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1. INTRODUCTION

A commutative space has been defined by Roberts and Ursell, [RU], as a Rieman-
nian manifold in which “every two random steps commute”. More explicitly, let us
consider a compact Riemannian manifold (M, g) and a point P € M, the position of
which is not fixed but given only by a probability distribution p(P) (with respect
to the Riemannian measure). Consider a random step starting from the point P
such that the new position P’ is situated on the sphere S(P, r) with center P and
(small) radius r, and all positions on this sphere are equally probable when measured
by the solid angle with center P. (M, g) is called a commutative space if the pro-
bability distribution of the position of P after two (small) random steps of lengths r, s
does not depend on the order of performing these steps.

We can express this property by means of certain mean-value operators on (M , g),
and we can also modify it in such a way that it will make sense for non-compact
Riemannian manifolds, too.

Let (M, g) be an arbitrary n-dimensional Riemannian manifold, m e M a point,
and r > 0 a small number such that the geodesic sphere S,(r) lies in a normal
neighborhood of m. For any continuous function f defined on the sphere S,,(r), put

Lo(rf) = J (f - exp,,) (ru) du du,

sn=1(1) Sn-1(1)

where S"~ ! is the unit sphere with center 0 in the tangent space M,,, exp,, : M,, = M
is the exponential map at m, and du denotes the volume element of the (Euclidean)
sphere S" (1) (cf. [K]).

One can easily see that, for each point m € M, each continuous function f near m,
and each sufficiently small number » > 0, the function

2(r,f) (x) = Z4r.f)

is defined and continuous for all x e B,(s), where B,(s) is a small geodesic ball
with center m and radius s. In accordance with [RU], we can now state:
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Definition. A Riemannian manifold (M, g) is called a commutative space if the
following is satisfied: for any point m € M, any two sufficiently small numbers r, s >
> 0, and for each continuous function f defined on the geodesic ball B, (r + 5) we
have

Lo(r, L(s.f)) = Luls, L(r. 1)) -

It is well-known that each harmonic space and also each locally symmetric
space are commutative spaces in our sense.

In the following, we shall suppose that all Riemannian manifolds under con-
sideration are analytic. Then one can express the commutativity property by means
of certain linear differential operators, called Euclidean Laplacians (of higher
order).

Let U,, be a normal neighborhood of m e (M, g), and define a linear differential
operator A, on U,, by the formula

A,f = A,(f-exp,)oexp, ',

where A, denotes the (ordinary) Laplacian defined in the whole tangent space
(M, g,) and f is a smooth function on U, In any system (x,, ..., x,) of adapted
normal coordinates in U,,, we can write
- n 62
=y oL
i=1 (0x;)

We shall define a sequence of global linear differential operators A® of order 2k,
k =1,2,..., by the formula

(BDf) (m) = (ALf)(m), meM.

Here A®) = A is the ordinary Laplacian of (M, g). The explicit formulas for A®
and A® (which are not iterations of A", in general) have been calculated by Gray
and Willmore, [GW], and we shall present them in the next section.

Let r > 0 be given, and let f be an analytic function on (M, g). In each part of the
manifold (M, g) where the mean-value operator Z(r,f) is defined, we have the
“Pizzetti-like formula” (cf. [RU], [K]):

© Ak
2(r,f)=2|: A% ]rz".

K=o 2* . k'n(n +2)...(n + 2k — 2)

Hence we obtain immediately:

Theorem. An analytic Riemannian manifold (M, g) is a commutative space if
and only if all differential operators AV, A®, ... AW, ... commute.

It is well-known that each analytic commutative space satisfies an infinite sequence
of curvature identities, the so called Ledger’s conditions of odd order, which are
known from the theory of harmonic spaces (see [RU], [RWW]).

390



The purpose of this article is to show that we can obtain a number of other curvature
identities just dealing with the mutual commutativity of the operators A, A®®
and AG, (Yet, it remains an open problem whether or not all curvature identities
for a commutative space can be derived from the odd Ledger’s conditions.)

2. THE SUMMARY OF USEFUL CONVENTIONS AND FORMULAS

We make two major conventions:

a) For expressing a tensor field T on (M, g) in a coordinate form we shall always
use local fields of orthonormal frames, if not otherwise stated. Thus, in our coordinate
expressions we can always use lower indices only.

b) We shall use an Einstein convention which is mod‘fied to our situation: every
occurrence of the same lower index in two places will indicate the summation with
respect to these indices.

Further conventions:

¢) The coordinate components of a covariantly derived tensor field VT will be
written in the form V. T, ;.

d) The symbol o(T;, ;) indicates the sum ),
permutations ¢ of the set {1, ..., k}.

e) The scalar product (T, U) of two tensor fields T, U of the same degree k is

defined by the formula (T, U) = T;, , U In particular, we put |T|* = (T, T).

T PP

Ti, 1yinge, TUNNING OVET all cyclic

We shall denote by R;j,the components of the curvature tensor on (M, g), by
0ij = Ryjr = ¢;; the components of the Ricci tensor, and by t = ¢;; the scalar
curvature.

Proposition A. The 4-th order differential operator A® is given by the formula
(2.1) AOf = Nf + KV, 0> + KV, V) =
= Nf + 30, (ViiS) + 3(Vid) (V.f) -
Proposition B. The 6-th order differential operator A® is given by the formula
(22 AOf = Nf + 20i(ViuS) + 2View) (Vif) +
+ 3(Vaei) (Vif) — SRuneu(VES) +
+ 15008 (ViiS) + TsRapeiRave AVEf) +
+ 3(Vies) (Vi) — 5(Vaer,) ei(Vef) +
+ SRut, (Vi00) (Vif) + 75Rjun(ViR; 1) (VS -
For the proof of both formulas, see [GW].
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The following special identities are very useful in calculations:
For functions we have

(23) Af = Vif, Vif=Vif.
For general tensor fields we have
2
(24) Vi - Vji= —Ry

where R;; denotes the derivation of the tensor algebra determined by the cor-
responding curvature transformation. Further,

(25) V143uif - V?uuf = Qiu(Vuf) >
(26) V:uijf - V:’tiuuf = (Vigju + ngiu - Vugij) (Vuf) +
+ quVizuf + QiuV}uf + 2RaijuV§uf‘
Let (xy, ..., x,) be a system of adapted normal coordinates in the neighborhood

of me M. (Thus, the corresponding tangent frame at m is orthonormal.) Then we
have the following equalities which are valid at m:

2 o’f
2.7 Vif = ,
@7) if 0x; 0x;
Fo 1 ol 1 0
(2'8) Visjkf = _—f = Kjin _f“ = = Ryiji —f“ .

0x; 0x, 0x;, 3 ox; 3 0x,
Moreover, for any system of local coordinates we have identically

(29) vr=2L.
0x;

All the relations above are to be found in [GW] or they can be derived immediately.
-We conclude with the following

Lemma. The “1*' odd Ledger’s condition” o(V,0) = 0 always implies
(2.10) Vi=0, Vo,=0.

Proof. From the usual Bianchi identities we obtain V;r = 2V,0; (see [GV],
p. 161). Putting i = k in Ledger’s condition, we get V,r = —2V,0;. Hence the
result follows.

3. THE NEW CURVATURE IDENTITIES

Theorem 1. The differential operators A" = A and A® commute on (M, g) if
and only if the following conditions hold:
(3.1) Ledger’s condition o(V,0;) = 0,
(3-2) Vie|? = 4Riju(Vien), (1=1,2,....n).
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Proof. According to (2.1) and (2.3) we have

Lf = (AR® — APA) f =
AV, 0> + IAVS, Vi) — 3(VP(AS), 0 — WKV(AS), Vi) =
3(Vauess) (Viif) + 30i(Vauisf) + $(Vaeis) (Vaiif) + HVaur) (Vif) +
+ %(V 'T) (V f) + S(V T) (Vuur ) 3Q'J(V (Af)) 1V'(Af) (V'I) =
%Qu(vuuuf Vuuuf) + 3(V T) (Vlml mu f) + —S(Vugl_)) (Vul_[f

+ Z(Vuugu) f) + ?(Vuir) (V f) + S(Vuulr) Vf)

Choose a fixed point m € M and a system of adapted normal coordinates (xl, cen x,,)
in the neighborhood of m. Then the above tensorial identity still holds at the point m
if we replace the coordinate components with respect to a moving orthonormal
frame by the coordinate components with respect to the normal coordinates (xl,
...» X,). Using (2.5)—(2.9) we can see that the third order part of (Lf),, is the expres-
sion $(V,¢0;;) (0*f]ox, dx; éx,),. Hence Lis a second order differential operator at m

if and only if 6(V,0;;) = 0 at m. If this is the case, we obtain (V;1),, = 0 according
to (2.10), and hence

(Lf)m = %Qij(vt‘juuf V?]uuf)m 2(V Ql]) (V f)m 4(V Q]k) (Vukf)m .

We can now prove that the 2" order part of (Lf),, vanishes. In fact, using (2.6),
(2.7), (2.8), (3-1) and routine calculations, we can see that the second order part
(L*f),, equals

(L(z)f)m = (%Qil@lj + 40 R i + %Vfugij) (azf/éx,. axj)m‘
Further, using (3.1), (2.4) and (2.10) at m, we get

H

lI

It

(Vuugu)m = uxgju - V:jgiu = Rui(@ju) + Ruj(Qiu) - Vl'zugju - ngugl'u =
= — R0, — Ruiut@jl - Ru]lelu — Ryju@ir
1e.,
(33) (Vuugu)m = —ZQilel - 2RuijIQlu .

Hence the result follows.

Thus the equation (Lf),, = 0 is reduced to vanishing of the first order part. Ac-
cording to (2.5) (2.6) (2.8) and (3.1) this can be written as

%Qij(_zvlgij) (6f/6x,) - %(Vink) (Rjikl + Rkijl) (6f/6x,) =0,

and with respect to the first Bianchi identity, this is equivalent to

3Vy( Z (e)?) = 9(V,ng) (Rijua) » > s

i,j=1

q.e.d.
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Theorem 2. Let A and A® commute on (M, g). Then A and A® commute if and
only if the following conditions hold:

(3.4) o(Vidy) =0, (i,j,k=1,....n),
(3.5) VaAij + 24,05 + 24, Ry + 2VB; =0, (ij=1,..,n),
(3.6)  4(Vudij) Ry — 24;(Vi0i;) + ViBy + Bioy =0, (k=1,...,n),
where
(3.7) Ay = 2Ry i0u + 30a0jc + 3sRupeiRapes -
(38) B, = 3Vil[R]* — 16]ef] -
Proof. Ledger’s condition (3 1) and Formula (2.8) yield a tensorial identity
(3.9) (Vie,) (VinS) = = 3(V,00) (Reija) (VS ) -

This means that, on the right-hand side of (2.2), the third term and the last but one
term cancel each other. Hence we can write

(3.10) AOf = Nf + 20,(Vijaf) + Aif(Viif) + BulVef) s
where
A;; = %szkgij - '15_2Riklekl + fsx.:k\_)k + RabciRabcj )
B, = g(Vink) Qij — %(ngu) Qij + R_ulh(vk jilh)'
Using Formula (3.3) we obtain that A;; = 4,
get B, = B,.
Now, we can write
Nf = (AR — RDA) f = 2(Vnei;) (Vi S ) +
+ 4(Vugi1) (V ijkl.f) + 20 u[V wijki — Vukkuuf] +
+ (VAL (Vi) + 2(VuAy) (Vi f) + AV f — Vi) +
+ (VauB) Vif) + 2(VuBy) (Vaef) + BiVauS = Viu) -

We shall prove that the sum of the first, second and third term on the right-hand side
vanishes. In fact, we have

(311) u(Vuuukkf Vukkuuf) - ZQu(Vuulj uuu) (V kf)
- 2@:1[ Z(Vugu) (Vukkf) + 2QmV4 kkf + 2Rauu( aukkf)] .

Here we have used (2.6) and Ledger’s condition. From (3.9) we obtain easily
(using the symmetry o;, = o;)

(3-12‘ (V)Qﬂc) (Vul.uuf) = §(V.-Q,k) Rijkl(vfuuf) .
From (3.11) we get
2Vai) (Vi) + 20:(VowisieS = Vi) =
= Z[VuuQu + 2050, + 2RauuQau] Vukk 4Qij(VuQij) (Vl?kkf ) .

ij» and using Ledger’s condition we
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Here the first term is zero due to (3.3). The second term equals —2V,[¢|’ (Viuf)-
According to Formula (3.2), this cancels the right-hand side of (3.12) and we are
finished.

Because A;; is obviously a symmetric tensor, we get now
Nf = 2(VuAi) (Vaisf) + (VauAy) (Vi f) +
+ Ayl =2(V0i) (VoS ) + 200(ViuS) + 2Rajul(Vauf)] +
+ (VauB) (Vif ) + 2(VuBe) (Vaaf ) + Biew(Vuf) »
which is a 3"-order differential operator.

Obviously, Nf becomes a 2"%-order differential operator if and only if o(V,4;;) = 0.
If this is the case, then using normal coordinates and (2.8) we get

2(V,di;) (V3;) = $(VuAs;) (Ruwe) (Vo) -

Let us write Nf in the form C;/(V}f) + Dy(V.f). Using normal coordinates once
again, we see that Nf = 0 identically if and only if C;; + C;; = 0, D, = 0 on M,
which is exactly (3.5) and (3.6) respectively. Q.E.D.

Corollary 1. On a commutative space, the function 3HR[|2 - 8”@”2 is harmonic.

Proof. We can see easily from (3.7) and (3.8) that A, = 1%e|? + ;5| R|
V.B; = LA[||R|* — 16]¢||*]. Now, putting i = j in (3.5) and summing up, we obtain
A(A;;) + 2V,;B; = 0, which was to be proved.

2
>

Corollary 2. On a compact commutative space, the volume of a geodesic ball
B,(r) can be expressed in the form

vol (B,(r)) = vol (By(r)) (1 + ¢y + cr* + O(r°)), r—0,
where ¢,, ¢, are constants independent of m € M, and By(r) is the volume of a Eucli-
dean ball of the same dimension and radius.
Proof. According to [GV] we have
vol (B,(r)) = vol (By(r)) (1 + A(m) r* + B(m)r* + 0(r®)), r—0,

where
T

B(m) = ~3IRI” + 8lof + 5 — 18Ac

Alm) = ~ 6(n +2)° 360(n + 2) (n + 4)

Here T = const. according to (2.11), and B(m) is constant because it is a harmonic
function.

The meaning of Corollary 2 is the following: It is known that, for a locally sym-
metric or harmonic space, the volume vol (B,,(r)) depends only on the radius r and
not on the point m € M. A natural question arises whether this is still true for the
commutative spaces.
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Remark. It was communicated to me in a letter by L. Vanhecke that Corollary 1
is a (non-trivial) consequence of the first and second odd Ledger’s condition.

Theorem 3. If A commutes with A® and A®, then A® and A® commute if and
only if the following identities are satisfied:

(3.13) ole(Vidy) — Ai(Vien)] = 0 (‘i,j, k=1,..n),
(3.19) (0aiAj1 + 0ijAw) Rijy + (05id; + 0i;A1) Rifja +

+ 0:/(ViAw) — AifViiew) + 204(ViBy) — Bi(Viow) =0 (a,b=1,....n),
(3.15) 05, Aa(ViRjaot + VoRipj) + 0i(ViiBi — BiRyij) +

+ 4R [ —0i{(Vidw) + 4;(View)] =0 (I=1,..,n).

Proof. The calculations are the same routine as for Theorem 1 and Theorem 2,
only combined with numerous applications of (2.4). Let us also remark that, in our
situation, it is sufficient to check the commutativity of the operators ¢,,(V7;f) and

20:/(Viu) + AifViS) + B(Vif) (cf. (2.1) and (3.10)).
Corollary 3. On a commutative space we always have
(0i,V) GR|* = 8[e]?) = 0.
Proof. Putting a = b in (3.14) and summing up we obtain the desired relation.

Remark. We can see easily that, in the Einstein case, the relations (3.13), (3.14)
and (3.15) are reduced to (3.4), (3.5) and (3.6), respectively.
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