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1. INTRODUCTION

A groupoid satisfying the identity x . yz = y.xz is said to be left permutable;
it is'said to be right permutable if it satisfies the dual identity xy .z = xz . y; it is
said to be bi-permutable if it is both left and right permutable. Equivalently, a grou-
poid is left permutable iff its left translations commute. The aim of the present paper
is to investigate the variety of left permutable groupoids and the variety of bi-permu-
table groupoids.

Both these varieties are in a close connection with the variety of commutative
semigroups. Every commutative semigroup is clearly bi-permutable. On the other
hand, every left permutable groupoid can be embedded into a groupoid obtained in
a natural way from a commutative semigroup and its fixed transformation (see
Theorem 3.1). Notice that every commutative permutable groupoid is a commutative
semigroup; also, every left permutable groupoid containing a right unit is a com-
mutative semigroup.

11 Example. Let S(+) be a commutative semigroup and let f be a transformation
of S. Define a new binary operation on S by ab = f (a) + b. We obtain a left per-
mutable groupoid.

1.2. Example. The set of non-negative integers together with the binary operation
(a, b) > a" is a right permutable groupoid. As proved in [4] (cf. [1], p. 384), this
groupoid generates the variety of right permutable groupoids.

1.3. Example. The set of all subsets of a given set, together with the binary opera-
tion (a, b) > a — b, is a right permutable groupoid satisfying the following identities:
XXy =y.yxXx, XX =)y, X.XX=X.

Right permutable groupoids satisfying these identities were studied under the name
commutative BCK-algebras by several authors (see e.g. [5], [6], [7])-

The variety of left permutable quasigroups was studied in [2] and [3]. It turned
out that this variety is equivalent to the variety of algebras A(+, —, 0, p, p~ ') such
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that A(+, —, 0) is an abelian group and p is a permutation of A preserving the zero
element. We proceed by a summary of results on left permutable quasigroups obtained
in [2]: Every countable left permutable quasigroup Q can be embedded into a cyclic
left permutable quasigroup P such that P is finite if Q is so; every left permutable
quasigroup Q can be embedded into a simple left permutable quasigroup P such that P
is finite if Q is so; if Q is a left permutable quasigroup then a congruence of the
groupoid Q need not be a congruence of the quasigroup Q but any two groupoid
congruences of Q commute; the variety of left permutable quasigroups has uncoun-
tably many minimal subvarieties, it has the strong amalgamation property, the finite
embeddability property and the Schreier property; a quasigroup is bi-permutable iff
it is an abelian group.

Some of these properties and some others are considered in the sequel for the
variety of left permutable and the variety of bi-permutable groupoids. Nevertheless,
the following questions remain open:

(1) Has the variety of left permutable groupoids uncountably many minimal
subvarieties?

(2) Has the variety of bi-permutable groupoids only countably- many sub-
varieties?

2. FREE LEFT PERMUTABLE GROUPOIDS

2.1. Lemma. Let n be a positive integer and p a permutation of {1, e n}. Then
every left permutable groupoid satisfies the identity x,(x,(...(x,y))) =
= %) (Xp2(--- (Xp¥))-

Proof. Obvious.

Denote by CSIT the variety of algebras with one binary operation + and one
unary operation f satisfying the identities x + (y + z) = (x + y) + zand x + y =
= y + x. Thus the algebras from CSI1T are just commutative semigroups with a fixed
transformation.

2.2. Proposition. Let A(+,f) be an algebra from CSIT; put ab = f(a) + b
for all a,be A. Then A(.) is a left permutable groupoid.

Proof. Obvious.

Let X be a non-empty set. Our aim is to construct the free left permutable groupoid
over'X. For this purpose, it turns out to be useful first fo construct the free CS1T-
algebra over X.

Define a chain 4y(+) S A,(+) S A,(+) < ... of commutative semigroups and
a chain f; < f, < ... of mappings f; : A;_; — A, as follows: Ay(+) is the free com-
mutative semigroup over X; if i = 1 then fix a bijection g; of A;_; \ A;_, onto a set
digjoint with A4;_, put f; = fi_; U g; (here A_, = f, = 0) and let A,(+) be the
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free commutative semigroup over X U f(A4;-). Denote by Py(+) the union of the
chain 4,(+) (i = 0, 1, ...) and by f the union of the chain f; (i = 1,2, ...).

2.3. Proposition. Let X be a non-empty set. Then:
(1) Px(+.f) is a free CS1T-algebra over X.
(2) f is an injective transformation of Py and X n f(Px) = 0.
(3) Px(+) is a free commutative semigroup over X U f(Px).

Proof. Easy.

Evidently, there exists a unique mapping 4 of Py into the set of positive intzgers
such that A(x) = 1 for all xe X, A(f(a)) = 1 + Aa) and X(a + b) = A(a) + A(b)
for all a, b € Py. The number A(a) will be called the length of an element a € P,.

By a lifting sequence we shall mean a finite (possibly empty) sequence of elements
of Py u {0} (where 0 ¢ Py). Given an element a € Py and a lifting sequence s =
= (uy, ..., u,), we define an element axs of Py by axs=a if n=0, a=s =
=f(a*(uy...;u,_y)) if n 21 and u, =0 and axs = (ax(uy,...,u,_,)) + u,
if n 2 1 and u, € Py. '

Let a, b € Py. We shall say that a is a part of b if b = a * s for a lifting sequence s.
The following lemma shows that the notion of a part of an element u € Py can be
equivalently defined by induction on the length of u.

2.4. Lemma. (1) If xe X and a € Py then a is a part of x iff a = x.
(2) If a, b e Py then a is a part of f(b) iff either a = f(b) or a is a part of b.
3)Ifnz2, a,y,...,a,eX U f(Py) and a e Py then a is a part of a; + ... + a,
iff either a is a part of at least one of the elements ay,...,a,0r a = a; + ...
..t ay forsomel i, <i,<..<ig=n

Proof. Easy.

Now, define a multiplication on Py by ab = f(a) + b for all a, b € Py. We obtain
a groupoid Py(.); by 2.2, this groupoid is left permutable. We denote by Fy the sub-
groupoid of Py(.) generated by X.

2.5. Theorem. Let X be a non-empty set. Then:
(1) Fy is a free left permutable groupoid over X.
(2) An element a € Py belongs to Fy iff the following condition is satisfied: If b < Py
is such that either b = a or f(b) is a part of a then b = x + f(¢;) + ... + f(c,)
for somen =2 0,xeX and cq, ..., c, € Py.

Proof. (1) Denote by W the absolutely free groupoid over X and by h the homo-
morphism of W onto Fy such that h(x) = x for every x € X. It suffices to show that
h(a) = h(b) for a, be W iff the identity a = b is satisfied in all left permutable
groupoids. The converse implication is trivial, since Fy is left permutable. Now,
let h(a) = h(b). We shall proceed by induction on the length of the term ab. If one
of the terms a, b belongs to X then clearly a = b. In the opposite case, ¢ =
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= ay(...(a,x)) and b = by(... (b,y)) for some n,m 2 1, x,yeX and a,,...,a,,
by, ..., b, e W. Since h(a)= h(b), we have fh(a,) + ... + fh(a,) + x =
= fh(by) + ... + f h(b,) + y. Consequently, n = m, x = y and there is a permuta-
tion p of {1, ..., n} with h(a;) = h(b,) for all 1 < i £ n. The rest follows from the
induction hypothesis and 2.1.

(2) Denote by E the set of all a € Py satisfying the condition. Then E is a sub-
groupoid of Fy, X < E and so Fy < E. Conversely, proceeding by induction on the
length of a, we can show that a € Fy for every a € E.

2.6. Lemma. Fy is a block of a congruence of the algebra Px(+, f).

Proof. Define two binary relations R and S on Py as follows: (a, b) € R iff there
exist elements u, v € Fy and a lifting sequence s such that ¢ = u xs and b = v * s;
(a, b) € S iff there exists a finite sequence ay, ..., a, of elements of Py such that
a=a,,b=a and (a;,a;,,;)eRforalll1 <i <k — 1. Clearly, S is a congruence
of Px(+, f)and Fy is contained in a block of S. Now, leta € Fx, b € Pyand (a, b) e R;
we are going to show that b e Fy. There are u, ve Fy and a lifting sequence s =
= (ul, ..,u,)Witha = u » se Fy and b = v = 5. We shall proceed by induction on n.
Everything is clear for n = 0. Let n = 1. By 2.5(2), u, € Py. If n = 2 and u,_ € Py
then we can use the induction hypothesis for @ = u = r and b = v * r, where r =
= (uy, ..Uy, U,—y +u,). If n22 and u,_, =0 then (by 2.5(2)) uxreFy
where r = (uy, ..., u,-,); by the induction hypothesis, v*re Fy and we have
b=f(o*xr)+u,=(@x*r).u,eFy. f n=1then a =u+u,, b =0+ u; and
b € Fy is an easy consequence of 2.5(2)‘

2.7. Proposition. Let Q be a free left permutable quasigroup over X and let G
be the subgroupoid of Q generated by X. Then G is a free left permutable groupoid
over X.

Proof. Since the commutative semigroup Px(+ ) is cancellative and f is an injective
transformation, there exist an abelian group A(+) and its permutation g such that
Px(+,f)is a subalgebra of A(+, g). Setting ab = g(a) + bforalla, b e A, we obtain
a left permutable quasigroup A and there is a homomorphism & of Q into 4 such
that h(x) = x for each x e X. Hence the restriction of h to G is a homomorphism of G
onto Fy, and it is clearly an isomorphism.

2.8. Corollary. Every free left permutable groupoid is cancellative and can be
embedded into a left permutable quasigroup.

2.9. Proposition. Let X be a non-empty subset of a left permutable groupoid G.

Then G is a free left permutable groupoid over X iff the following two conditions
are satisfied:

(1) G is generated by X;
(2 Ifn,m=20,x,yeX, ay,...,a, by, ..., b, € G and a,(... (a,x)) = by(... (b,y))

then n = m, x = y and there is a permutation p of {1, ...,n} with a; = b,
foralll £i £ n.
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Proof. The direct implication follows from 2.5. Now, suppose that the conditions
(1) and (2) are satisfied, denote by W the absolutely free groupoid over X and
consider the homomorphism h of W onto G such that h(x) = x for each x € X. It is
enough to show by induction on the length of ab thatif a, b are two terms (elements
of W) such that h(a) = h(b) then the equationa = b is satisfied in all left permutable
groupoids. If a, b € X, then this is clear. Otherwise we can write a = a,(... (a,x))
and b = b(...(b,y)) for some a,...a, by, ... b,eW and x,yeX. Then
h(a;) (h(ay) (... (h(a,) x))) = h(b,) (... (h(b,,) )); we can use (2), the induction hypo-
thesis and 2.1.

2.10. Proposition. Let G be a free left permutable groupoid over X and let Y be
a non-empty subset of G; denote by H the subgroupoid of G generated by Y. Then H
is a free left permutable groupoid over Y iff the following condition is satisfied:
Ifn,m=0,ay,..,a, by, ... b,eH acG,a..(a,a))eY and b,(...(bna))eY
then n = m and there is a permutation p of {1, ..., n} such that a; = b, for all
1sign

Proof. First, let H be free over Y. Put b = a(...(a,a)) and ¢ = b,(:.. (b,a)).
By 2.1 we have by(... (b,b)) = a,(... (a,c)); by 2.9 we get b = ¢, n = m and
a; = by, for some permutation p. Now, let the condition be satisfied. Let b, c€ Y,
n.mz20,ay,...,a, by,...,b,eH and a(...(a,b)) = by(... (b,c)). By 2.9 it is
enough to prove that n = m, b = ¢ and a; = b, for a permutation p of {1, ..., n}.
This will be done by induction on n + m. Everything is clear if n = m = 0. If the
sets {ay, ..., a,} and {b,, ..., b,} are not disjoint then we can assume a, = b, and
we have a,(... (a,b)) = by(... (b,c)), so that the induction hypothesis works. Hence
we can assume that the two sets are disjoint. The elements b and ¢ can be expressed
in the form b = ¢(...(¢x)) and ¢ = d,(...(d;x)) for some k,j 2 0, xe X and

Ciavees €y dy,...,d;€G. The sequences (ay,...,a, ¢g,...,¢) and (b, ..., by,
d,. ..., d;) coincide up to the order of their members; since {a,, ..., a,} is disjoint
with {b,, ..., b,}, up to the order of members we have (c,, ..., ¢,) = (by, ..., by,
ey.....e) and (dy,...,d;) = (ay, ..., a, e, ..., ) for some e,,...,e,. Hence b =

= b,(. ..(b,a))and ¢ = a(...(a,a)) for some a € G, and we can use our condition.

2.11. Example. Let G be a free left permutable groupoid over X = {x, y, z} and
let H be the subgroupoid of G generated by {x, y, Xz, yz}. Then it follows from 2.10
that H is not a free left permutable groupoid.

2.12. Corollary. The variety of left permutable groupoids does not have the.
Schreier property.

2.13. Example. Let G be a free left permutable groupoid over X = {x} and let H
be the subgroupoid of G generated by the set ¥ = {xx, x . xx, x(x . xx), ...}. Then it
follows from 2.10 that H is a free left permutable groupoid over the infinite set Y.
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2.14. Corollary. The free left permutable groupoid of countable rank can be
embedded into the free left permutable groupoid of rank 1.

3. SEMIGROUP REPRESENTATIONS OF LEFT PERMUTABLE GROUPOIDS

In this section we shall prove the following basic result.

3.1. Theorem. Let G be a left permutable groupoid. Then there exist a commuia-
tive semigroup S(+) and a permutation p of S such that G = S and ab = p(a) + b
forall a,beG.

Proof. Denote by X the underlying set of G, by o the operation of G and consider
the free CS1T-algebra Px(+,f) and the free left permutable groupoid Fy from the
preceding section. Further, define two binary relations R and T on Py as follows:
(a, b) e R iff there exist x,y,ze X and a lifting sequence s such that z = x .y,
a =zxsand b = (f(x) + y) = s; (a, b) € Tiff there exists a finite sequence a, ..., a,
of elements of Py such that ¢ = a,, b = a, and (a;,a;,,,)e RUR ' for all 1 <
< i £ k — 1. Itis easy to see that T'is a congruence of the algebra Px(+, f). Now,
we shall prove the following five lemmas.

3.2. Lemma. Let (a, b)€ R, (¢, b)e R and let b be such that x + y is not a part
of b for any x, y € X. Then either a = c or there exists a d € Py with(d, a)e R and
(d,c)eR.

Proof. We have a = (xoy)*(e;...,e), b=(f(x)+y) *(e....e)=
=(f(u) + v)*(f1, s fu), € = (uov)*(fy,.... fn) for some x, y,u,v, e}, ... fm
We shall proceed by induction on n + m. Distinguish the following cases.

Case 1: Let n = 0 (resp. m = 0). Then b = f(x) + y = (f(u) + v) * (f1, .., f)
impliesm = 0,x =u,y =vanda = c.

Case2: Let n,m = 1 and e, = 0 (resp. f,, = 0). Then f,, = 0 and we can use the
induction hypothesis for the triple (x o y)*(ey, ..., €, 1), (f(x) + y)*(egs ..., ,—y) =
=(f(u) + 0) % (f1, s fn1)s (o 0) % (f1s -oos frnmr ).

Case 3: Let n 22, m21,e, 0%/, and ¢,_; =0 (resp. n 21, m 22,
e, + 0 =% f, and f,,_, * 0). Then we can use the induction hypothesis for the triple
(xop)*(egs s baozslamy + ), (f(x)+y)*(ers...-2, 6,21 + €)=
=(f(u) + ) % (frs-os Sm)y (o) (fr, s f)

Case4: Letn,m = 2,e,+ 0 + f,, and e,_, =0 =f,_,. We can express b in the
form b = b, + ... + b, where k = 2 and by, ..., by e X U f(Py). Now, (f(x) + y)*
*(€1,...,,—4) = b; and (f(u) + v) * (fy, ..., fu—y) = b; for some 1 < i, j < k.
If i = j then e, = f,, and we can use the induction hypothesis for the triple (x - y) *
*(er, oo eyy)s (J(X) + ¥)x(egs oo emq) = (f(4) + 0) % (frs ooy frumr)s (o) %
*(fy, ... fm-)- Hence we can assume that i = 1 and j = 2. Then a = (f(u) + v) =
*(fys oo Smm1) + b3+ b+ (xop) *(eg, ooy eumy), €= (f(x) + ¥) +
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*
__:(;;’o"")’)i"—l) +by+ ...+ b+ (u ov)*(fl,...,f,,,_l) and we can put d =
V)% (ersoseny) + byt oot byt (o t) % (fry o o) :
Case 5: Let n 22, m=1¢+0%f,and ¢,_, =0 (resp. n =1, m 2 2,
e ¥ 0% 7 and Sm-1=0). We have b=>b, + ... + b, for some by,....b e
€ X U f(Py) with k > 3 and we can assume that (f(x) + ») * (€15 .- €a=y) = by,
f(u) = byandv = by.Thena = (xop)* (e, .., ) + f(U) + v+ by + ... + by,
c=(uov) + (f(x) + y)*(ess ... €4=1) + by + ... + b, and we can put d =
= (XOY)*(e,....,e,,_I) +(ov)+ by + ... + by
Case6:Letn=1=mande, + 0+ f,;. Wehave b = b, + ... + b, for some
by, ..., b e X U f(Py) with k 2 3 and f(x) = b;, f(u) = bj, y = b,, v = b, for some
1=4,j,r,s < k.Since y + vis not a part of b, we have r = sand y = v. If i = j
then a = ¢. Hence, assume that i =1, j=2 and r =3. Then a = (x. )} +
+f()+ by + ...+ b, c=(uoy)+ f(x) + by + ... + b, and it follows from
the left permutability of G that we can put d = (uo(xoy)) + by + ... + b, =
=(Xo(uoy) + by + ... + by

3.3. Lemma. Let (a, b)e T. Then a € Fx iff be Fy.

Proof. It is easily seen that T is just the congruence of Px(+, f) generated by all
the pairs (x o y, f(x) + y) where x, y e X. Hence T < V where V is a congruence
of Px(+, f) such that Fy is a block of V' (see 2.6) and the result is clear.

3.4. Lemma. Let x,ye X and (x, y)e T. Then x = y.

Proof. There is a sequence ay, ..., a, of elements of Py such that x = a,, y = a,
and (a;, a;4,)€ RUR ! forall 1 £i < k — 1. We shall proceed by induction on
Xay) + ... + Xa,). Evidently, we can assume that k = 3 and (a;, a;4,), (a;4,, a:+() €
eRforsomel < i<k —2.By33,a;,,€Fy, and hence u + visnota partofa;,,
for any u, v € X (use 2.5). According to 3.2, either a; = a;,, and we can use the in-

dunction hypothesis for the sequence a,...,a;, @;43,...,a, or (d,a;)e R and
(d,a;;,) € R for some d € Py and then we can use the induction hypothesis for the
sequence a,, ..., a;, d, ;4 , ..., a4y, since A(d) < A(a;44).

3.5. Lemma. Let a, b € Py be such that (f(a), f(b)) € T. Then (a, b)e T.
Proof. Easy.

Now, we are ready to finish the proof of 3.1. Applying 3.4 and 3.5, we see that there
exists a CS1T-algebra A(+, ) isomorphic to Px(+,f)/T and such that g is an in-
jective transformation of 4, X < Aanda o b = g(a) + bforalla, b e X. Now, A{+)
can be embedded into a commutative semigroup S(+) such that Card(S\ 4) =
= Card(4), and g can be extended to a permutation p of S.

This completes the proof of 3.1.

3.6. Lemma. Let G be a left permutable groupoid and let a, b e G be elements
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suchthat ab = b and the right translation R, (i.e. the mapping x — xb) is surjective.
Then a is a left unit of G (i.e. ax = x for all x € G).

Proof. We have a.cb = c.ab = cb for every ce G and so ax = x for all xe G.

3.7. Proposition. The following three conditions are equivalent for a groupoid G:
(],) G is left permutable and there exist elements a, be G such that ab = b and

both the right translations R, and R, are surjective.

(2) G is left permutable and contains a left unit e such that the right translation R,
is surjective.

(3) There exist a commutative semigroup G(+) with a neutral element 0 and
a4 surjective transformation f of G such that f(0) = 0 and xy = f(x) + y for
all x,yeG.

Proof. Putting @ = b = 0, we see that (3) implies (1). By 3.6, (1) implies (2).
It remains to prove that (2) implies (3). There is a transformation g of G with g(e) = e
and g(x) e = x for every xe G. Put x + y = g(x) .y for all x, y € G. Further, put
0= e Then 0 is a neutral element of G(+) and x + (v + z) = g(x).g(y) z =
=4(y).9(x)z =y + (x + z) for all x,y,zeG. Consequently, G(+) is a com-
mutative semigroup. Moreover, g(xe).ye = y(g(xe)e) = y.xe = x.ye for all
X,y € G. Hence we see that R(x) + y = g(xe).y = xy and we can put f = R,.

* A groupoid is said to be right divisible (right cancellative) if all its right transla-

tions are surjective (resp. injective).

3.8. Corollary. The following conditions are equivalent for a groupoid G:
(1) G is a left permutable and right divisible groupoid.
(2) G is a left permutable, divisible and left cancellative groupoid.
(3) There exist an abelian group G(+) and a surjective transformation f of G
such that f(0) = 0 and xy = f(x) + yforallx,yeG.

3.9. Corollary. The following conditions are equivalent for a groupoid G:
(1) G is a left permutable right quasigroup.
(2) G is a left permutable quasigroup.
(3) There exist an abelian group G(+) and a permutation f of G such that f(0) = 0
and xy = f(x) + y for all x, y e G.

4. SEVERAL PROPERTIES OF THE VARIETY OF LEFT
PERMUTABLE GROUPOIDS

4.1. Proposition. Every countable left permutable groupoid can be embedded
into a cyclic (i.e. one-generated) left permutable groupoid.

Proof. Let G be a countable left permutable groupoid. By 3.1, there exist a count-
able commutative semigroup S( +) and a permutation p of S such that G = S and
ab = p(a) + b for all a,be G. Put T(+) = So(+) x N(+) where So(+) is the
commutative semigroup obtained from S(+ ) by adding a neutral element 0 and N(+)
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is the additive semigroup of non-negative integers. Clearly, there is a transforma-
tion f of T with the following three properties:

(1) f(a,0) = (p(a), 0) for all aeS;

(2) 7(0,0) = (0, 1); |

(3) every element of T is equal to f(0, n) for some n e N.

Now, define a multiplication on T by xy = f(x) + y for all x, ye T. We obtain
a left permutable groupoid, the map a - (4, 0) is an embedding of G into T and it
suffices to show that the groupoid T is generated by the element (0, 0). However,
(0,0).(0,n) = (0,n + 1) and f(a, n) = (a,n).(0,0) for all ae S, and neN. The
rest is clear.

4.2. Proposition. Every left permutable groupoid can be embedded into a simple
left permutable groupoid.

Proof. Let G be a left permutable groupoid. It suffices to show that for any three
different elements a, b, ¢ of G there exists a left permutable groupoid H such that G
is a subgroupoid of H and (a, c) belongs to the congruence of H generated by (a, b).
Let S(+, p) be as in 3.1. Without loss of generality, we can assume that S(+ ) contains
a neutral element 0 such that p(0) = 0 and 0 ¢ {a, b, c}. Denote by D(+) the two-
element group {0, 1}, put T(+) = S(+) x D(+) and define a transformation g
of T by g(x,0) = (p(x),0), g(a,1) = (a,0), g(b,1) = (c,0) and g(y,1) = (y,1)
for all x, ye S, a & y # b. Further, define a multiplication on T by xy = g(x) + y
and let r be a congruence of T with ((a, 0), (b, 0)) € . Then ((a, 0), (¢, 0)) e r, since
(a,0) = ((0, 1) . (a, 0))(0,0) and (c,0) = ((0, 1) . (b, 0)) (0, 0). The mapping x —
> (x, 0) is an embedding of G into T'and T'is a left permutable groupoid.

4.3. Proposition. Every left permutable divisible groupoid is a homomorphic
image a of a left permutable quasigroup.

Proof. Let G be a left permutable divisible groupoid. By 3.8, there are an abelian
group G(+) and a surjective transformation f of G such that ab = f(a) + b for all
a, b € G. Consider an infinite cardinal number k such that Card(A) < k whenever A
is a block of ker(f). There exist an abelian group H(+) and a surjective homo-
morphism h of H(+) onto G(+ ) such that Card(B) = k for every block B of ker(h).
Now, it is easy to see that there is a permutation p of H with h p(a) = f h(a) for every
ae H. Define a multiplication on H by ab = p(a) + b for all a, be H. Then H
becomes a left permutable quasigroup and h is a homomorphism of H onto G.

In contrast to 4.3, it is not true that every left permutable cancellative groupoid
can be embedded into a left permutable quasigroup. A counterexample will be con-
structed in the next section.

A variety V of universal algebras is said to have the amalgamation property if
for any triple A, B, C of algebras from ¥ and any pair f: 4 - B, g: A - C of in-
jective homomorphisms there exist an algebra D e V and two injective homo-
morphisms h : B — D, k:C — D such that hf = kg.
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4.4. Proposition. Ler V be any variety contained in the variety of left permutable
groupoids and containing the variety of commutative semigroups satisfying
xyz = uu. Then V does not have the amalgamation property.

Proof. Following the wellknown Kimura’s proof of the fact that the variety of
semigroups does not have the amalgamation property, define three groupoids
A, B, C as follows: A ={0,a,b,c}, B=1{0,a.b,c.d}, C={0,a,b,c,e}; xy =0
in all cases except for bd = db = ¢ in B and ae = ea = b in C. Then evidently
A, B, Ce V and A is a subgroupoid of both B and C. Suppose that there is a left
permutable groupoid D and two injective homomorphisms h: B — D, k:C — D
coinciding on A. Then h(c) = h(d) h(b) = h(d) k(b) = h(d) (k(e) k(a)) = k(e) .
. (h(d) k(a)) = k(e) (h(d) h(a)) = k(e) h(0) = k(e) k(0) = k(0) = h(0), a contradic-

tion.

4.5. Corollary. The variety of left permutable groupoids does not have the
amalgamation property.

Proof. This follows immediately from 4.4. However, we shall give yet another
proof, showing that D does not exist even in the case when A, B, C are all free. Fix
pairwise different elements a, b, ¢, d, e, f, g, X, ¥, z, u, v and denote by A, B, C the
free left permutable groupoid over {x,y,z,u,v}, {a,b,e,f} and {a,c d,g},
respectively. It is an easy consequence of 2.10 that the subgroupoid of B generated
by {a, e, f, ba, bf} is free over the set, and hence there is an injective homomorphism f
of 4 into B with f(x) = a, f(y) = e, f(z) = f, f(u) = ba, f(v) = bf. Similarly, the
subgroupoid of C generated by {a, cd, ca, d, g} is free and there is an injective
homomorphism § of 4 into C with g(x) = a, §(y) = cd, g(z) = ca, g(u) = d,
g(v) = g. Now, suppose that there exist a left permutable groupoid D and injective
homormorphisms h : B —» D, k : C —» D with hf = kg. We have hf(y) = kg(y) =
= K{ed) = K(e) k(d) = K(c) k g(u) = k{¢) W(u) = k(c) h(ba) = k{c) (h() h(a)) =
= h(5) (k(c) h(a)) = h(b) (K(e) hJ(x)) = h(B) (k(c) k §(x)) = h(B) (k(c) k{a)) =
= h(b) k(ca) = h(b) k g(z) = h(b) h f(z) = h(b) h(f) = h(bf) = hf(v) and conse-

quently y = v, a contradiction.

4.6. Proposition. Let S be a (multiplicatively written) cancellative commutative
semigroup with unit and let G be its group of quotients. Then the embedding of S
into G is an epimorphism in the category of left permutable groupoids.

Proof. Let £, g be two homomorphisms of G into a left permutable groupoid H
such that f(a) = g(a) for each ae S. We have f(a™') = f(a™* 1) = f(a™ 1) f(1) =
=/(a™")g(1) = f(a™*) g(a""a) = f(a™") (9(a"") 9(a)) = g(a”") (f(a™") g(a)) =
=9(a")(f(a™)f(@) = g(a™")f(a""a) = g(a™") f(1) = g(a™ ") g(1) = g(a™" 1) =
= g(a™") and f(a™'b) = f(a™") f(b) = g(a” ") g(b) = g(a~'b) for all a, b e S.

4.7. Corollary. The category of left permutable groupoids has non-surjective
epimorphisms.
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5. AN EXAMPLE

In this section we construct a cancellative left permutable groupoid which cannot
be embedded into a left permutable quasigroup.

Fix four different elements x, x', y,z, put X = {x, x',y, z} and consider the
CSI1T-algebra Py(+,f) and the free left permutable groupoid Fy (see Section 2).
Further, define two binary relations R and S on Py as follows: (a,b)e R iff a =
=(y.yx)*s and b = (z.zx)*s for some lifting sequence s; (a, b)e S iff there
exists a finite sequence ay, ..., a; such that a = a,, b = a, and (a;, a;,+,)e RU R™!
forall 1 i < k — 1. (A sequence ay, ..., a, with these properties will be called
a derivation from a to b.) Clearly, S is just the congruence of Py(+, f) generated
by the pair (y . yx, z . zx). The relation S is also a congruence of the left permutable
groupoid Py(.) and we denote by G the corresponding factor-groupoid.

5.1. Lemma. The groupoid G is left cancellative.

Proof. Denote by Q the set of quadruples g = (a, b, ¢, d) of elements of Py
such that (a, b)e S and (f(a) + ¢, f(b) + d)e S. We put J(q) = (Ma) + Ab) +
+ A(c) + A(d), k) where k is the least possible length of a derivation from f(a) + ¢
to f(b) + d. Proceeding by induction on J(gq) (with respect to the lexicographic
ordering of ordered pairs) we are going to show that if g = (a, b, ¢, d) e Q then
(c,d)e S. Let ay,...,a, be a derivation from f(a) + ¢ to f(b) + d of minimal
length. If a; = a, then either ¢ = d and (c,d)e S or d = f(a) + e, c = f(b) + e
for some e € Py and again (c, d) € S. Thus we can assume that a, + a; and k = 2.
Furthermore, without loss of generality, we can assume that (a,, a,) € R, so that a,
is obtained from a; by replacing one occurrence of a part p, = f(¥) + f(v) + x
of a; by p, = f(z) + f(z) + x. If the replaced part p, of a, is a part of c, denote
by ¢’ the element obtained from ¢ by replacing p, by p, and put ¢’ = (a, b, ', d);
then ¢’ € Q, J(¢q') < J(q) in the lexicographic ordering, (¢’, d) € S by the induction
hypothesis and so (c, d) € S (we have (c, ¢’) € S). If p, is a part of a, we similarly get
(c,d)e S. Consider the remaining case. Then evidently a = y and ¢ = f(y) +
+ x + ¢’ for some ¢’ € Py. Analogously, considering the pair (a,_,, a;), we see
that we can assume that either b = z and d = f(z) + x + d’ or b=y and d =
= f(y) + x + d’ for some d’ € Py. The first of these two cases is not possible, since
otherwise (y, z)€ S, a contradiction. Hence a = y = b, ¢ =f(y) + x + ¢/, d =
=f)+x+d, ay=f(2) +f(z) + x + ¢, ap—y =f(2) + f(z) + x + d’. The
quadruple ¢” = (z, z, f(z) + x + ¢, f(z) + x + d’) belongs to Q and J(q") < J(q);
we get (f(z) + x + ¢, f(z) + x + d’)e S by the induction hypothesis. Now, the
quadruple ¢” = (z,z,x + ¢/, x + d’) belongs to Q and J(¢") < J(q); applying
the induction hypothesis once more, we get (x + ¢/, x + d’)e S. Hence evidently
(c,d)eSs.

5.2. Lemma. The groupoid G is right cancellative.
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Proof. Denote by Q the set of quadruples g = (a, b, ¢, d) such that (c,d)e S
and (f(a) + ¢, f(b) + d) e S. Define J(q) similarly as in 5.1. Again, by induction
on J(q), we are going to show that (a, b)e S. Let ay, ..., a, be a derivation from
f(a) + ¢ to f(b) + d of minimal length. If @, = a, then either a = b and (a, b)e S
or ¢ = f(b) + e and d = f(a) + e for some e; in the latter case we can apply the
induction hypothesis for ¢’ = (a, b, ¢, e) € Q, again receiving (a, b) € S. Hence we
can ssume that a, * a,, k = 2 and, proceeding similarly as in 5.1, we can restrict
ourselvesto thecasea =y, c=f(y) + x + ', a, =f(z2) + f(z) + x + ¢, b = z,
d=f(z)+x+d, a_, =f(y)+ f(y) + x + d'. However, (a,,a,-,)€S and
hence (x + ¢/, x + d’) e S by 5.1. The quadruple ¢” = (y, z, x + ¢’, x + d’) belongs
to Q and J(¢") < J(q); we get (¥, z) € S by the induction hypothesis and so (a, b) € S.

5.3. Lemma. (y.yx’, z.zx')¢S.
Proof. It is evident that if u € Py and (y . yx’,u)e RU R™ " thenu = y . yx'.

5.4. Lemma. If H(+) is a commutative semigroup and h is a transformation
of H such that G < H and ab = h(a) + b for all a, be G then H(+) is not can-
cellative.

Proof. Denote by g the natural homomorphism of Py onto G and suppose that
H(+) is cancellative. Then h g(y) + h g(y) + g(x) = 9(¥) (9(») 9(x)) = g(y.yx) =
=g(z. zx) = 9(2) (9(2) 9(x)) = h g(z) + h g(z) + g(x) implies h g(y) + hg(y) =
=hg(z) + hg(z) and so g(y.ya) = g(z.za) for every ae Px. In particular,
(v-yx', z.zx')e S, a contradiction with 5.3.

§.5. Proposition. G is a cancellative left permutable groupoid and it cannot be
embedded into a left permutable quasigroup.

Proof follows from 5.1, 5.2, 5.4 and 3.9.

6. BI-FPERMUTABLE GROUPOIDS

For any groupoid terms ¢, s, ..., S, (n = 0) define two terms as follows:
sy, oo 80 = 8u(8u=1(--- (52(512))))
154, sy 8 = ((((t51) 52) ) Suy) S -
6.1. Lemma. The following identities are satisfied in all bi-permutable groupoids:
(1) xy.uv = uv.xy,
(2) x(J’l)’z . z) = (x . J’1}’z) z,

(3) yalX1s --s %] D2s vvos Yy = Yoy Xy -+ Xpan] a2y -+ > VYaom»  Whenever
n,m 2 1, p is a permutation of {1, ..., n} and q is a permutation of {1, ..., m},

(4) (x- yz) uy, ooy u,y = x((y2) <uy, ..., u,») for all n 2 0,

(5) x{p1s oo Yy - 40y, ooy Uy = (X 80) Yyy ey Yy Ugsoon, Uy foralln 2 0 and
mz1,
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(6) x[y1s o ¥u] - u[vgs s 0] = (X[V15 s Yuo Vs oo 0])u for all nz 1 and
mz=0,

(7) yalxss o %] oo eeos Yy -t [04, 0o 0] Cutgy oo uyd =
= yl[xl’ cees Xy Uy ey U,-] <st cees Vms uls AR uj> for a” h, m, 1’] ;.. 1

Proof. (1) xy .uv = u(xy.v) = u(xv.y) =xv.uy = (x.uy)v=(u.xy)v =

= uv.xy.

(2) X(y1y2-2) = y1y2 . Xz = xz. 1y, = (X. y1¥3) z.

(3) With respect to 2.1 and the dual of 2.1, we can assume that p is the identical
permutation of {1, ..., n}, m = 2 and ¢(1) = 2. Now, we shall proceed by induction
on n. The case n = 1 is just the right permutability. If n = 2 then

.Vl[xls s xn] V2 = xn()’l[xxa ey xn—l] . Y2) = xn()’2[x1, cees xn—l] . }’1) =

= ya[X1see0s Xu] - V1s
as follows from (2) and the induction hypothesis.

(4) By induction on n. If n 2 1 then

(x.yz) Cuyy o)y = ((x . yz) Cuygy ooy thy_g ) 1y = (x((¥2) gy oo o)) Uy =
= x((yz) Cuyy oo g1 . w,) = x((yz) Uy, ..., u,)) o
by (2) and the induction hypothesis.
(5) By induction on n. For n = 0, use (4). For n > 1,
X Y15 eeer Va2 - UKD, ooy Uy = (X g5 o5 Ve 1)) Y 40, ooy U =
= (Y15 o0 Yum1D - 0015 o 0D) Yo = (% 601) Pty ooy Yamts Vs oo O)) Vi =
= (x.u0y) Y1y eees Vs V2s vves Uy

by the right permutability, (3) and the induction hypothesis.
(6) By induction on m. For m = 0 there is nothing to prove. If m > 1 then

X[Y1s oo Vud - u[vg, ot 0] = X[V1s ooy Vo] (W - u[vgs oy Opoyq]) =
= 0,(X[V1s o Yl - U1y s Upm1]) = On(X[V 15 o eos Vi Vs oees Omeq | ¥) =
= (vm . x[yla LR ym Uls LR vm—l]) u= (x[yla LERT ym vla LR vm]) u

by the left permutability, induction hypothesis and (2).
(7) First, let j = 2. Then, by (5), (2) and (3), (6) and (3), the left side equals

(yl[xly sy xn] . ul[vb sy vi] u2) <y23 cees Yy U3y -nos uj> =
= (yl[xl’ ssey xn] . ul[vl; [EXEY vi]) <y2’ ey Vo u2a LEEE) uj> =
= yl[xla eeey X,,, Uiy enns Ui] <J’2, coes Vo ul, ceey uj>'

Now, consider the case j = 1. Using the right permutability several times and-then
(6), we find that the left side equals

(yl[xls ceey xn] . ul[vlv ceey vi]) <y29 coey ym> =
= yl[xl’ AR xn: 171, sy Ui] <u1’ yZ) LERE ym> =

= yl[xl’ e xn’ Ulr LERTY vt] <.V2, sy ym, u1>‘
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6.2. Theorem. Let X be a non-empty set. Denote by S(+) the free commutative
semigroup over X. Put Ry = X U (S x S) and define a multiplication on Ry as
follows:

(a,b).(c,d)=(a + ¢, b + d),
(a,b).x =(a, b + x),
x.(a,b)=(x+ a,b),
x.y=(x,y)

foralla,b,c,de S and x, ye X. Then Ry is a free bi-permutable groupoid over X.
Moreover, we have

(ep + oo+ X ¥+ A ) = (((xalee - (x2(x321)) ¥2--2) Ve
forall xi, .., %, Yy, .., Ym€X (n,m 2 1).

Procf. The last equality is obvious; it follows that Ry is generated by X. Denote
by F(o) the free bi-permutable groupoid over X and by f the mapping of Ry into F
defined by f(x)=x and f(x; + ...+ X, Y3+ oo+ Vm) = ((xy0 (.0 (x20
o(X10¥1)) o ¥2)o...) oy for all X, xy, ..., y, €X; this definition is correct by
6.1(3). It suffices to show that f is a homomorphism. Let x, y e X and a, b, ¢, d e S.
Then f(xy) = f(x,y) = xoy = f(x) o f(»), f(x.(a,b))=f(x+ a,b) = f(x)-
of(a, b) by 6.1(4), also evidently f((a, b) . x) = f(a, b) - f(x) and f((a, b) . (¢, d)) =
= f(a, b) - f(c, d) by 6.1(7).

6.3. Corollary. Every free bi-permutable groupoid is cancellative.

6.4. Corollary. No free bi-permutable groupoid can be embedded into a bi-
permutable quasigroup.

6.5. Corollary. The variety of bi-permutable groupoids does not have the
Schreier property.

6.6. Proposition. Every simple bi-permutable groupoid is a commutative semi-
group.

Proof. Let G be a simple bi-permutable groupoid and I = GG. Then I is an ideal
of G, (I x I) u idg is a congruence of G and so either I = G or I is a one-element set.

In the first case G is a commutative semigroup by 6.1(1) and 6.1(2); in the second,
G evidently is a commutative semigroup.

6.7. Corollary. Every minimal variety of bi-permutable groupoids is contained
in the variety of commutative semigroups.

6.8. Proposition. The variety of bi-permutable groupoids does not have the amal-
gamation property. The category of bi-permutable groupoids has non-surjective
epimorphisms.

Proof follows from 4.4 and 4.6.
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