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NOTES ON COMPACT RINGS WITH OPEN RADICAL 

KATSUMI NUMAKURA, Saitama 

(Received June 26, 1981) 

1. INTRODUCTION 

By a topological ring R we mean an (associative) ring which is also a Hausdorff 
space such that a ~ b and ab are continuous functions of a and b, where a and b 
are elements of R. If the space R is compact, we call R a compact ring. Jans in­
vestigated a compact ring R in which iV^ is open, where N is the Jacobson radical 
of jR, and showed that in such a ring the powers iV form a base for the neighborhood 
filter at zero ([1; Theorem 2]). 

We shall treat in this paper a compact ring with identity and give several con­
ditions which are equivalent to the assumption that Л̂ ^ is open (Theorem 11, below). 
As an application of this theorem we obtain a result (Theorem 12, below) con­
cerning compact semilocal rings that is an improvement of the result of Warner 
[5; Theorem 4]. 

2. PRELIMINARIES 

In what follows R will denote a compact ring with identity. Unless otherwise 
stated, ideal means two-sided ideal and radical always means Jacobson radical. 
An ideal P of i? is said to be maximal if (i) P Ф R and (ii) there is no proper ideal 
of R properly containing P. If A and В are ideals of R, AB denotes the ideal product 
of A and B, that is, AB is the ideal of i? generated by the set of all products of the form 
ab,aeA and b e B, Similarly, if Л^, . . . , Л„ are a finite number of ideals of R, 
Ai .., A„ denotes the ideal product of the ideals A^, ..., A^.ln particular, Л" denotes 
the ideal product of n copies of an ideal A. We denote by S the topological closure 
of a subset S of R. 

Now we list some known results, concerning compact rings, which will be used 
later. 

(I) If С is the connected component of 0 in R, then С , R = 0, where С . R is the 
set of all products of the form cx,c e С and xe R (cf. [2; Lemma 10 and Theorem 8]). 
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From this it results that R is totally disconnected, because JR has an identity. Hence R 
has a fundamental system of neighborhoods of 0 each of which is a compact ideal 
of R(cf. [2; Lemma 9]). 

(II) If JR is semisimple, then it is isomorphic and homeomorphic to a complete 
direct sum (with the product topology) of finite discrete simple rings (cf. [2; Theorem 
16]). 

(III) The radical N of Ris closed (cf. [2; Corollary to Theorem 13]) and it is a topo­
logical nilpotent ideal, i.e., for any neighborhood t/ of 0 in î  there exists a positive 
integer m such that n > m implies N" с U (cf. [2; Theorem 15] and (I)). 

The residue class ring RJN is a compact semisimple ring. 
(IV) The radical N of R is the intersection of all open maximal ideals of R (cf. 

[4; Lemma 3.7]). 

3. COMPACT RINGS WITH OPEN RADICAL 

Proposition 1. Let P be a maximal ideal of R. Then P is open if and only if it is 
closed. 

Proof. In the theory of topological groups it is well-known that open subgroups 
are closed, so the "only if" part of the proposition is obvious. 

Assume that P is closed. Let {F^: a e Л} be a fundamental system of ideal neigh­
borhoods of 0. If P is not open, then F̂^ ф P for every a e Л. As P is a maximal ideal, 
P + F̂  = P for every a e Л, and so Г\а{Р + ^a) = ^- ^^ the other hand, it is obvious 
that P = C]^(P + F^). Therefore it follows that P = P, since P is closed, and this 
contradicts the fact that P is a maximal ideal of R. Hence P must be open. 

Lemma 2. Let R be semisimple, and let R = Ii @ Ri be an expression of R as 
the complete direct sum of finite (discrete) simple rings P^, iel (cf. (П)). / / the 
number of the component rings Ri appearing in the expression R = Ii ® Ri is 
infinite, then R contains a maximal ideal which is everywhere dense in the space R* 

Proof. Let A be the subset of Ii © P^ consisting of all elements a = (a,) with the 
property that at most a finite number of the components â  are difierent from zero. 
Since the number of the component rings Ri is infinite, it is easily verified that A is 
a proper ideal of P . Furthermore, it is not difficult to show that A is everywhere 
dense in the space P . Let P be a maximal ideal containing A; then P is the desired 
maximal ideal. 

The following result is fairly easy to prove, so we will omit the proof. 

Lemma 3. Let R = Ii @ Ri, iel be as in Lemma 2. / / the'number of the com­
ponent rings Ri appearing in the expression R = Ii @ Ri is infinite, then R has 
infinitely many maximal ideals. 

The next lemma is a well-known result and is valid for any ring with identity. 
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Lemma 4. Every maximal ideal of R contains the radical of R. 

We can now prove the following theorem. 

Theorem 5. Let R be a compact ring with identity. Then all of the following 
conditions are equivalent: 

(1) Every maximal ideal of R is open. 
(2) Every maximal ideal of R is closed. 
(3) The radical N of R is open. 
(4) There exist only a finite number of maximal ideals in R. 
Proof. The equivalence of (1) and (2) has been proved in Proposition 1. 
(2) => (3): We shall first show that every maximal ideal of the residue class ring 

RJN is closed. Let в be the natural homomorphism of R onto RJN. It is well-known 
that the map в is continuous and open. Suppose that P* is maximal ideal of RJN, 
and let P be the complete inverse image of P* by в, i.e. P = [x e R: Ö ( X ) G P * } . 
Since every maximal ideal of R contains N, it is easy to see that P i s a maximal ideal 
of the ring R. By the assumption P is closed, so it is compact. Since в is continuous, 
P* = 0(P) is also compact, therefore it is closed in RJN. Namely, every maximal 
ideal of RJN is closed. 

In view of Lemma 2, we see that RJN is isomorphic with a complete direct sum 
of a finite number of finite simple rings. That is, RJN is a finite ring. Hence {0*} 
(0* denotes the zero element of the ring RJN) is an open set in RJN, so that N is open 
in R as the complete inverse image of {0*} by в. 

(3) => (4): Since every maximal ideal of R contains N, there is a one-to-one cor­
respondence between the set of maximal ideals of R and the set of maximal ideals of 
RJN. As N is open, RJN is discrete, therefore it must be finite, because it is compact. 
Hence RJN has only a finite number of maximal ideals, so that R also has only a finite 
number of maximal ideals. 

(4) =^ (1): Suppose that R has only a finite number of maximal ideals; then RJN 
also has only a finite number of maximal ideals. In view of Lemma 3, RJN is iso­
morphic to a complete direct sum of a finite number of finite simple rings. Theiefore 
RJN is a finite ring, whence N is open. As maximal ideals of R contain N, they must 
be open. 

4. COMPACT RINGS IN W^HICH №- IS OPEN 

In this section we shall establish thiee theorems concerning a compact ring with №" 
open, N the radical of the ring, which are the main results of this paper. Before 
proving the theorems we give several lemmas that will be needed for the proofs of 
the theorems. 

The next lemma is the same as Lemma 2 in [5]. But for the sake of completeness, 
we state a proof of the lemma. 
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(To avoid repetition we remark once and for all that the term "left ideal (or left 
module)" may be replaced by the term "rght ideal (or right module)"; we state only 
one of such pairs of leammas or theorems.) 

Lemma 6. Every finitely generated left ideal of R is compact, so it is closed in R. 

Proof. Let L be a left ideal of R with a finite number of generators a^, .,., a„: 
L— Ra^ + .. . + Ra„, The sets Ra^ are compact as continuous images of the 
compact space R, Therefore Ra^ + . . . + Ra^ is compact, since it is a continuous 
image of the compact space Ra^ x . . . x Ra^. 

To prove the following two lemmas compactness of R is not needed. 

Lemma 7. Let A and В be two ideals of R. If A and В are finitely generated as 
left R-modules, then AB is also finitely generated as a left R-module. 

Proof. Let Л = i?ai + ... + Ra^ and В = Rb^ + ,., + Rb„. Then it follows 
that 

AB = A{Rb^ + .. . + Rb„) = Ab^ + ... + Ab„ = 
= {Ra^ + . . . + Ra^) b^ + ... + (Ra^ + ... + Ra^) b„ = 

i J 

Hence AB is finitely generated as a left i?-module. 

Lemma 8. If Pi, -^Pn ^''^ mutually distinct maximal ideals of R, then we have 
P^ n ... n P„ = Y^Pjcd) ••• Рл{п)^ where n ranges over all the permutations of the 

n 
set {1, ..., n]. 

Proof. For any permutation n of the set (1, ..., «}, it is evident that P^d ) . . . 
• • • Pn{n) с Pi n ... n P„. Therefore we have X^^(i) • • • РпЫ) ci Pi n .. . n P„. 

n 

We assert that the reverse inclusion also holds. To show this we shall apply the 
mathematical induction on n. 

For n = 1 the assertion is certainly true. Assume that the assertion is true in case 
OÏ n = к — 1, and we will show that the assertion is also true in case of n = k. 

From the assumption it follows that Pi n ... n P,,^ i = X^t(i) • • • -^т^-1)? where т 
T 

ranges over all the permutations of the set {1, ..., /c — 1). Since two ideals Pi n . . . 
. . . n Pfc-i and P^ are relatively prime, we have 

Pi n . . . nP^^_i nPk = 
- (Pi n .. . n P , _ i ) P , + P,(Pi n . . . n P , _ i ) . 

This implies that 
P i n . . . n P , _ i n P , = 

= ( E ^ T ( l ) ••• Px(k-l))Pk + Pk(Z^t(l) ••• Pxik~l)) ^ L^nil) ••• Pn(k) • 

Thus the proof of the lemma is complete. 
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Lemma 9. Let P^, .-, P„ be mutually distinct maximal ideals of R and let M = 
= Pi n ... n P„. If Pi, "•, P„ are finitely generated as left R-modules, then M*^ is 
an open ideal of R for any positive integer r. 

Proof. Let 71 be any permutation of the set {l, ..., n}. In view of Lemma 7, the 
ideal P^^^ . . . P^(„) is finitely generated as a left Я-module. Therefore, by Lemma 8, 
the ideal M is finitely generated as a left i^-module. Using Lemma 7 again, we can 
conclude that M'' is finitely generated as a left i^-module. Consequently M''/М''"^^ is 
a finitely generated left JR/M-module. 

In view of Proposition 1 and Lemma 6, the maximal ideals Pj- are open, so that M 
is open. Hence the ring RJM is finite, because it is compact and discrete. Therefore 
iVf/M**^^ must be finite as a finitely generated left module over the finite ring RJM, 
This means that M*"^^ is open in M^ But M is open in R, so that M^ is open in R 
and so on. 

(It should be noticed that M*"^^ is compact, so it is closed in M^) 
We are now ready to prove the following theorems. 

Theorem 10. Let R be a compact ring with identity. If every maximal ideal of R 
is finitely generated as a left R-module, then the powers N'' of the radical N form 
a base for the neighborhood filter at zero. 

Proof. By Lemma 6 every maximal ideal of R is closed, therefore, in view of Theo­
rem 5, there exist only a finite number of maximal ideals in R. 

Let P i , . . . , P„ be the maximal ideals of R; then N = P^^n ...nP„ (cf. (IV)). 
Of course, it is assumed that P^ Ф Pj for / ф j . From Lemma 9, we see that N'' is 
open for every positive integer r. Using this fact and (HI), we can conclude that the 
powers N'' form a base for the neighborhood filter at zero. 

Theorem 11. LetR be a compact ring with identity and N its radical. Then all of 
the following conditions are equivalent: 

(1) N^ is open. 
(2) N is open and is finitely generated as a left R-module. 
(3) Every maximal ideal of R is finitely generated as a left R-module. 

Proof. (1) => (2): It is clear that N is open, since Â ^ is open. 
We shall show that N is finitely generated as a left i?-module. The ring NJN^ is 

finite, because it is compact and discrete. Let a^, ..., a^ be any representatives in N 

of these cosets, and let Л = Ra^ + ... + Ra^- Then it is clear that A cz N. We 
assert that N = A. From N = A -{• №" it follows that for any positive integer i 

N' = N'-'A + iV' + ^ . 
Therefore, we have 

N = A~{- NA + ... -b N'-^A + N^-'^ = A + iV'"''' . 
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Since N is topologically nilpotent, it follows that N = A. 

(2) => (3): Let P be an arbitrary maximal ideal of R; then it follows from Lemma 4 
that P ZD N, As N к open, P is also open, so P is closed. Because the ring PJN is 
finite, there exist a finite number of elements, say b^, ..., b^, in P such that 

P = Rb^ + ... + Rb, + N . 

Since N is finitely generated as a left /^-module, P is also finitely generated as a left 
Я-module. 

(3) => (1): The proof of this implication is part of the proof of Theorem 10. 
A semilocal ring is a commutative Noetherian ring (with identity) having only 

a finite number of maximal ideals. If Л is a semilocal ring with radical N, one can 
introduce a topology on A by taking the family {iV: г = 1, 2, ...} to be a base of 
neighborhoods of zero. The topology just introduced on Л is a r2-topology, and 
moreover it is compatible with the ring structure of A. Hence A becomes a topological 
ring under this topology, which we call the natural topology of A. 

Now we can state the following theorem. 

Theorem 12. Let R be a compact commutative ring with identity. If R satisfies 
one (and hence all) of the conditions in Theorem 11, then R is a semilocal ring and 
its given topology is the natural topology of R. 

Proof. Let N be the radical of R. By Theorem 10, the powers W form a base for 
the neighborhood filter at 0, therefore the original topology of R coincides with the 
natural topology of R. Moreover, every finitely generated ideal of jR is closed by 
Lemma 6 and maximal ideals of R have finite bases. Hence, in view of Theorem 
31.8 in [3; p. 110], we can conclude that JR is a semilocal ring. 

Corollary 13. Let R be a compact commutative ring with identity satisfying one 
of the conditions in Theorem 11. Then every ideal of R is closed. 

Proof. By the above theorem î  is a Noetherian ring; therefore every ideal of R 
is finitely generated. Hence, the conclusion of the corollary results from Lemma 6. 
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