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Czechoslovak Mathematical Journal, 34 (109) 1984, Praha 

DIFFERENTIABLE MANIFOLDS WITH GENERALIZED BOUNDARY 

GEORGE GRAHAM^, College Station 

(Received April 13, 1982) 

1. Introduction. The purpose of this paper is to give an intrinsic description of 
a broad class of differentiable manifolds with generahzed boundary and to show that 
this class includes differentiable manifolds without boundary and finite-dimensional 
differentiable manifolds with smooth boundary or with corners. This is accomplished 
by extending the usual differential calculus to include functions on arbitrary subsets 
of a Banach space in a way that does not require that the functions have differentiable 
extensions to open sets. In addition, we include some applications to the geometric 
theory of semigroups. 

Let £• be a Banach space. An E-manifold with generalized boundary, or simply 
an E-manifold, is a topological space M with the property that if p e M, then there 
is an open set U about p and a homeomorphism from U onto a subset Ä of E such 
that Ä has dense interior in E. Differentiability of maps between manifolds is defined 
in terms of the differentiability of maps f: Л a E -^ F where A has dense interior 
in E. We show that by utilizing the strong derivative (Definition 2.1) one may obtain 
a differential calculus for functions on arbitrary domains. In particular, we generalize 
the Open, Inverse, and Implicit Mapping Theorems under the assumption of strong 
diflferentiabihty at a point. Moreover, we show that a /<-times strongly differentiable, 
or C ,̂ function is extendible to a C^ function on an open set when the domain of the 
function is the intersection of an open set and a closed convex set in R" and that this 
result does not hold for general domains. It follows that the category of Cj manifolds 
with generalized boundary properly includes C^ n-manifolds with smooth or empty 
boundary or with corners. 

The concept of strong differentiability has been used in nonlinear analysis to prove 
generalized inverse and implicit mapping theorems (cf. Leach [12], Nashed [14, 15], 
Nijenhuis [16].) An advantage of strong differentiability is that strong differentiability 
at a point usually provides sufficient smoothness for the local analysis of a function 
via its derivative. We show that a fairly satisfactory local analysis (Theorems 2.7, 

^) Portions of this paper are contained in the author's doctoral dissertation presented to the 
Faculty of the University of Houston in partial fulfillment of the requirements for the degree Ph.D. 
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2.8, 2.9, 2.12) may be made even if the point of strong differentiability is not an interior 
point of the domain of the function. 

Differentiable manifolds with generalized boundary are of interest to us because 
of their importance in the development of a geometric theory of semigroups analogous 
to the geometric theory of Lie groups. Specifically, a Ĉ  semigroup is a semigroup S 
on a Cl manifold with generalized boundary such that the multiplication m: S x 
X S -^ S is a. C] map. A C^ monoid is a C^ semigroup with a two-sided identity ele­

ment. Examples of C^ monoids include Lie groups, the semigroup of all n x n real 
matrices, cones in Я", and the noncommutative analogues of cones, ray semigroups 
(cf. § 5). Thus by introducing the concept of a differentiable manifold with generahzed 
boundary, we are able to give a uniform treatment to a wide variety of semigroups. 
For instance, we show that a C^ monoid (/c ^ l) has cancellation in a neighborhood 
of its identity (Theorem 5.2). A more thorough development of the Lie-theoretic 
properties of C^ semigroups is contained in [5]. 

The organization of the paper is as follows: § 2 contains the essentials of a strong 
differential calculus, including generalizations of the open, inverse, and implicit 
mapping theorems. In § 3 we establish sufficient conditions on the domain A cz RP 
to guarantee that each Ĉ  function / : Л -^ /?^ is C^ differentiable and show that this 
need not be the case for general domains. In § 4 we define a C^ differentiable structure 
and show that the category of C^ manifolds with generahzed boundary includes C^ 
manifolds without boundary and finite-dimensional C^ manifolds with smooth 
boundary or with corners. Apphcations to the theory of differentiable semigroups 
are contained in § 5. 

2. The strong derivative. Throughout this paper E, F, and G denote Banach spaces, 
L{E, F j denotes the Banach space of continuous hnear maps from Eto F, and ЬД£, F) 
denotes the Banach space of continuous /c-multihnear maps from (the product of к 
copies of) E to F. For a e E and (5 > 0, B^{a) denotes the open ball of radius ö with 
center a. We shall on occasion refer to Dieudonne [3] for additional details con­
cerning multilinear maps and Fréchet differentiability. 

Let f : A a E -> F hQ 3. map and let a E A. A continuous linear map T : E -^ F 
is a Fréchet derivative of / at a if for each e > 0, there is a (5 > 0 such that 

| /(x) — / ( a ) — T{x — a)\ ^ e|x — a\ whenever x e Bj^a) n A . 

If a is an isolated point of A, then any Те L{E, F) is a Fréchet derivative of/ at a. 
However, if a e A^ (the interior of A), then there is at most one such map T. If/ has 
a unique Fréchet derivative at a, we shall denote it by f[{a) and say t h a t / ' ( A ) exists. 

Let [/ c: £ be an open set and let / : (7 -^ F be a map. Then / is continuously 
Fréchet differentiable, or simply C^, if f'{x) exists for each x eU and / ' : t/ -> 
~> L{E, Fjis continuous. Inductively,/is k-times continuously Fréchet differentiable, 
or C ,̂ i f / is C^ a n d / ' is C^~ Ч It follows that each C^ map is C^ differentiable for each 
/ ^ /c, and in this case the / ^ derivative of f is the continuous map/^-^^ = {/^^'~^^У 
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from и into the symmetric multihnear maps in Lj(E, F)(cf. [3, p. 176].) Finally,/ is 
infinitely Fréchet differentiable, or C*, if/ is C^ for each positive integer k. 

Diiferentiabihty of a function on an arbitrary subset of £'is usually defined in terms 
of the existence of diiferentiable local extensions of the function. Precisely, l e t / : A. a 
cz E -^ F. Then / i s C^ differentiable if for each a e A, there is an open set U about a 
and a C^ map g :U -^ F such that g agrees with / o n U n A. Defining C^ diff*eren-
tiabihty in this way allows one to extend the usual differential calculus in a fairly 
straightforward manner. However, for any given function the existence of such local 
extensions may be difficult to verify. Moreover, such an approach is unnecessary in 
that it is possible to extend the differential calculus by strengthening the definition 
of the derivative at a point. 

Let f : A cz E -^ F he 3, map and let ae A. A linear map Te L[E, F) is a strong 
derivative o f / a t a if for each г > 0, there is a ^ > 0 such that 

(2.1) \f{y) - f{x) - T{y - x)| ^ e\y - x\ whenever x, у e B^{a) n A . 

It is straightforward to verify that Tis unique when a G (Л^)* (* denotes closure.) 
I f / has a unique strong derivative at a, we shall denote it by d/(a) and say that d/(a) 
exists. 

A subset Л of a topological space X is admissible if A has dense interior in X, 
i.e. A CI (Л^)*. Thus if A a E is admissible and f : A -^ F is strongly differentiable 
at each point of A, then d/ is a well-defined map from A into L[E, F). 

Lemma 2.2. Let A cz В a X where X is a topological space, В is an admissible 
subset of X, and A is an admissible subset of B. Then A is an admissible subset of X. 
In particular, each relatively open subset of В is an admissible subset ofX. 

Proof. Let Ж be an open subset of X such that IF n Б is the interior of A relative 
to B. Let ae A and let JJ be an open subset of X about a. Then C/ n Б n IF Ф 0 
since A is an admissible subset of B. Moreover, 7 = С / п Ж п Б ^ Ф 0 Ь у the admis-
sibihty of В in Z . But W n B^ cz W n В a A dcnd therefore F с A^. Thus V n 
r\ A^ ZD F Ф 0 and A is an admissible set. 

Each open subset of В is an admissible subset of В and hence an admissible subset 
of X. This completes the proof. 

Although we are primarily interested in functions on admissible sets, we consider 
the special case when the domain is an open set. Let (7 с £" be an open set and let 
/ : и -> F be a map. If / is a C^ map, then the Fréchet derivative f\a) is a strong 
derivative of/ at each a eU, since by the mean value theorem (cf. [3, p. 156]) 

1/(3̂ ) - / W - / ' (« ) {y - x)\ й sup |/ '(c) - f'ia)\ \y - x\ 
С 

whenever the segment S from x to j^ is contained in U and the sup is taken over all с 
in S. Continuity of/ ' at a and the local convexity of U yield the result tha t / ' ( a ) is 
a strong derivative of / at each point a of U. The converse is also true as the next 
lemma shows. 
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Lemma 2.3. Let A с: E be an admissible set and let f : A -^ F be a map. If df{x) 
exists for each x e A, then df : A -^ L{E, F) is continuous. 

Proof. Let a e A and let e > 0. Then there is a (5 > 0 such that (2.1) holds. Let 
X e B^[a) n A^ and let v e E with \v\ = 1. Since d/(x) exists, there is a ? > 0 such 
that y = X + tve Bj^a) n A and 

\f{y) - f{x) - df{x) {y - X)\ s 8\y - X\ . 

Then \df{a) v - df{x) i;| = | j ; - x |-^ |d/(a) {y - x) - df{x) {y - x)\ S 2e. Thus 
|d/(a) - d/(x)| й 2s for each x e J5^a} n A"". 

Now let у e Вз{а) n A. As in the preceding paragraph, there is a ^ > 0 such that 
\df{y) — d/(z)| ^ 2e whenever z e В^[у) n A^. Since A has dense interior, there is 
a z e Bs{a) n В^у) n Л^. Then |d/(>) - d/(a)| й 4£ for each у e Bs{a) n A. 
Hence d/ is continuous at each point a oî A and the proof is complete. 

Since a strong derivative is a Frechet derivative, we have the result that on open 
sets, C^ differentiability is equivalent to strong differentiabihty (at each point of the 
open set.) By defining higher order strong differentiability inductively, we may extend 
this result to arbitrary orders of differentiability. For uniqueness of higher order 
strong derivatives, we assume that the domain of the function is an admissible set. 

Let Л с £" be an admissible set and let / : Л -> F be a map. Then / is strongly 
differentiable, or simply C^, if df(x) exists for each x e A. The map / is k-times 
strongly differentiable, or C ,̂ i f / i s Cl and d/is C^"^. The k^^ derivative o f / i s the 
continuous map d^f — d{d^~^f) : A -^ Lj^{E, F). Finally, / is infinitely strongly 
differentialbe, or C^, i f / i s Ĉ  for each positive integer k. 

We have seen that C^ differentiabihty is equivalent to Cl differentiability on open 
sets. It follows by induction that C^ differentiability is equivalent to C^ differentiability 
on open sets, for all k. If A cz E is admissible and f : A -^ F is C'l differentiable, 
then / 1 A^ (the restriction of/ to A^) is C^ differentiable and hence d-{/"(xj = f^^\x) 
for each x e A^ and each j ^ k. Since f^^\x) is a symmetric multihnear map when 
X G A^, it follows from the continuity of d^f that d^/(x) is symmetric for each x e A. 
It also follows that a C^ function on A is С\ differentiable, although the converse 
does not hold in general (cf. § 3.) Hence the usual rules of computing derivatives (e.g. 
derivatives of constant, linear, and multilinear maps) hold. 

Strong differentiability of a function at a point is a stringent but powerful condition. 
As Nashed [15, p. 228] observes, "strong differentiability itself is a form of the mean 
value theorem." It is not surprising then that strong differentiabihty of a function at 
a point implies that the function is well-behaved in a neighborhood of the point. 
For instance, suppose that Te L(E, F) is a strong derivative of / : Л cz ^̂  ̂  F at 
a e A. Let г > 0 and ô > 0 be as in (2.1). Then 

|/(>') - / W - T{y - x)\ й e\y - x\ , and |/(j;) - / (x ) | ^ ( |т | + e) |y - x| . 

T h u s / i s Lipschitz continuous on a neighborhood of a. 
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Theorem 2.4 (Chain Rule). Let f:AczE->Bc:F and g : В -^ G be maps and 
let a E A. If T is a strong derivative off at a and S is a strong derivative of g atf{a), 
then S о T is a strong derivative of g of at a. If A and В are admissible sets and f 
and g are Cj differentiable, then g of is C\ differentiable and 

d{gof){x) = dg(f{x))odf{x) 
for each x e A. 

Proof. The proof of the first statement is a straightforward computation using the 
Lipschitz continuity o f / n e a r a. The second statement follows by induction in the 
usual way. We remark that the proof of the second statement uses the fact that a map 
h : A -^ E^ X ... X £"„ is C^ differentiable if and only if each component function 
hi \ A -^ El (/ = 1, ..., n) is С\ differentiable, and in this case {éh{x))i = d(hi)[x). 

Pointwise strong differentiabihty has already been used to advantage in proving 
generalized inverse and implicit map theorems (cf. Leach [12], Nashed [15], Nijen-
huis [16].) We now extend these results to functions on arbitrary subsets of E, with 
particular attention to the case when the domain is an admissible set. The Open 
Mapping Theorem will be an immediate consequence of the following theorem of 
Graves. We preceed the theorem with a lemma due to Banach. 

Lemma 2.5. (Banach [1, p. 38]). If Te L{E, F) maps E onto F, then there is a num­
ber M such that for each y e F there is an x e E with Tx = y and \x\ ^ М\у\. 

Theorem 2.6 (Graves [6, Theorem 1]). Let U a E be an open set about XQ and let 
f :U -^ F a map. Suppose that there is a Te L[E, F ) from E onto F and positive 
numbers e and ô such that B^[XQ) CZ U and 

\f{y)-f{x)- T{y-x)\ us\y-x\ 

whenever x and y are in B^^XQ), where sM < 1 and M is a constant as in Lemma 2.5. 
Then the equation / (x ) = z has at least one solution with x e B^{XQ) whenever 
z e 5,(/(xo)), where g = S{1 - Ms) M~K 

Theorem 2.7 (Open Mapping Theorem). Let f : A a E -^ F be a map and let 
a E A. Suppose that T is a strong derivative of f at a and that T maps E onto F. 
Then there is a ô > 0 such that if U = Bj^a) n A, then f | U^ is an open map. 
Moreover, f{B) is an admissible subset of F whenever В is an adtnissible subset 
of E contained in U. In particular if A is admissible, then (7^ ф 0 and f[U) is an 
admissible subset of F, 

Proof. Let M be a constant for Tas provided by Lemma 2.5. Pick г so that 0 < 
< г < M~^ and let ô be as in (2.1). If Fis an open subset of E contained in V = 
= Bj^a) n A and XQ e V, then there is a 7 > 0 such that B^(XQ) С Fand by Theorem 
2.6, JB^(/(xo)) c= /(Бу(хо)) for some ^ > 0. Hence/(F) is open a n d / | U^ is an open 
map. 
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Now let В be an admissible subset of E contained in U. Then f{B^) is open in F, 
and by the continuity of/ on U,f(B^) is dense in f(B). Thus/(B) is an admissible 
subset of F. Finally, if A is admissible, then U is admissible by Lemma 2.2. Hence 
U^ Ф 0 and/(l7) is admissible. This completes the proof. 

If/ : iE" -> F is a C°° map such that / ' (ö) is one-to-one for some a e E, it does not 
follow t h a t / i s one-to-one on a neighborhood of a. For example, let E and F be the 
Banach spaces Ü[0, 1] and I?[0, 1], respectively, and let / : £ " - > JF be the map 
f{x) = x\ i.e. f{x) (t) = [x{t)Y for t e [O, 1]. Then / is C°° and f'(x) и = Ixu for 
each x,u e E. For each 5 G [0, 1] let y^ E Ü[0, 1] be the map defined by y^[t) — t^ 
if t e (5, 1] and y^{t) = — ^̂  it ^ G [O, 5]. If a = J'Q, then/ ' (ö) is one-to-one. However, 
| | л — a||4 = (25 /̂3)̂ "̂̂  and f{y^ == f(a). Hence / is not one-to-one on any neigh­
borhood of a. The problem here is that the range of/ ' (a) is not closed in the Hilbert 
space L^[0, 1]. 

A continuous left inverse of a map Те L{E, F) is a map S e L(F, E) such that 
S о T = 1^, the identity on E. It is well known that Thas a continuous left inverse 
if and only if Tis one-to-one and the range R{T) of Tis closed and complemented 
in F. Of course, if F is a Hilbert space then Thas a continuous left inverse if and only 
if T is one-to-one and R{T) is closed, since each closed subspace of Fis complemented. 
Similarly, if F is finite dimensional, then T has a continuous left inverse if and only 
if Tis one-to-one. 

Theorem 2.8. Letf : A cz E -^ F be a map and let a G A. Suppose that Tis a strong 
derivative off at a and that T has a continuous left inverse S. Let N denote the null 
space of S. Then: 

(ij there is a ô > 0 such thatf\ U is continuous and 

{*) \y-A^ 2|S/(j) - Sf{x)\ S 2\S\ . \f{y) - f{x)\ 

whenever x, y e 17, where U = B^{a) n A, Hence f\U is one-to-one and con­
tinuous and ( / | IJ)~^ is continuous onf(U). 

(ii) if Ô is any positive number such that f\ U is continuous and (*j holds for 
X, y eU = B^[a) n A, then there is a continuous map g ''f{U) + N -> U such 
that 

g(f(x)) = X and g~^{x) = f(x) + N, for each xeU . 

Furthermore, S is a strong derivative of g at each point of f{a) -f TV, and in 
particular, S is a strong derivative of{f\ U)~^ at f{a). Finally, the setf{U) + TV 
is admissible in F if A is admissible in E. 

Proof, (i) Let h(x) = Sf(x) — x for x e A. Then 0 G L(E, E) is a strong derivative 
of /г at a by the chain rule. Hence there is a ^ > 0 such that if (7 = B^(a) n A, t h e n / 
is continuous on U and 

\h{y) - h{x)\ = \Sf{y) - y - Sf{x) + х\й i\y - x\ 
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whenever x, y e V\ Thus if x, y e U, then 

\y-x\u \Sfix) -X- Sf{y) + y\ + \Sf{y) - Sf{x)\ й 

й i\y -x\ + \Sf{y) - Sf{x)\ , 
and 

(*) \y ~x\^ 2\Sf{y) - Sf{x)\ й 2\S\ . \f{y) - f{x)\ whenever x^yeU . 

It follows t h a t / 1 и is one-to-one and that ( / | L/)~4s continuous on f(U). 
(ii) Let Ô and U be as in (i) and let H = Sf\U. Inequality (*) implies that H is 

one-to-one on U and that H'^ : H{U) -^ U is continuous. Let В = S~^{H(U)) = 
= S~\Sf{U}) and Ы g : В -^U bQ the continuous map H~^ о S.lf xeU then 

g{f{x)) = H-\Sf{x)) = x. 

Now z e В implies g{z) = H~^(Sz) and x E U implies x = Н~^(Н(х)) = 
= H'\Sf{x)), Thus g{z} = x if and only if Sz = Sf{x), i.e. if and only if z e 
G / ( X ) + A'̂ . Hence 

g - 1(л-) = f(x) -\- N, for each XEU . 

It follows that В = f{U) + TV and that each ZEB can be written uniquely in the 
form z = f(x) 4- V with x EU and i; e TV, namely x = g{z) and v = z — f(g(z)). 

Fix и E N and let ä = / ( a ) + u. We show now that S" is a strong derivative of g 
at ci. We assume that |5 | ф 0 since E is trivial if [S| = 0. Let e > 0. Then there is 
a positive number rj < ô such that 

|/(>'j ~ / W - T(y - x)| ^ I e|S|~^ |y - x| whenever x, y E B^[a) n Л . 

Now let Q = -\rj\S\~^ and let x, у E Bj^a) n B. Then 3c = f{x) -f v and Ĵ  = f(y) + w 
for some x, у EU and f, w e TV. It follows that -Sx = Sf{x), Sy = Sf(y), g(x) = x, 
and g{y) = y. By (*), 

\y - a\^ 2\Sf{y) - Sf{a)\ = 2\Sy - Sx\ й 2\s\ ,\y - x\ < ц , 

and similarly for x. Thus 

Ш - g{x) - s{y - x)| = \y-x- s{f{y) ~ /(x))| = 
= \S{T{y - x)-f{y) + / ( x ) ) | ^ \S\i8\s\-' \y-A^ 

й e\S\-'^ \Sf(y) - Sf{x)\ = s\s\-^ \Sy - Sx\ й е|з" - 3c| . 

Hence S is a strong derivative of g at each point of / (a) + TV. 
Finally, suppose that Ä is admissible. Then U is admissible by Lemma 2.2. The 

inequality 

\H(y) - H{x) ~{y- x)| = \Sf{y) ~ y - Sf{x) + х\й Ф - x\ 

and Theorem 2.6 imply that H(U^) с Я(1/)^ Then g'^U"") = S-\H{U^)) is open 
in F and contained in B. If z E В then there is a net {x^} of points in U^ converging 
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to g[z). Since / is continuous on U, the net {/(x„) + z — /(0(2))} converges to z 
and lies in B^. Thus В is admissible and the proof is complete. 

Theorem 2.9 (Inverse Function Theorem). Let A a E be an admissible set con­
taining a and let f : A -^ F be a map. Suppose that âf(a) exists and is an iso­
morphism. Then there is a Ô > 0 such thatf{U) is an admissible subset of F,f\ U : 
: и -^ f{U) is a homeomorphism, and d/(fif)~^ is a strong derivative of ( / I U)~^ 
at f{a), where U = B^[a) n A. Moreover, if f is C\ differentiable, then 3 can be 
chosen so that (/1 U)~^ is C^ differentiable. 

Proof. The proof of the first statement is a straightforv^ard application of Corollary 
2.7 and Theorem 2.8. Suppose that / is Cj differentiable. Then d/ : Л -> L{E, F) is 
continuous and C^"^ (if к > 1). Now the collection Ж of isomorphisms in L[E, F) 
is an open set, and the map в{Т) = T~^ from Ж into L{F, E) is C°° (cf. [3, p. 148]) 
and therefore Cf. Thus д may be chosen sufficiently small that d/(x) e Ж for each 
XEU -= B^{a) n A,f(U) is admissible, and f\U:U -^ fifJ) is a homeomorphism. 
Let g •= {f\ U)"^. Then g is continuous and dg(f{x)) = df(x)~^ for each xeU, 
i.e. eg = в о df о g. By induction, g is C^ differentiable. 

Theorem 2.10. Let A a E be an admissible set containing a and let f : A -^ F 
be a Cl map. Suppose that df(^a) has a continuous left inverse S and let N be the 
null space of S. Then there is a ô > 0, an admissible subset В of F, and a C|̂  map 
g : В ^ A such that 

g{f{x)) = X and g~^{x) = f{x) + N whenever x e В^{а) n A . 

Proof. Since d/ is continuous, there is a ^ > 0 such that S о df(x) is an iso­
morphism for X e Bj^a) n A. By Theorem 2.8 there is a positive number ^ < ^ and 
a continuous map g : f{U) + N -^ U, where U = В^(а) n A, such that В = f(U) + 
+ Nis admissible and if x G 17, then g(f{x)) = x, g'~^{x) = f{x) + iV, and S о d/(x) 
is an isomorphism. Form the product space E x TV and let тг̂  (i = 1, 2) be projection 
onto the i^^ factor. Define ф :U x iV -> Б by ф{х, v) = f{x) + v. Then ф is con­
tinuous and Ĉ  differentiable. 

If z e Б then z - f{g{z)) e N. Define ф : В-^ U x N by \l/{z) = {g{z}, z -
— f[g{z)). Then ф о i//(z) = z for each z e B, and ф{ф{х, v)) = ^{f{x) -\- v) = (x, v) 
for each (x, v)eU x N. Since g is continuous, ф is continuous, and ф :V x N -^ В 
is a homeomorphism with ф~^ = ф. Moreover, g = п^ о ф~^. 

Let xeU and v G N. Then dф(x, v) (и, w) = d/(x) w + w for each (и, w)e E x N 
If dф(x, v) (u, w) = 0, then S d/(x) и = 0, and hence и = 0 and w = 0. Thus 
d^(x, v) is one-to-one. If z e JF, then there is a (unique) и e E such that S d/(x) и = 
= Sz and d0(x, Ü) (и, z — d/(x) w) = z, i.e. d(/>(x, Î;) maps onto F. It follows that 
d</)(x, f) is an isomorphism for each x eU and each v e N and that ф"^ is Cj dif­
ferentiable. Since g = ж^ о ф"^, g is C^^ differentiable by the chain rule. 
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Theorem 2.11 (Parameterized Mapping and ImpHcit Mapping Theorems). Lei 
a e A cz E, b e В a F, and f : A x В -^ G. Suppose that T is a strong derivative 
off at (a, b) and that the map T2 : F -^ G defined by T2{v) = T(0, v) is an iso­
morphism. Then: 

(i) there is a ô > 0 such that for U^ = B^(a) n A and V^ = В^(^Ь) n Б, // xeUi 
then the map f^ :V^-^G defined by fx{^) = /(^? 2) is one-to-one and both f^ 
and f~^ are Lipschitz continuous. Moreover, fJ^Vi) is an open subset of G 
for each x eUj.. 

(ii) if V cz F is an open set with с e V cz B, for some с e V^, then there is an open 
set W cz G about f (a, c) and an r > 0 such that W cz fJîy)for each x e B^[a) n 

пА. 
(iii) // U, V, and W are sets with U cz. U^, V cz V^, and W cz f^ÇV) for each xeU, 

then there is a continuous map g:U x W^ Vsuch that 

f{x, g{x, w)) — w for each (x, w) e (7 x W. 

Furthermore, if A and В are admissible sets and f is С\ differentiable, then д can 
be chosen so that all of the maps f^,f~^, and g are C\ differentiable. 

Proof. Let (̂ : AxB-^ExGhQ the map ф ^ n^ x / . Then {n^ x T) is 
a strong derivative of ф at {a, b) and is an isomorphism. By Theorem 2.8 and the 
definition of strong differentiability, there is a ^ > 0 such that for U^ = Bj^a) n A, 
Fl = Bib) n B, and N = 2|(7ri x ту'\ 

(*) \(y, w) - {x, z)\ й Щф{у, w) - ф{х, z)\ and 

(**) \ф(у, w) - ф{х, z)-{y - X, Т{у - X, w ~ z))| ^ N-^\(y ~ x, w - z)\ 

whenever (x, z), [y, w)eU^ x V^ . 

Let 0 = (̂  I V\ x Fl- InequaHty (*j implies that ф is one-to-one and that ф~^ is 
continuous. Inequality (**j implies that 

\Ф{У. wj - Ф(х, z)\ й К\{у - x, w - z)\ for (x, z), (y, w)eU^ x F^ , 

where К = Int x Т\ + N~^ and hence ф is continuous. 
For each x e t/j let /^ : V^ -> G be the map /^(z) = / (x , z). Then 

| /x(^j - / х И | = \{X - X, f{x, Z) ~ f{x, W)\ = 

= \ф{х, z) - ф[х, w)\ ^ K\Z - w\ for z,weV^ . 

Thus each map Л is Lipschitz continuous. In a similar manner, 

| z - w | ^ i V | / , ( z ) - / » | and 

(***) | / x ( ^ ) - / » - r , ( z - w ) | ^ i V - ^ | z - w j for z,weV,. 
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Hence each map Л is one-to-one a n d / 7 ^ is Lipschitz continuous. By Theorem 2.6 
(with M = iN and e = N~^), /^{V^) is open in G. If В is an admissible set, then 
Ff Ф 0 and/^.(Fi) is an admissible subset of G for each xeU^. This completes the 
proof of (i). 

For (ii), let V a F be an open set with V a В and Vn F^ ф 0. Let с e F n F^. 
There is an /7 > 0 such that B^{c) a Vn V^. By Theorem 2.6 and inequality (**), 

B^Uc)) c: fXB^{c)) cz f^{V) for each xeU\, 

where Q = r]N~K Let fi = ig, W= B^{f{a,c)), and r = min {i/zK~^ ^ } . If x e 
6 Б^(а) n A, then 

|/.(c) - Л(с)| ^ |ф(х, с) - ф(а, c)\ й К\х ~ а\ < ß . 

Moreover, if w е If, then |w - /^(c)| g |w - fj^c)\ + \fjic) - /x(^)| < Q- Hence, 
W с Bj^fJ^c)) с / ^ F ) for each x e B^(a) n A and the proof of (ii) is complete. 

For (iii), suppose that U, V, and IF are sets with U a Ui, V a V^^, and IF с /^(F) 
for each xeU. Then (7 x IF c= ф(1/ x Fj. Let i/̂  = (/)-Ч I/ x IF. If (x, w)eU x 
X W, then (x, w) = ф{ф{х, w)) = 0((/^i(x, w), i/̂ 2( .̂ >v)) = (iAi(x, w), f(il/{x, w))). 
Thus <Д1(х, w) = X and / (x , i/̂ 2(-̂ ? ^')) ~ ^̂  ^^^ ^^^^ x EU, w e W. Let Ö' be the con­
tinuous map Ф2 and (iii) is proved. 

Finally, suppose that A and В are admissible sets and that / is C^ differentiable. 
Then there is a (5 > 0 such that, in addition to inequahties (*) and (**), the map 
d2/(x, z) : F -^ G defined by d2/(x, z) (v) = d/(x, z) (0, v) is an isomorphism for 
each (x, Z)EU^ X F^. Then the map ф defined above is one-to-one and continuous, 
ф"^ is continuous, and d0(x, z) is an isomorphism for each (x, z) e t/^ x F^. It 
follows that the maps ф"^ and g defined above are C^ diff'erentiable. Since each/^ 
is a topological embedding and d/^(z) = d2/(x, z), it also follows that /^ and f~ ^ 
are C] diff'erentiable for each x eU^. This completes the proof of Theorem 2.11. 

3. Extension of strongly differentiable functions. In § 2 a function f : A cz E -^ F 
v/as defined to be C^ differentiable if and only if for each a e A, there is an open set U 
about a and a C^ map g : U -^ F such that / and g agree onU n A. Since C^ and C^ 
dififerentiabihty are equivalent on open sets, it follows that C^ differentiabihty o f / 
implies C^ dififerentiabihty o f / when the domain A of / is an admissible set. The 
converse does not hold in general. For example, let A cz R^ ht {x = (x^, X2) : x^ Ф 
Ф 0} u {(0, 0)} and Ы f : A -^ R be the map defined by / (x ) = / ( x i , X2) = ^1X2 
if X2 > 0 and/ (x) = 0 otherwise. The m a p / i s strongly differentiable on A, but the 
unique continuous extension o f / t o R^^ is not Fréchet differentiable at points (x^, X2) 
with Xj Ф 0 and X2 = 0. Thus / is not C^. In this section we show that a Ĉ  map 
f : A c: R^ -> R^ has a C^ extension to an open set about A provided A is closed 
and either к = 1 or Л is convex. This result follows from a theorem of Whitney. 

Definition 3.1 (Whitney [18].) Let / : Л с i?^ -> i?^ be a map and к SL positive 
integer. For each positive integer и ^ fc let DJ be a map from A into Ü„{RP, R^), 
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the space of symmetric n-multilinear maps from R^ to R'^. T h e n / i s C^ differentiable 
in the sense of Whitney, or simply C^, in terms of {D"f]l=, j if for each a e A and each 
e > 0, there is a ^ > 0 such that 

k — m 1 

I D V W - I -D'"'-"f{x){y - x)" й e\y - xl"- '", 
n = 0 n\ 

whenever m ^ к and x, у e Bj^a) n A . 

Here D^/ = / and T>'''^'^f{x)[y — x)" is the m-multihnear map which results from 
placing у — xin n of the arguments of D'""^"/(x). The m a p / i s C°° in the sense of 
Whitney, or C^, in terms of {D"f}^= ^ i f / is C^ in terms of {D7},^=i for each positive 
integer /c. 

LQÎ f:A a RP ~> R^ be Cl in terms of {D"/}J=i. Then it can be shown easily 
t ha t / and each of the maps D"/are continuous. It also follows that if n,m,n + m ^ 
^ /c, then D"/ is C^ in terms of {D""^-^/}J=i. In particular, for any ae A and any 
£ > 0, there is a (5 > 0 such that 

\f{y) - f{^) - Ц/(-> )̂ {у - ^)\ й &\y - ^\ whenever x,ye В^а) n A . 

Thus D / i s a locally uniform differential in the sense of Vainberg ([17].) Since D / 
is continuous and 

\f(y) - f{x) - Df{a) {y - x)\ й e\y - x\ + \Df(x) - D/(aj | .\y - x\ 

for X, у e Bj^a) n A, it follows that D/(a) is a strong derivative of / at a. By induc­
t i o n , / i s Cl differentiable w h e n / i s C^ differentiable in terms of {D7}n=i and A is 
admissible, and in this case D"/(x) = d"f[x) for each x e A and each n = 1, ..., k. 
A much stronger statement can be made when A is closed. 

Theorem 3.2 (Whitney [18, Theorem I]). Let A a RP be a closed set andf : A-> R^ 
a map. Suppose that f is C^ in terms o/{D7}^=i. Then there is a C^ map g : RP -^ 
-> R^ such that g \A — f and g^''\x) = D"f(x)for each x e A and each n = 1, ..., k. 

Taylor's theorem yields the converse to Whitney's theorem. Specifically, if/ : RP -» 
-^ R^ is C^ differentiable and A с RP, then / | Л is Cl in terms of {/̂ "̂  | Л}^'=1. 
Thus the concepts of C^ differentiability and C^ differentiability are equivalent on 
closed sets and on open sets. 

We have already seen that if 4̂ ci i?^ is an admissible set and / : ̂ 4 -> i?^ is C^ in 
terms of some {^"f]n=^i, t h e n / is Ĉ  differentiable. A similar computation shows 
that i f / i s Cl, t h e n / i s C^ m terms of {d/}. Hence we have the following corollary 
to Whitney's theorem. 

Corollary 3.3. Let A a RP be a closed admissible set (i.e. the closure of an open 
set) and let f : A -^ R^ be a map. Then these are equivalent: 

(l) The map f is C] differentiable, 
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(2) The map f is Cl, clifferentiable in terms of some {D/}. 
(3) The map f is C~ differentiable. 

This result does not extend to higher orders of differentiability without additional 
constraints on the set A (e.g. convexity), as the next example shows. 

Example 3.4. For each positive integer n, let /„ = [4~", 2 . 4~"] cz R. Let A be 
the union of the /„'s together with 0, so that Л is a closed admissible subset of R. 
Define / : Л -> i? by f{x) = (4"")^ = 4"^" if x e I, and / (0) = 0. Then / is C] with 
d/(x) = 0 for all X e A, and hence / is C^ differentiable. To see that d/(0) = 0, 
let л: e/,„ u {0} and у el„ with m > п. Then |j^ — x| ^ ^ 4~" and \f{y) — f{^)\ = 
^ / ( j ; ) = 4'^" S 2 . 4'-"\y - x\. Thus d/(0) = 0. Now if / is Cl in terms of 
{D/, D V } , then necessarily D / = d/ = 0, D^" = d^/ = 0, and by Whitney's theorem 
there is a C^ map g : R -> R such that g \ A =^ f, g' \ A '^ 0, and g" \ A ~ 0. An 
application of Taylor's theorem to g with x = 4"^""^^^ and y = 4"" yields a point c„ 
between x and y such that 

^(j^j = g{x) + ^'(^) (з̂  - ^) + 2 ^4^") 0 ' - ^Y ' 

But g[y) = y^, g(x) = x^, and ^'(x) = 0 imply that 

у — X 3 

This cannot happen since g" is continuous and g"(0) = 0. Hence/does not have a C^ 
extension to any neighborhood of 0 and / i s not C ,̂. This example also shows that the 
definition of C^ differentiability is not inductive, since/is Cl in terms of {d/} and d/ 
is cl in terms of { d ^ } , b u t / i s not C^ in terms of {d/, d^-f]. 

Theorem 3.5. Let A a R^ he a convex set, f : A -^ R^ a map, and к a positive 
integer. For each positive integer n ^ k, let D"/ he a continuous map from A into 
Д(1?^, i?^) such that D"/(x) is a Fréchet derivative ofW^f at x for each XEA, 
where D^/ = f. Then f is Ct in terms of {D"/}^'^ j . / / A is also closed, then f is C^ 
differentiable. 

Proof. Let a E A and let e > 0. Then there is a (5 > 0 such that for each positive 
integer n ^ k, \D"f(y) — D"/(x)| < г whenever x, у e B^(a) n A. Let x, у e В^(а) n 
n A and define a : [O, 1] -> R^ by a(t) = tx + [1 — t) y. Since Bg{a) n A is convex, 
(x[t) e Bô{a) n A for each t e [0, 1]. Let h = / о a. It follows then that h is C^ dif­
ferentiable (in the ordinary sense with one-sided derivatives at 0 and 1) and that 
/î(")(r) :=. DJ{a{t)){y - x)", n йК where D" / (a (^ ( j ; - x)" is the number that 
results from placing у — x in each of the n arguments of D"/(a(?)). Integrating by 
parts in the usual way leads to the equation 

h{l) = h{0) + h'{0) + ... + - - 1 - Ь^Щ + - i — [ \ l - tr' h^'\t)dt. 
{k - 1)! [k - l ) ! j o 
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Rewriting this equation in terms of/, a, y, and x yields the equation 

/{у)^/(х} + Щх)(у-х)+ ...+ 
(fe - 1)! 

D'-VW + 

(1 ~tf-^D'f{œ{tj}(y-xfàt. 

Now 
(fe-l)!j . 

i D'/(x) (y - xf = — i - f \ l - 0"-^ О-'Дх) (j. - xf dt 
k\ [k - I j ' J o 

and hence 

fiy)-l -т{х)(у-хг n = 0 nl 

(fc 
: ^ , £(i -tf тШ) - ОУ(х)] (j; - xf dt ̂  —\y - x\' 

In a similar way. 

D T ^ - Z --D-^-^xJlj^-x)" 
n = o n! {k - m)! !>; - xV 

for each positive integer m ^ /c and thus / is C^ in terms of {D"f]n = i- If ̂  is also 
closed, then/has a C^ extension to R^ by Whitney's theorem and / i s C^ differentiable. 
This completes the proof. 

Corollary 3.6. Let A a R^ be closed, convex, and admissible, let f : A -^ R^ 
he a map, and let к he a positive integer or infinity. Suppose that for each positive 
integer n ^ k, D"/ is a map from A into Ц^Е^, R^). Then these are equivalent: 
(1) For each n ^ k, D^f is continuous and D"/(x) is a Fréchet derivative ofD"~^f 

at xfor each x e A. 
(2) The map f is C^ differentiable and T>"f(x) = d"/(x)/or each XEA and each 

n й к. 
(3) The map f is C^ differentiable in terms of {D"/}!S=i. 
(4j The map f has a C^ extension g to R^ and g^"\x) = D"/(x)/or each x e A and 

each n ^ k. 

Proof. Statements (3) and (4) are equivalent by Whitney's theorem. Now (3) 
implies (2) and (2) implies (1) whenever the domain A is an admissible set. If (1) 
holds, then D"/(x) is symmetric for x e A^ and by the continuity of D"/, D"f(x) is 
symmetric for all x e A. Hence (1) implies (3) by Theorem 3.5. This completes the 
proof. 

Theorem 3.7. Let С a R^ be closed, convex, and admissible. Let U a R^ be an 
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open set, Л = U n С, f : Л -^ R^ a map, and к a positive integer or infinity. Then 
these are equivalent: 
(1) The map f is C^ differentiahJe. 
(2) The map f is C' differentiable. 

Proof. The set A is admissible by Lemma 2.2 and thus (2j implies (1). Suppose 
t h a t / i s C\ differentiable and let a e A. Then there is a ^ > 0 such that Bj^a^ cz U. 
Now {Bj^a) n Cj* is closed, convex, admissible, and contained in A. By Corollary 
3.5, / | (БДа) n C)* has a C^ extension g to R^. Then g \ B^{a) is a C^ map which 
agrees with / on B^{a) n A. Hence / is C^ differentiable and the proof is complete. 

4. Differentiable manifolds with generalized boundary. Let £* be a Banach space. 
An E-manifold with generalized boundary, or simply an E-manifold, is a topological 
space M such that for each pe M there is an open set U about p and a homeo-
morphism (p from U onto an admissible subset of E. 

An £-manifold is a Tj space, but it need not be Hausdorff or paracompact. Now 
a regular T^ space satisfying the second axiom of countability is metrizable and there­
fore paracompact (cf. Kelley [Ю], pp. 125, 160].) Since a paracompact space is 
a regular Hausdorff space, we have the result that an £'-manifold having a countable 
base for its topology is paracompact if and only if it is regular. However, an E-
manifold need not be a regular space. For example, let M a R^ consist of the open 
upper half plane with its usual topology and the set of rational points on the x-axis, 
where a basic open-neighborhood of a rational point XQ on the x-axis is the open 
upper half of a disc with center at Xo together with x^. Then M is a Hausdorff i?^-
manifold with a countable base for its topology, but M is not regular and hence not 
paracompact. 

An n-manifold (with generalized boundary) is a regular i?"-manifold satisfying 
the second axiom of countability. It follows from the comments in the preceeding 
paragraph that an ?i-manifold is Hausdorff and paracompact. 

An atlas for an ^'-manifold M is a collection J3/ of functions satisfying: 

(i) each ф e j / is a homeomorphism from an open subset dom cp of M onto an 
admissible subset im cp of E. 

(li) M = u dom (p((p G j / j . 
If (p and Ф are members of the atlas j / , then the domain (p(dom cp n dom ф) of 
ф о (p~ ^ \s З.П open subset of im (p and therefore an admissible subset of £" by Lemma 
2.2. An atlas j ^ for M is a C%C^) atlas if i/r о ( p " 4 s C^C'') differentiable for each 
(p,\l/ E J^, 

Let j / be a Cl{C^) atlas for the ^'-manifold M and let ^ be the collection of all 
homeomorphisms xj/ from an open subset of M onto an admissible subset of E such 
that Ф о (p~-^ and cp оф~^ are C\{C^) differentiable for each cp e se. Then ^ is the 
unique C\{C^) atlas for M which contains s^ and is not properly contained in any 
d'lC'') atlas for M. 

59 



A Cl{C^) differentiable structure for the jE'-manifold M is a maximal Cl[C^) atlas 
for M. A Cl{C^') manifold is a pair (M, ^ ) where M is an ^-manifold for some E 
and ^ is a Cl{C^) differentiable structure for M. If j ^ is a C%&) atlas for M, then 
members of the unique Cl(C^) differentiable structure containing J / are called 
charts. A chart at pis з. chart containing p in its domain. 

Let (M, ^ ) be a C^(C^) manifold. If p is a point of M such that for some chart cp 
at p, (p(p) is an interior point of im (p, then /? is an interior point of im ф for each 
ф e ^. The boundary of M, denoted by дМ, is the set of all points p of M such that 
for some (and hence every) chart (p at p, (p(p) is not an interior point of im cp. The 
manifold M i s a manifold without boundary if ÔM = 0 or equivalently if for each 
chart (p the image of (p is open. Since C^ and C] differentiability agree on open sub­
sets of E, the following theorem is immediate. 

Theorem 4.1. Let M be an E-manifold. If se is an atlas for M such that for each 
(p E j ^ , im (p is an open subset of E, then se is a C^ atlas if and only if se is a C\ 
atlas. Hence (М, ^ ) is a C^ manifold without boundary if and only if (M, ^ ) 
is a C^ manifold without boundary. 

A half-space in £" is a set of the form £д = {x e E : Я(х) ^ 0} for some functional 
À e L(E, R). A corner in £* is a set of the form Г\Е^[Х e Л) for some linearly indepen­
dent set Л a L(E,R). The manifold (M, ^ ) is a manifold with smooth boundary 
[manifold with corners) if there is an atlas se ^ Q) for M such that im (p is an open 
subset of a half-space (of a corner) in E for each ç e s^. 

Theorem 4.2. Let M be an n-manifold. If se is an atlas for M such that for each 
cp E se, im ip is an open subset of a half-space or a corner in R^\ then se is a C^ 
atlas if and only if se is a C^ atlas. Hence (M, Щ is a C^ manifold with smooth 
boundary {with corners) ij and only if (M, ^) is a Cj manifold with smooth bound­
ary (with corners.) 

Proof. This theorem follows immediately from Theorem 3.7. 
Let M and N be C^ manifolds and let / : M -> iV be a map. Then / is CI dif­

ferentiable (r ^ k) i f / i s continuous and for each chart (p for M and each chart i// 
for N, the composition ф of о (p~^ is Ĉ  differentiable. The class of Cl manifolds 
is a category with morphisms the C^ differentiable functions. By Theorems 4.1, 4.2 
and Theorem 3.7, this category includes C^ manifolds without boundary and C^ 
n-manifolds with smooth boundary or with corners. Thus we are able to give an 
intrinsic description of a convenient class of differentiable manifolds with boundary. 
In addition, one may extend the usual constructions of differential geometry (e.g. 
tangent spaces, the tangent bundle, etc.) to manifolds with generalized boundary in 
standard ways (cf. [5]). 

5. Differentiable semigroups. In this section we apply the Parametrized Mapping 
Theorem (Theorem 2.11) to differentiable semigroups and their actions. 
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A topological semigroup is a pair (S, m) where S is a Hausdorff space and m: S x 
X S -> S is a continuous function such that if x, y, z E S, then m(m(x, y), z) = 
= m(x, m(y, z)). Throughout this section (5, m) is contracted to S, and m(x, j^) is 
denoted by xy. Semigroup means topological semigroup. A monoid is a semigroup 
with a two-sided identity element, usually denoted by 1. 

A C^ semigroup [k ^ 1) is a semigroup S on a Ĉ  manifold (with generalized boun­
dary) such that the multiplication m: S x S ~> S is C^ differentiable. Examples 
of Cl semigroups include Lie groups, the semigroup M„(R) of all n x n real matrices, 
the Lie monoids of Hille and Phihps [6], cones in R\ and ray semigroups. Precisely, 
let G be a Lie group with Lie algebra L[G) and let D c= L[G). The ray semigroup 
generated by D is the subsemigroup of G generated by the set of elements of the form 
exp (tX), where t ^ 0 and X e D. Thus, a cone is a commutative ray semigroup. 
Jurdjevic and Sussmann have shown [9] that a ray semigroup S has dense interior 
in the Lie subgroup it generates. It follows that S is a C^ monoid, although the 
identity of 5 may lie at an irregular point of the boundary (e.g. a corner or a cusp). 
Ray semigroups arise in the control theory of certain nonhnear systems on manifolds 
(cf. Brockett [2], Hirschorn [8], Jurdjevic and Sussmann [9]). Other examples of C^ 
semigroups are subsemigroups of M„(i?) which have as underlying space an admissible 
subset of a submanifold of M,^(R). For instance the semigroup 

^ = [(l i ) - ^'З^^О, x + y ^ I 

is a C^ monoid. 
Let 5 be a monoid and let M be a space. An action of 5 on M is a continuous 

map n: S x M -^ M such that: (i) 7г(1, p) = p, for all p E M, and (ii) n(xy, p) ~ 
= K(X, 7i(y, pj), for all X, у E S, and all p E M. When no confusion seems possible, 
7г(х, p) is contracted to xp. For each x E S, n^\ M -^ M is the map defined by 
^X(F) = ^P-

Theorem 5.1. Let S be a monoid on a C^ manifold and let M be a C\ manifold. 
Let TC be an action of S on M such that n is strongly differentiable at (l , p),for some 
p E M. Then there are open sets U a S about 1 and V a M about p such that if 
X E U, then n^ I и is a homeomorphism onto an admissible subset of M. 

Proof. By using charts at 1 and p, we may assume that S is an admissible subset 
of E and M is an admissible subset of F, where E and F are Banach spaces. Since 
я^: M -> M is the identity map, d27r(l, p): F -^ F is the identity map. By Theorem 
2.11, there are open sets U and Fas required and the proof is complete. 

Corollary 5.2 (Local Cancellation). Let S be a monoid on a С\ manifold such that 
m: S X S -^ S is strongly differentiable at (1, l). Then there is an open set Wabout 
1 such that if x, y, z E W and xy = xz, then y = z. 

61 



Proof. The multiplication m is an action of iS on itself. By Theorem 5.1, there are 
open sets U and F about 1 such that if x G L/ and y, z e F with xy = xz, then y = z. 
Let W = и n Fand the proof is complete. 

A C^ monoid is not necessarily embeddable in a group (e.g. М,^{К)). However, it 
is shown in [4] that a C^ monoid is locally (near 1) embeddable in a Lie group. Our 
final application of Theorem 2.11 concerns the group of units of a monoid. 

Let S be a monoid. The group of units of S, denoted by H(l), is the set of elements 
of S having a two-sided inverse. Clearly, Я(1) is a group. 

Theorem 5.3. Let S be a C\ monoid. Suppose that 1 is not a boundary point of 5. 
Then Я(1) is an open subset of S. 

Proof. By using a chart at 1, we may assume that S is an admissible subset of the 
Banach space E and that 1 e S^. Let t/ с S^ be an open set about 1 such that if 
X, y, z eU and xy = xz, then у = z. Let F be an open set about 1 such that V. V a 
с и. By Theorem 2.11, there is an open set Â  about 1 such that 1 e xFfor each 
xeN. Let XEN n V. Then there is a, у e V with xy = 1. Now yx E V^ a U and 
yxyx = yx. By cancellation in U, yx = 1. Thus, N n V a Я(1). Since translation 
by an element of Я(1) is a homeomorphism of S, H(l) is open and the proof is 
complete. 

Remark . Mostert and Shields showed in [13] that if S is finite-dimensional, then 
continuity of the multiplication is sufficient to prove that Я(1) is open. Moreover, 
Я(1) is a Lie group in this case. 

References 

[1] Banach S.: Théorie des Opérations Linéaires, Warsaw, 1932. 
[2] Brockett R. W.: Lie algebras and Lie groups in control theory, Geometric Methods in 

System Theory, Reidel, Boston (1973), 43-82 . 
[3] Dieudonné J.: Foundations of Modern Analysis, Academic Press, New York and London 

(1960). 
[4] Graham G.: Manifolds with Generalized Boundary and Diflferentiable Semigroups, Ph.D. 

Thesis, University of Houston, 1979. 
[5] Graham G.: The Lie theory of differentiable semigroups (to appear). 
[6] Graves L. M.: Some mapping theorems, Duke Math. J. 17 (1950), 111—114. 
[7] Hille E. and Phillips R. S.: Functional Analysis and Semigroups, Am. Math. Soc, Providence 

(1957). 
[8] Hirschorn R.: Topological semigroups, sets of generators and controllability, Duke Math. 

J., 40 (1973), 937-947. 
[9] Jurdjevic V. and Sussmann H. J.: Control systems on Lie groups. Jour. Differential Eq. 12 

(1972), 313-329. 
[10] Kelley J. L.: General Topology, Graduate Texts in Mathematics, vol. 27, Springer-Verlag, 

New York, Heidelberg, and Berlin. 
[11] Lang S.: Introduction to differentiable manifolds. Interscience, New York (1967). 

62 



[12] Leach E. В.: А note on inverse function theorems, Proc. Amer. Math. Soc. 72 (1961), 694 to 
697. 

[13] Mostert P. S. and Shields A. L.: Semigroups with identity on a manifold, Trans. Am. Math. 
Soc, 91 (1959), 380-389. 

[14] Nashed M. Z.: Differentiability and related properties of nonlinear operators: Some aspects 
of the role of differentials in nonlinear functional analysis. Nonlinear Functional Analysis 
and Applications, L. B. Rail, ed., Academic Press, Nev>/ York (1971), 109-309. 

[15] Nashed M. Z.: Generalized inverse mapping theorems and related applications of generalized 
inverses in nonlinear analysis. Nonlinear Equations in Abstract Spaces, V. Lakshmikantham, 
ed.. Academic Press, New York (1978), 217-252. 

[16] Nijenhuis A.: Strong derivatives and inverse mappings, Amer. Math. Monthly SI (1974), 
969-981. 

[17] Vainberg M. M.: Variational Methods for the Study of Nonlinear Operators, Holden-Day, 
San Francisco, (1964). 

[18] Whitney H.: Analytic extensions of differentiable functions defined in closed sets. Trans. 
Amer. Math. Soc. 36 (1934), 63-89 . 

Authors address: Texas A&M University, College Station, Texas 77843, USA. 

63 


		webmaster@dml.cz
	2020-07-03T04:01:12+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




