
Czechoslovak Mathematical Journal

Zdeněk Frolík
Reduction of Baire-measurability to uniform continuity

Czechoslovak Mathematical Journal, Vol. 35 (1985), No. 1, 43–51

Persistent URL: http://dml.cz/dmlcz/101995

Terms of use:
© Institute of Mathematics AS CR, 1985

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/101995
http://dml.cz


Czechoslovak Mathematical Journal, 35 (110) 1985, Praha 

REDUCTION OF BAIRE-MEASURABILITY 
TO UNIFORM CONTINUITY 

ZDENEK FROLIK, Praha 

(Received January 3, 1983) 

The main result is Main Lemma in § 1 which describes a construction of a Baire-
equivalent and cr-dd-equivalent analytic space X^ to a given analytic space X such 
that the elements of a given cr-dd family of Baire sets in X become closed and open; 
some further properties are preserved. This result is applied in § 1 to a reduction of 
Baire measurable maps of analytic spaces into metric spaces to continuous maps. 
In § 2 the Main Lemma is applied to obtain a generahzation of characterizations of 
point-Co-analytic spaces among analytic spaces to the general ( = non-separable) 
case. For separable case the main references are [Fro^], [Fre] and [T]. In § 3 the fol
lowing basic problem is touched. Let/: Z -^ У be Baire measurable, and let / [open 
(Z)] have a d-discrete base; is it then true that 7is analytic (or Luzin) if Z is analytic 
(or Luzin, and / is 1-1). It should be noted that Theorem 1 in § 1 is the proper 
generalization of the main result of [Fro J to the non-separable case. For the con
venience of the reader we recall the basic definitions. The terminology is chosen so 
that the generalizations of the results from the separable theory have almost the same 
formulation. 

By a cardinal we mean the corresponding initial ordinal. By a space we mean 
a uniform T2 space. By a topological space we mean the corresponding topological 
fine uniformity, so "discrete" means that there exists a continuous pseudometric 
such that the family is metrically discrete. 

\ïK is a cardinal then the collection of J^-Baire sets is the smallest cr-algebra Baj^(Z) 
which is closed under the unions of discrete families of cardinal ^K, and such that 
each uniformly continuous function ( = real valued) is measurable. So Ba^(Z) is the 
usual ö--algebra of "Baire sets" denoted usually by "Ba(Z)"; we denote by Ba(Z) 
the union of {Ba|̂ (Z)} and the elements of this algebra will be called Baire sets in X. 
In analytic spaces Baire sets are just bi-Suslin sets [F-H3]; this is a consequence of 
the Г* Separation Principle for non-separable case. It should be noted that in the 
metric case Baire sets were introduced under the name hyper-Borel sets in [H^], 
and in uniform spaces the Baire sets were introduced in [ЕгОз] under the name 
hyper-Baire sets. For properties see [F-H3]. 

A family (Z^ | a e Л} is called a-discretely decomposable (abb. cx-dd) if there exists 
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a family {X^n \ a e A, песо} such that X^ = [j{X^„ | n e œ} for each a in A, and 
{Xan I cie A] is discrete for each n in со. For properties we refer to [F-H2], [ F r o J , 
[Fro3], [ K - P ] . Here we use just very elementary properties except for the deep 
result from [F-H^] recalled in § 1. If Z is a space we denote by cr-dd (X) the set of 
all cr-dd families of subsets of X. 

By an usGO-compact correspondence we mean an upper semioontinuous compact-
valued correspondence/: Z -^ Y. Note that the actual domain {x | / x Ф 0} o f / is 
a closed set i nX. A correspondence/ is cr-dd-preserving ([F-H^], [F-H2]) if for each 
(j-dd family {Z J in Z the family { / [ Z j ] is a-àd in Y. 

A space Z is called analytic, if there exists an usco-compact cr-dd-preserving 
correspondence / from a complete metric space M onto Z ; if / is disjoint (i.e. 
m^ + ^2 =^/^^1 ^f^2 = 0) then Z is called Luzin. If f is single-valued then we 
speak about point-analytic or point-Luzin spaces. If the weight of M is ^K, К ^ COQ, 
then we speak about X-analytic spaces, etc. 

For properties of analytic spaces I refer to [F-'H2]. For the proof of Main Lemma 
we shall use the fact from [F-H2] that each analytic space is a-dd-simple. Recall 
that Z is called o-dd-simple if for.each discrete family (Z^ | a e Л) in Z , and for 
each family [Y^b \b e B^^, a E A,oî discrete famihes in Z , the family {Z^ n 7̂ ,̂ | a e Л, 
b G B^ is cr-dd or equivalently, if { Z j and all {F^J are c-dd then so is (Z« n 7^^}. 
In fact, every paracompact uniform space (particularly, each metrizable space) is 
(T-dd-simple, and every analytic space is paracompact; this will be used in § 1 on 
point-analytic spaces (see the comment following Remarks following the proof of 
Theorem 5). For the proof of Theorems 1 and 2 we need the following deep fact 
from [F-H2], Theorem 1. 

If [Xa \ae A] h di point-finite family of sets in Z such that U I ^ A \аеВ] e Ba(Z) 
for each В a A (i.e. if { Z j is completely Ba(Z)-additive) then | Z j is cr-dd. Finally, 
we shall need the following characterization of point-analytic spaces among all 
analytic spaces (see [F-H3], Theorem 3,1). 

Theorem 0. Each of the following two conditions is necessary and sufficient for 
an analytic space X to be point-analytic, 

(1) There exists a 1-1 continuous mapping of X onto a metric space. 
(2) There exists a 1-1 o-dd-preserving continuous mapping of X onto a metric 

space. 
The only non-trivial part is that (2) is necessary. 

1. Main Lemma. Assume that A is an any lytic space, {^„ | n e со) is a sequence 
of o-dd partitions of A, and ^^ a Ва(Л)/ог each n. Define by induction the spaces 
A„ as follows: AQ = A, and. 

where each В is considered to be a subspace of A„. Since each ^„ is a partition we 
may and shall assume that the underlying sets of all A„ coincide with that of A 
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{of course, a cover Ш of ^n+i ^s, uniform iff for each В e ^„ the trace of % on В 
is a uniform cover of the subspace В of A^. Let A^o have the coarsest uniformity 
finer than each A„. Then 

(0) ^00 ^̂  analytic, 
(1) Ви{А^) = Ва(Л), 
(2) a-dd{A„) = a-dd(A), 
(3) If A is point-analytic, Luzin or point-Luzin, then so is A^, 
(4) / / Ul^n} ^s ^ network for A, then the topology of A^ is metrizable, 
(5) / / U{^n} distinguishes the points of A, then there exists a 1-1 continuous 

mapping of A^ onto a metric space, 
(6) / / U { ^ J distinguishes the points of A, and A is analytic or Luzin, then A^, 

and hence A, is paint-analytic or point-Luzin, respectively, 
(7) If X cz A is cut by no В e U{^«]? ^̂ ^̂ ^ ^̂ ^̂  topologies on X inherited from A 

and A^ coincide. 

Proof. For ^eco we denote by (ij^) the statement (j), / = 0, 1, 2, 3 with A^ 
replaced by Д , and prove by induction that i(k) holds for each ke œ, i = 1,2,3. 
Assume (î )̂ holds for each i = 0,1,2, 3, and check (//c+i). The sum of analytic 
spaces is analytic, and hence (Ô^ + i) holds. Since Ĵ ^ is cr-dd in both Aj, and A^+i, 
and ^1^ с Ba (A,,) as well as Ĵ ^ с Ba (̂ fc +1) we have in both spaces that С is a Baire 
set iff each С n B, В e ^j,, is a Baire-set. Hence (l/c + i) holds. 

Since Ak is analytic, and hence cr-dd-simple, it is clear that any discrete family 
in Aj^+i is cr-dd in Д , hence (2;^+i) holds. The respective classes in (3) are preserved 
by formations of sums, and if Aj, has one of the properties then so have any Baire 
set in Д , and hence {\ + i) holds. Now let / : A^ -^ Il[A„ | n e ш} be the diagonal 
map, i.e. fx = [x\ n e со]. By definition / is a uniform embedding. 

P r o o f of (O) and (3). Countable products of analytic spaces are analytic, and so 
is any closed subspace. Thus(O) holds. If A has one of the properties in (3), then so 
has the property each A„, hence П{^„^, and hence any closed set in the product 
(clearly/[Л^] is closed). 

P roof of (2). If {Xc \ce C} is discrete in A^, then {;7г„[/[-^с]] | с G С} is discrete 
in H{Ak \k ^ n] for some n, and hence {X^} is discrete in Л„, and hence a-dd in A. 

Proo f of (1). The a-algebra/[Ba (Aj] on f[A^'] is closed under discrete unions 
because Ba (A„) = Ba (A) for each n, and hence Ba (A) = Ba (A^). 

Proof of (4). If J^ = и{^я ] is a network for A, then J ' is a network for A„ for 
each n, hence J* is a network for A^. But each set in J* is closed and open in A^,. 
Thus A^ is regular and has a cr-discrete basis for open sets, and hence is metrizable. 

P roof of (5). Obvious: we put discrete topology on J*„ and take the map s: A^ -^ 
-> U{^„ \nEw} with (ex)„ the unique В in J*„ such that XE B. 
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P r o o f of (6). From (5) using the characterization of point-analyticity among 
analytic spaces in Theorem 0. 

Since (7) is self-evident, the proof of Main Lemma is complete. 

R e m a r k 1. If A is completely metrizable then A^ from Main Lemma is not neces
sarily completely metrizable, by (3) it is point-Luzin, and so we can take a finer 
completely metrizable A' such that the identity A' -> A^ is a Baire-isomorphism and 
cr-dd-isomorphism. However, we are loosing the control of the topology of sets 
from (7). 

R e m a r k 2. If Л' is any uniform space between A^ and A then A' has all properties 
of A^ stated in (1)-(7) . 

R e m a r k 3. Main Lemma has its most natural setting for cj-dd-simple spaces, 
see [Ргоз]. 

As a corollary we obtain the following fundamental 

Theorem 1. Assume that f is a Baire-measurable mapping of an analytic space A 
onto a metric space M. Then there exists an analytic space A' and a uniformly 
continuous bijection j : A' -> A such that f oj is continuous, and 

j[Ba(^0] = Ва(Л) 
j[o--dd (A')] = a-dd (A). 

Moreover, if A is Luzin, point-analytic or point-Luzin, then so may be taken A\ 
In any case, for A' one can take the graph off with the uniformity inherited from 
A X M, and for j the restriction of the projection A x M -^ A. 

Proof. For each n choose a ^--discrete partition ^^ a Ba (M) of M such that the 
diameter of each С in ^„ is ^l /(w + 1), and put ^„ =:/~^[<^J. Then each ^„ is 
completely Ba (M)-additive, and hence each ^„ is completely Ba (y4)-additive. By 
non-trivial [F-Hj] , Thm 1, each J'„ is a-dd in A, and let A^ be the space from 
Main Lemma. Obviously A^ has the properties of A'. If A' is the graph, then 
{x -> <x,/x>} : A^ -^ A' is uniformly continuous because both / : A^ -^ M, and 
the identity mapping A^ -^ A are uniformly continuous. Thus Remark 2 to Main 
Lemma applies. 

The following is a partial generalization of the previous result: 

Theorem 2. Assume that f is a Baire-measurable compact-valued correspondence 
of an analytic space A onto a metric space M. There exists an analytic space A' 
and a uniformly continuous bijection j : A' ^ A such that 

Ba {A') = Ba (A) 

c7-dd(^') = a-dd (A) 
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and foj:Ä'~^M is lower semi-oontinuous (and Baire-measurable). Moreover y 
if A is Luzin, point-analytic or point-Luzin, then so may be taken A', 

Proof. Let ^„ be locally finite collections of open sets such that ^ = Ul'^n} 
is a basis for open sets, and put Ĵ ^ =/~^[^^/i]- Since ^l, is point-finite (the values 
are compact and ^„ are locally finite) and completely Ba (^)-additive, again by 
[ F - H j , Thm. 1, each ^„ is cr-dd in A. Now let J*„ be J*; u {A\[j^'^}, and apply 
Main Lemma. 

Theorem 3. Let f be a bi-measurable onto map of analytic metrizable spaces X 
and Y such that the preimages of points are compact. There exist analytic metri
zable topological spaces X' finer thenX, and Y' finer than Y such that 

Ba (Z') = Ba (X), Ba (Y') = Ba (У) , 

(j-dd (X') = (j-dd (X), a-âd (Y') = cr-dd (У), 

f:X' -> У is continuous and open, and the topology of the fibres is not changed 
(in particular, is compact). Moreover if X is Luzin, then so may be taken X\ and 
ifYisLuzin, then У can be taken to be completely metrizable. 

Proof. Using Theorems 1 and 2 define sequences of space [X„} and [Y^} such that 
Z„+i is finer than X„, Y„+^ is finer than Y„, the properties in Theorems are preserved 
(in particular, X and all X„ are Baire-equivalent, and cr-dd-equivalent, and similarly 
for Y and all Y„) such that each 

/ : X2n -^ Yin is continuous 

and each 

/ : ^ 2 n + i -^ У2П + 1 is open. 

In the case of Y Luzin, we construct all Y^ completely metrizable. Let X' be the 
coarsest space finer than each X„, and similarly, У be the coarsest space finer than 
each Y„. It is easy to check tha t / : X' --> Y' has all the properties required. 

For the convenience of the reader let us state precisely what is needed to prove 
that f:X' -^ Y' is continuous and open: Observe that each f:X' -> Y2„ is con
tinuous, and each/:X2„+i -> У is open. 

2. Point-analytic spaces. Point-analytic spaces were introduced and studied in 
[F-H3]; the definition is recalled in the introduction. The properties of point-co-
analytic spaces have been studied for years, usually under the name Suslin spaces; 
here we refer just to two papers [Fre] and [T]; the former contains a long list of 
characterizations of point-co-analytic spaces among all co-analytic spaces (called 
jK^-analytic usually), and the latter contains a result saying that every point-co-
analytic space is a 1-1 continuous image of a metrizable analytic space. All these 
results will be proved here in the setting of analytic spaces (not necessarily "separa
ble"). From the Main Lemma we obtain: 
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Theorem 4. An analytic space A is point-analytic iff there exists a bijective 
<^ontinuous mapping j : A' -^ A such that A' is an analytic metrizable space {hence, 
point'analytic; see the introduction^, and 

Ba {A) = j\ß^ {А'У\ , cr-dd {A) = j[a-ââ (Л')] . 

Proof. "If" is evident because we get a point-analytic parametrization of A by 
composing that of A' with j . 

For "only if" choose any point-analytic parametrization f:K''' -> A. of A, i.e. 
a single-valued (j-dd-preserving usco ( = upper semi-continuous) correspondence 
from the Baire space K^ (K is cardinal with the discrete uniformity) onto A. For 
each n let t \ = {B{s) \ seK"] where B{s) - {a | cr l/i = s]. For « = 0, f",, - {K""}. 
Since each i^„ is discrete, each family of analytic se t s / [ ' ^„ ] is cr-dd; choose any a-
discrete family if^„ of analytic sets such that elements of/['^^„] are sub-unions ofif^^. 
Using the V^ Separation Principle choose Baire sets {Вц, \ We ir„} such that 

Wcz B^ czW 

(since A is point-analytic, each open set is analytic). Clearly {Вцг} is d-discrete. Now 
take any family {J*„} satisfying the requirements of Main Lemma such that each 
element of {-ß^j is a sub-union of U{<^J- S ince/ is single-valued and upper-semi-
continuous it is clear that for each xeA, and each neighborhood U of x there 
exists an A ^ 6 U { / [ ' ^ J | n e o}] with xeN с N cz U. it follows that { ß ^ } , and 
hence U{^„}, is a network for A. Now A^ is metrizable and analytic by Main Lemma. 

Now we are ready to extend the list of Theorem 0. 

Theorem 5. Each of the following conditions on an analytic space A is necessary 
and sufficient for A to be point-analytic: 

(3) There exists a metrizable topology coarser than that of A, and a-dd and 
Baire equivalent to A. 

(4) There exists a metrizable topology finer than that of A, and a-dd and Baire 
equivalent to A. 

(5) There exists a metrizable space M which is Baire isomorphic to A. 
(6) There exists a a-dd family of Baire sets in A which distinguishes the points 

of A. 

P r o o f of T h e o r e m 5. Condition (4) is just the condition from Theorem 4. 
Condition (3) is sufficient by' (2) of Theorem 0, and necessary, because the metric 
space in (2) of Theorem 0 is Baire-equivalent to A by the 1̂ * Separation Principle. 

Condition (6) is sufficient by Main Lemma (5) because then A^ admits a one-to-one 
continuous mapping onto a metric space, and hence is point-analytic by Condition 
(1) of Theorem 0. Self-evidently (4) imphes (5). Finally (5) implies (6) by the non-
trivial Theorem 2 of [Т-Н^] used already in the proof of Theorems 1 and 2. 

R e m a r k s , (a) It is shown in [F-H3], Ex. 3.1 that coarser in the topological sense 
can not be replaced by coarser in the uniform sense. 
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(b) In (4) finer in the topological sense can not be replaced by finer in the uniform 
sense. For example, let A be K^, К infinite, with the topological fine uniformity. 
One easily checks that there exists no metric d on the set A such that <Л, d} is uni
formly finer than A, and cr-dd-equivalent to A. 

For the last list of characterizations of point-analytic spaces we recall the following 
well-known Lemma. In that Lemma paracompactness is understood in the usual 
way. Recall that a uniform space is said to be paracompact if every open cover has 
a (7-discrete (in the uniform sense!) refinement. So if X is paracompact then so is the 
induced topological space (and the converse is true for topologically fine uniformities). 
Every metric space is paracompact, and the image of a paracompact space under an 
usco-compact tj-dd-preserving correspondence is paracompact [F-H2]. Hence each 
analytic space is paracompact, and each subspace of a point-analytic space is para-
compact; thus point-analytic spaces are hereditarily paracompact. 

Lemma. The following two conditions on a paracompact topological space are 
equivalent: 

(1) The diagonal Ax of X x X is a G^ in X x X. 
(2) There exists a one-to-one contbnuous mapping of X onto a metric space. 

Proof. Evidently (2) implies (l) (without any assumption on X). Assume (1) and 
let zl;̂  = П{^и I 'Î e со] with all G„ open. For each n choose an open cover | L/4 x e X} 
of X such that (7" x 17" с G„. Since X is paracompact, for each ne œ there is a con
tinuous mapping/„ of X into a metric space M„ such that {f~^m | m e M J refines 
{[/"}. P u t / = {x -> {fnx}} :X -> n { M j . Clear ly/ is one-to-one because/^x = f^y 
implies <x, y} e G„. 

Now we are ready to complete the Hst of various characterizations of point-
analytic spaces. 

Theorem 6. Each of the following conditions is necessary and sufficient for an 
analytic space A to be point-analytic: 

(7^ A X A is hereditarily paracompact, 
(ß) A X A\ Aj^ is paracompact, 
(9) Aj^ is a Gg in A x A, 

(10) Ay^ is a Baire set in A x A (and so is A x A \A^). 

Proof. If A is point-analytic then so is Л x A, and hence A x A is hereditarily 
paracompact; thus (7) is necessary. Self-evidently (7) imphes (8). If an open subspace U 
is paraoompact (in the subspace uniformity) then clearly U is an F^ in the space; 
thus (8) implies (9). By Lemma, (9) imphes that there exists a 1-1 continuous mapping 
onto a metric space, and hence A is point-analytic by Theorem 0. Each Baire set in 
an analytic space is analytic and hence paracompact, thus (10) imphes (8). If A x A 
is point-analytic then each closed set in A x Л is a Baire set, and hence (10) is 
necessary. 
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Remark. I do not know whether or not paracompactness in (8) can be weakened 
to paracompactness of the induced topology. 

3. A problem on preservation of analyticity. Consider the following assertions 
(*)-(*v): 

(*) If/: Ä -^ M is Baire measurable and surjective, A complete metric, M metric, 
and if/[open [Aj] has a cr-discrete base, then M is analytic; 

(**) like (*) with A complete weakened to analytic; 
(***) like (**) with Baire-measurability strengthened to continuity; 
(*v) like (*) with Baire measurability strengthened to continuity. 

Observation. (**) implies each of the conditions, and (*v) is implied by each of 
the other conditions. By [Hj] or [F-H2] the assertion (v) holds. 

Proposition. (***)=> (**). 

Proof. Assume that/: A -^ M satisfies the assumptions in (**), and let A' be the 
graph with the subspace uniformity, and п^: A' -^ A, 712'. A' -^ M the restrictions 
of the corresponding projections. By Theorem 1 A and A' are Baire and a-àà equi
valent via 71̂ , and 712 is continuous. Let ^ be a cr-discrete base for /[ореп(Л)]. 
It is enough to check that if ^ is an appropriate base for open sets in M then 
{ßf\ n [< ]̂ is a base for 712[open (^4')], because ^ can be taken cr-discrete. 

First observe that A' n ([open (Л)] x [^]) is an open base for open (X'), and 
hence 

П2{А' n ([open {A)l X [Щ)) = [/[open (Л)]] n {Щ 

is a base for Я2[ореп {A')\ Finally, [^] n \_Щ is obviously a base for [/[ореп(Л)]]п 
n [J*], and hence for 71:2[open (^')]. 

Remark. For 1-1 maps the condition that/[open (Л)] has a cr-discrete base 
impHes that / is cr-dd-preserving and hence everything is known. 

Added in proofs. Recentely G. Gruenhage has proved that if X is compact and 
KxK\ AK is a paracompact topological space theni^ is metrizable. It follows, if X 
is analytic and XxX\Ax is a paracompact topological space then each compact 
subspace of X is metrizable, and hence by [Fre] it is consistent that the answer to the 
problem in Remaik following Theorem 6 is yes for co-analytic spaces. 
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