5.2 we obtain N' ф (ri v h(X)) (G), whence G ф JOR{r[ v h{X)), which is a contra
diction. 

The proof of the second assertion is analogous. 
According to the definition of H we have He TOR(ri v /2) ^ TOR(r 

V /t(X)) for every torsion class X. Thus in view of 5.3 we infer: 

5.4. Proposition. Let X be a torsion class such that НфХ. Then MQ{X) is not 
upper directed, hence X has no largest presentation. 

5.5. Lemma. (Cf. [3], §4.) Let Ge^. The following conditions are equivalent: 

(i) G e B p . 
(ii) Each pair of incomparable primes in G generates G. 

There exist incomparable primes N^, N2 in H with N^, N2 ^ G2, whence H does 
not fulfil the condition (ii) from 5.5; thus Я does not belong to Bp. If X e {Fb, Fv, 
Dc, Os}, then clearly НфХ. Hence 5.4 impHes the following corollary which answers 
Question 2.8: 

5.6. Corollary. Let X be a torsion class and let Ye {Fb, Fv, Dc, Os, Bp}. IfX Ç Y, 
then X has no largest presentation. 

6. THE MAPPINGS qi[Klq2[K] AND w[K] 

Let iC be a lattice ordered group and let G^ be as in § 5. We put H' = G^ о К, 
Ж = {Я'}, 

qlK\ = М\Н') , д2Ш = ПН') ^ М%Н^) , 

(̂ МУ = ̂ ;М0* = 1,2) 
(under analogous notation as in §4). The proofs of the following Lemmas 6.1 and 
6.2 are analogous to those of 5.2 and 5.3. 

6.1. Lemma. Let G e ^ . Then q'^lK] (G) n ^ ^ M (^) = 0-

6.2. Lemma. Let X be a torsion class. Then TOK(q[[K} v h{X)) = X {i = 1, 2). 

The definition of q\[K] {i = 1, 2) yields Я ' e TOR(q[[K] v ^ 2 ^ ) . Thus in view 
of 6.2 we have 
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6.3. Proposition. Let X be a torsion class such that И' фХ. Then MQ{X) is not 
upper directed, hence X has no largest presentation. 

6.4. Corollary. Let X be a torsion class such that there is G e^ \X with G^ о G ф 
фХ, Then the torsion class X has no largest presentation. 

6.5. Corollary. LetX be a hereditary torsion class, X Ф ^. Then X has no largest 
presentation. 

1. THE MAPPING h 

Let us consider the mapping T-> h{T) from § 2. If T ,̂ T2 are torsion classes, then 
we obviously have Г̂  л T2 = Tj n T2. In [16] it is remarked that h preserves the 
meet of T^ and T2 if and only if 

is vahd for each lattice ordered group G. The following example shows that (*) 
need not hold. 

Let a, ß be distinct cardinals, a ф 0 Ф j5. Let T^ be the class of all lattice ordered 
groups Gl such that either G^ = {0} or G^ can be expressed as a direct sum ( = dis
crete direct product) of lattice ordered groups isomorphic to Г^<^^ Hi, where each Я^ 
is isomorphic to R. The class Tp is defined analogously (with a replaced by ß). Then T^ 
and Tp are (non-hereditary) torsion classes and we have 

T.nTp = {{0}} . 

Denote {{O}} = Ö. 

Suppose that a < ß and put G = Г£<^^ Я^. There exists a uniquely determined 
convex /-subgroup G' of G such that G' is isomorphic with Г;<^^ Я -̂. Then 

r,(G) = G, r,(G) = G' , 
whence 

(7; n T )̂ (G) = 0(G) = {0} , 

T^iG) n T,(G) = G' Ф {0} . 

We have proved that there exists a proper class of pairs of torsion classes T^, T2 
such that, for some G = G(T^, T2), the relation (*) fails to hold. Hence the answer 
to Question 2.9 is 'No'. 

Since the mapping h preserves finite meets of hereditary torsion classes, we can 
ask whether h preserves also infinite meets of hereditary torsion classes. Let us 
consider the following example (showing that the answer is negative). 
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Let P = {p„ : ne NQ] be as in § 3. For each ne NQ let Я„ be the subgroup of Q 
generated by the set {р~'"}теМо'^ ^n is linearly ordered in the natural way. Let T„ 
be the class of all lattice ordered groups G such that either (i) G = {0}, or (ii) G can 
be expressed as a lexicographic product of linearly ordered groups Kj [j G J{G)) 
such that for each) e J{G), Kj is isomorphic to some H^ with m ^ n. 

From Thm. 2.6 in [11] it follows that every T„ is a hereditary torsion class. Put 

G = J^meNo ̂ m ? G„ = Т^^^^^п H^ , 

where N1 = {meNQ : m ^ n}. Further, put N = {0}, T= AneNo ^n-
We have T = {{O}} = Ö, T{G) = {0} = iV, hence N e h{T) (G). On the other 

hand, if n e No, then T„{G) = G„ з iV, whence N ф h{T„) (G) and so iV ^ 0{h{T„) (G)). 
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