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INTRODUCTION

Let G be a group, and denote by F(G) the collection of finite complexes (subsets)
of G. F*(G) denotes F(G)\ ¢. F(G) is a semigroup under the operation

AB={ab|aeA, be B}

for all A, B e F(G), and also F(G) is a lattice under the operations of set union and
set intersection. In fact F(G) is a lattice ordered semigroup ([11], p. 153), since the
multiplication preserves order and A(B U C) = AB U AC, (Bu C) A = BA U CA.
It is easily seen that the dual law A(B n C) = AB n AC is not satisfied by F(G).
Such semigroups have been used as examples for a long time (cf., [11] p. 156) and
recenlty have been the subject of further study in several contexts. As one example
the concept of retraction was introduced and studied by Byrd, Lloyd, Mena, Teller
in [2], [3], [4]- A retraction is a semigroup homomorphism o: F*(G) — G such that
o({g}) = g for all ge G. The automorphism group of F*(G) has been examined
in [5], [6], [7]. [8]- V. Trnkov4 in [12] has considered the problem of embedding
a semigroup into 2, for some group G. It is because of this recent interest in F(G)
that we have in this paper studied F(G) algebraically in an attempt to gain a better
understanding of this semigroup and possibily provide some additional tools with
which to work.

The first section is devoted to general information concerning factorization and
irreducible elements. The second section introduces the concept of an AL-semigroup
and uses this definition to give one characterization of F(G). Some examples of AL-
semigroups are also given.

I. GENERAL PROPERTIES

It is noted first that F(G) is not cancellative as a semigroup. For example, consider
the following sets in F(Z):

{0,1,2} + {0,1} = {0,2} + {0, 1} .
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We shall say A € F(G) is irreducible if |A| = 2 and A = BC implies that B or C is
a unit.

Lemma 1. If G is a torsion free group, A € F(G), |A| > 2, A= BC, Band C not
units, then lB’, 'Cl < IAI — 1.

Proof. By way of contradiction, assume |B| = |A| and |[C| = 2. Let 4 = {a,, ...
cway), B=1{by,...b,}, C={cy, ¢y ...,c}. Since byc,, bycy, ..., b, are all
distinct elements in A we may assume a, = b,c¢,, a, = b,cy,...,a, = b,c;. The
same reasoning gives byc,, b,c,, ..., b,c, equal to the a; in a possibly different order.
Setting the two representations equal accordingly we get bj“ilb,- = cye;' = ¢ for
j=1,...,n. The bj; are the rearranged b;, i = 1, ..., n. Form a product with the
first element equal to b7;'b, and the second element equal to b}, 'b, where b = by
Since each b; appears exactly once we can continue this choice fori = 1, ..., n. The
result will be ¢" and, also, ¢" = e. Thus, c is of finite order and we contradict our
assumption that C had at least two elements.

Theorem 2. If G is a torsion free group and A€ F(‘G) such that lAl = 2, then
A = PP, ... P, where each P, is irreducible.

Proof. Use induction on the cardinality of A. If 4 is not irreducible, then 4 = BC
where B and C are not units. From the Lemma we know IBI, ICI are less than IA|,
thus, B=P,...P,, C = Q, ... Q, where each P;, Q; are irreducible. Therefore 4
can be written as a product of irreducibles.

Corollary 3. Let H be a subgroup of a torsion free group G.If Ae F(H), [4] > 2,
A =P,...P, P,e F(G) and each P; is irreducible in F(G), then A = P{ ... P,
P;e F(H) and each P} is irreducible in F(G).

Proof. A =BC ={b,,...,b,} {cs,...,c,}, each bic;e H. Then A = B'C’' =
= {bycy, ..., be;} {c7 ey, ..., e 'e,} and B', C' € F(H). This method will work for
-any finite number of irreducible elements Py, ..., P, and, moreover, since the resul-
ting P; are translates of the P; they are irreducible.
For a torsion free grcup G, F(G) does not have unique factorization into ir-
reducibles. Consider the following sets in F(Z).

(0,1} + {0, 1} + {0,1,4} = {0,2,3} + {0,1,3}.

In the case where G is finite and abelian, then A" is a subgroup of G for some n > 1
and all A = 0. In general, finite subgroups will be idempotents in F(G), whereas in
the torsion free case, the only idempotents are {e} and 0.

It is also of interest to note hat F(G) can be considered as a normed lattice using as
a norm the cardinality of each set 4 € F(G).
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II. ALGEBRAIC CHARACTERIZATION OF F(G)

Definition 1. A partially ordered semigroup (p.o. semigroup) is a set S with an
associative binary operation and a partial order relation < such that

a<b, abceS=ac=<bc, ca=<ch ([11] p.153).

Definition 2. An AL-Semigroup is a p.o. semigroup S with a non-empty subset A
satisfying:
(i) (S, =) is an atomistic lattice with a set of atoms A.
(ii) A is a subgroup of S.
(iii) Let e denote the identity for 4. If e < xy for x, y € S, then 3b € 4 such that
b<x,b7'<y.

(iv) A, ={ae4 | a < x} is finite for each x € S.

A lattice is atomistic if each element x = 0 is the join of the atoms under it. Condition
(ii1) of the definition for AL-semigroups may be thought of as a Riesz interpolation
property. It is well known that an atomistic, distributive lattice can be embedded
in 24 where A is the set of atoms for the lattice. The authors have attempted to in-

corporate these ideas into the definition for an AL-semigroup in order to characterize
structures similar to F(A).

Lemma 4. In an AL-semigroup S the condition (iii) is equivalent to: a < xy,
ae A, x,yeS = 3ay, a,e A such that a = a,a,, a; < x,a, < y.

Lemma 5. In an AL-semigroup S the following properties hold:
LLIf A, = A,, then x = y.

2. Forall x,yeS, A,nA,=A,,,
3.1fbeA, xeS, thenbx = b(vA,)= vi{ba|acA,].

4. If ae A, x,yeS, then a(x A y) = ax A ay, (x A y)a = xa A ya.
5.IfacA, x,yeS, then a(x v y) = ax v ay, (x v y)a = xa v ya.
6. Auxnay = {ab | bed,nA, = A,,,} forallae A, x,yeS.

7.1f x A y=0,x,y€S, then ax A ay = 0 for all ae A.

The proofs of Lemmas 4 and 5 are straightforward.

Theorem 6. If S is an AL-semigroup, then S is o-isomorphic to a subsemigroup
of F(A). The mapping may not preserve joins.

Proof. Define 0: S — F(A4) by 6(x) = A, for x % 0 and ¢(0) = 0. It follows,
from Lemma 4, that A,, = A,A4,. Thus, 0 is a semigroup hcmomorphism. From
Lemma 5, (1), it follows that 0 is one-to-one. If x < y, then A, < A,. So 0 is an order
preserving semigroup isomorphism. Examples 1, 2 given later in this section both
illustrate embeddings for which joins are not preserved.
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It is to be noted that if S is an AL-semigroup embedded in F(A4) such that joins
in S agree with joins in F(A), then S = F(A). This follows because S is atomistic.
The following theorem gives some equivalent conditions for S to equal F(A).

In what follows we shall frequently identify an AL-semigroup with its image
in F(A). By (2) of Lemma 5, C A B = C n B under this identification.

Theorem 7. Let S be an AL-semigroup. Then the following are equivalent:

(1) (S, <) is a distributive lattice.

(@ If B A, vB=x€S, then B= A,

(3) S is o-isomorphic as a p.o. semigroup and as a lattice to F(A).
(4) A,,, = A, U A, forall x,y€S.

(5) (S, <) is a normed lattice with norm ||x|| = |A,].

Proof. (1) = (2): Suppose VB =x, Bc A, and B + A,. Let ye 4,\B. B =
=i A= Vo Voo y=yAx=y A(y; v ..

vy vyv.)=y A v..vy)=0Ay)Vv..v(yaAay)=0 This
contradicts the fact that y € A,. Therefore 4, = B.

(2) = (3): From Theorem 6 we have that ¢(x) = A, is an o-isomorphism into F(A).
Let Be F(A) and x = v B. Thus, B = A, and ¢(x) = B. Therefore ¢ is an o-iso-
morphism onto F(A). To show ¢ is a lattice isomorphism we need 4,,, = 4, U 4,
and A4, ,, = A, 0 A,. The later equality is true in any AL-semigroup. 4, U 4, € 4,.,
is obvious. Suppose there exists a < x v y, a £x, a £y Let B=4,\{a}.
XVy2vB2v(4,uAd)=(vA,) v (v4,) =x v y. Therefore by (2), we
have B = A, ,, but this is a contradiction.

(3) = (4): This is valid for any F(4).

(4) = (5): We need to verify the equality for a normed lattice: |[x v y| +
+ [x A y| = |x| + |[¥]- This translates into |A,,,| + |4.a,| = |4 + |4,|- Since
Acvy=A, VA, and A,,, = A, n A, the desired equality holds.

(5) = (1): We have |d,,,| + |[A..,| 2 [4. U 4)] + |4, 0 4)] = |4] + |4,].
Since |A,| is a norm on S, 4., = A, U A,. Since a normed lattice is modular, we
may therefore assume there exists x,y,ze S such that x v y=xvz=y vz
and x A y=x Az=yAz Since 4,,, = A,,, = A, UA, = A, U A, we have
that 4, € A, U A,. Assume ae A, a¢ A, Then since A, € A, U A, acA;
aeA, A Ay=A,,, = A,,,. Therefore a <z which is a contradiction. Since
there is no such a we have that 4, = A, U A,. Therefore VA, = z = v(4, U 4,) =
= VA,,, = x v y. This contradicts our choice of x, y, z. Thus, S is distributive.

Example 1. Let G be a finite group with [G] = 3. Let S equal all singleton subsets
of G together with G and the empty set. This is a modular, non-distributive AL-semi-
group.

Example 2. Let Z be the group of integers. Any set A e F(Z) can be written as
A={xy,..., X} such that Xy < X3 < ... <X, Let S be the sets 4 such thatif ze Z
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and x;, x, € 4 such that x; < z < x,, then z € A. These are called solid sets in F(Z).
S is a non-modular AL-semigroup. To illustrate the non-modularity consider the
sets {0, 1,2}, {1,2},{2},{0}, 0.

Example 3. Let H be a subgroup of G. Then F(H) is an AL-semigroup contained
in F(G).

Theorem 7 characterizes distributive AL-semigroups. Examples 1 and 2 give instan-
ces of non-distributive AL-semigroups, the first of which is modular and the second of
which is not. It seems natural then to try to characterize modular AL-semigroups.
A partial description is given in Theorem 11, where we prove that if S is an AL-
semigroup with torsion free abelian group of atoms, then S is modular only if S is
distributive. To prove Theorem 11 we shall use the following.

Lemma 9. Let S be an AL-semigroup which is modular. If S is not distributive,
then exist distinct atoms a, b, ¢ such thata v b =a v ¢c=b v c.

Proof. Since S is not distributive, there exists x, y € S such that 4,,, > 4, U A4,
and 4,,, # A, U A,. Choose x, y € S such that levyl is minimal with respect to the
property A.,, > A, uA, and A,,, + A, U A, Let aeA,, \A, U A, Then
avy=xvy and so A,,vy[ < IAxvvl' Ifavy<xvythenA4,,,=A4,v {a}.
Also Ayyaa. = (A, u{a})n A, = A, A, = A,,, Therefore, (y v a) A x =
=yAXx.Soyvx,x,yVva,yyAx will form a non-modular sublattice. Thus
avy=xvy Duallyavx=xvy Sincea¢ A, UA,an(xny=0.

Since x > x A y, 3be A\A,,,. Suppose now that (b v a) A y = 0. Then
(b va)<bvavysince otherwise b va=bvav yimplies (b v a)Ay=
= y # 0. Therefore we have a non-modular lattice formed by b v a v y, b v a,
v, a,0. Therefore, (b v a) A y > 0. Choose ce A such that ce 4,, ¢ <b v a.
Nowassume a v ¢ < a v b. Note that (a v ¢) A b = 0, since otherwise (a v ¢) A
Ab=band b<ave Thus,avcecvb=avc=av b and this contradicts
our assumption that a v ¢ < a v b. We also have that (a v ¢) A b = 0. It follows
that a v b, a v ¢, a, b, 0 will form a non-modular lattice. By a dual argument we
can get bv c=a v b=a v c. Now we consider the atoms ae A, \4, U A4,
beA)\A ce A, such that ¢ < b v a. These atoms form the desired sublattice
of S.

In the next lemma we make use of the notion of height in a modular lattice.

XAy

Definition. In a modular lattice L the height of an element a is the sup of the
integers n for which there is a chain a4 < a; < ... < a, = a ([1], p. 5). Since Lis
modular, this is the length of any maximal chain in [0, a]; if Lis atomistic this is the
minimum number of atoms which must be joined to get a.

Lemma 10. Let S be a modular AL-semigroup with an abelian group of atoms A.
Suppose xo = e, and xo V X1 = {Xo, X1, .., X,} =X S A, where n 2 2. If Xx; N
N Xx; = {xx;} for all i,j, i % j, then xo v x} = ¢ v x2 = {x0, X3, e Xa )
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Proof. Since Xe n Xx; = {xl}, x2 ¢ X. Also X has height 2, so is the join of any
two distinct x;’s.

Suppose now that i # k. Then Xx, v x;x; 2 x;%, V X;x; = x(x, vV x;) = x;X.
If i,j + k, and me{0,1,...,n}, x,x;€x;,X S x;x; v Xxk. Then x;x; v Xx;, 2
2 xX v Xx; 2 x,%; V XX, 2 XX,

Observe that (J Xx; = X>. Then X? € x;x; v Xx, € X%, s0 X? = x;x; v Xx;, =

i=0
= x;X; V X, v xp. Thus X* has height at most 3; but since X < X?, X + X? and X
has height 2, we see that X? has height 3. It follows that for any atoms X;X;, X,X,,
X%, if x;x; £ X%, v x,x, then X? = XiXj V XXy V XpX,. Also, if Y, Z are any
sets of height 2, ¥, Z < X2, then Y A Z must be an atom (Y A Z = () gives a non-
modular lattice consisting of Y, Z, X2, 0 and any atom y < Y).

We now fix a set Y of height 2, Y < X?. Write Y = {y,, ..., y,.}. We next wish to
show that m = n + 1, so suppose that in fact m < n. Y n X is an atom, so let x, be
some element of X not in ¥ n X. Now pick x; such that Xx; is not y, v x, for any
r = 1,..., m. This is possible tecause Xx; # Xx; for i % j and there are only m
sets y, v x;, but n + 1 sets Xx;. Now define a map Y - Xx; by y, — v x) A
A Xx;. The image of each y, is an atom. The image of Y has at most m elements and
is contained in Xx; which has n + 1 elements, so there exists an x;x; € Xx;, x;x ¢
¢y, Vv x, for any r. Let Y; = x;x, v x,. Clearly x;x; % x;, since x, € y, v x, for
all r. Thus Y; has height 2. Therefore Y n Y, is an atom y; € Y. But y; e Yy, y; + x,,
soy; v x, = Yyand x;x, € y; v X, a contradiction. Thus we must have |Y| Zn+ 1.

Clearly e v x? < X2 Note that e v x? + Xx; for any i, for otherwise x3 € Xx; N
N Xx; = {x;x;}, so i =1, and thus ee X n Xx; = {x;}, a contradiction. Then
e v x? has height 2, and (e v x}) n Xx; will be an atom for each i = 0,1, ..., n.
Further, e v x] = U[(e v x7) n Xx,], and each set in the union is an atom. If
ev x1 contains an element xpxj i+, (evx)nXx;=(evx )mXx and e v
v x? will contain fewer than n + 1 elements. Thus evx? N Xx; = x7, and ev x> =

= {x3,x3, ..., x2}.

Theorem 11. Is S is a modular AL-semigroup with the group of atoms abelian and
torsion free, then S is distributive.

Proof. Since any abelian torsion free group can be totally ordered ([11], p. 36),
we assume A is totally ordered. By Lemma 9, there exist atoms a, b, ¢ such that
avb=ave=bvecLetX ={xq,x,...,X} =av b Assume x; < x, < ...

C< X X1X = {e, xT x5 oy X1 'X,} = {€, ¥2, ..., ¥} Where e < y, < ... < y,.
Moreover, y; v y; = x; 'X for i # j. X has height 2, thus, x7'X has height 2.
Therefore we can assume a vV b = {&, Xy, ..., X,}, 1 22, e = Xg < X; < ... < X,
and x; v x; = X for i #+ j. We have x;x; € Xx; n Xx;. Suppose there exists x;x, =
=x;x;€Xx; n Xx;, I # i,k # j. Then x;x; v x;x; = x; X = X% V X;X; = X;X; V
v x;x; = x;X. Since X is ordered with minimum equal to e, min (Xx;) = X;=x; =
= min (Xx;). Therefore, Xx; N Xx; N {x,x;} for i & j. We can now apply Lemma
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10. We have e v xi = Y={e,x},...x2}, X+ Y, X v Y=X? and XY =
={xx}|i=0,1,..,n;j=0,1,..,n} 2 X and Y. X v Y= X* < XY. There-
fore x;x, € XY, x1x, = xixf. A case study for i = 0,j =0, 1, ..., n will show that
i = 0 is not possible. Also the case where i = 1 and j = 0, 1, ..., n is not possible.
Then consider the case where j = 0 and i = 2, ..., n which is also impossible. Using
the fact that x, < x; ... < x, it then follows that x;x, < xixf-, contrary to our choice
of x;x3.

As was indicated in the discussion prior ot Lemma 9, if we assume that A4 is a tor-
sion free abelian group, then Theorem 11 allows Theorem 7 to be rephrased so as to
give a characterization for modular AL-semigroups.
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