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Introduction. Open mapping theorems for topological spaces have been proved
by several authors ([ We], [BP], [Wi]) in the following form:

Let f be a continuous, nearly open bijection (surjection) from a topological
space E to a topological space F. Then, under appropriate conditions on E and F, f
will be open.

In [We], Weston has proved that if E is assumed to bea completely metrizable space,
F a Hausdorff space and if f is bijective, then the open mapping theorem holds.
Byczkowski and Pol ([BP]) have extended Weston's result to Cech-complete
spaces E. Here we prove that E may be supposed to be a semi-regular space which
densely contains the open continuous image of some paracompact Cech-complete
space (see section 2). Moreover we prove that the open mapping theorem also holds
if E is a semi-regular space which is pseudo-complete in the sense of Oxtoby and F
is assumed to have a G;-diagonal (see section 3).

The second part of our paper is devoted to the study of some applications in the
classes of semitopological and topological groups. In section 5 we introduce a notion
of ‘barrelledness’ for semitopological and topological groups. The latter is then used
to establish a Banach-Steinhaus theorem for ‘barrelled’ topological groups, by re-
ducing it to an open mapping theorem.

Although the discussion of open mapping theorems is usually combined with that
of graph theorems, we do not prove any graph theorems here. Rather hope we to
deal with this topic in a subsequent paper.

0. Preliminaries. In this section we summarize a few technical notions in order
to simplify the reading of the text. Note that our topological language is adopted
from Engelking’s book [E].

0.1. Nearly open and nearly continuous mappings. Let E, F be topological spaces.
A mapping f from E to F is called nearly open if for every x € E and every neighbor-
hood U of x, the set cl(f(U)) is a neighborhood of f(x). Dually, f is called nearly
continuous if for every x € E and every neighborhood V of f(x) the set ¢l (f (V)

is a neighborhood of x. (Compare [K&], p. 24 and p. 36, [Wi], [We], [BP]).
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0.2. Webs. Let E be a topological space. A pair (¢, T), consisting of a tree T =
= (T, £4) ([KM], p. 84) of height w and a mapping ¢ with domain T is called
a web on E if the following two conditions are fulfilled:

(i) The set {¢(1): 1€ T} is a pseudo-base for E (i.e. every nonempty open U in E
contains some nonempty ¢(¢) and all ¢{1), t € T are open sets).

(ii) Whenever te T then {¢(s): t <, se T} is a pseudo-base for the subspace ¢{r).

A web (¢, T) on E is called strict if (i) and (ii) above hold with the term ‘pseudo-base’

replaced by the term ‘base’. g

(The reader might consult [CCN] here for the notion of a ‘sieve’, which is quite
similar with that of a web).

0.3. Sets of interior condensation. The concept of a set of interior condensation
has been introduced by Wicke and Worrell (see [WW]). We reproduce their defini-
tion in a slightly modified form.

A subset P of a topological space E is called a set of interior condensation in E
if there exists a pair (¢, T), consisting of a tree T of height w and a mapping ¢ from T
to the topology of E, such that the following hold true:

(i) {¢(1): te T} is a cover of P.-

(it) Whenever 1 € T, then {{(s): 1 <, se T} covers P n ¢(1).

(iii) If b = Tis a cofinal branch ([KM], p. 84), then N{¢(1): te b} = P. g

Note that every Gy-set is a set of interior condensation. The converse, however, is not

true in general. (See [ WW]).

0.4. o-discrete decomposability. In [Ha], Hansell has introduced o-discretely
decomposable sets of subsets of a topological space E. A set {X;:iel} of subsets
of E is called o-discretely decomposable {abb. o-d.d.) if there exist sets X, ,, ne N,
i € I such that for every n e N the set {X; ,: i eI} is discrete {[ E], p. 33),-and for every
iel we have X; = U{X, ne/\/}. Furthermore, Hansell calls o-discrete f from
a metrizable space E to a metrizable space F if there exists a o-d.d. set Z of subsets
of E such that for every open V< F we have f~(V) = {Be#: B < f~'(V)].
(See [Ha]). "

0.5. The operator D. Let E be a topological space. If X is a subset of E, then D(X)
denotes the set of all x € E such that X is of the second category relative to x. For the
most important properties of D we refer the reader to [KM], p. 428(f. Here it will
be sufficient to know that D(X) is always closed and contained in cl X, and that
X\ D(X) is always of the first category in E.

1. Complete spaces. In this section we recall two concepts of completeness in
topological spaces which belong to the wide field of ‘strong Baire properties’. (See
for example [ AL] for related concepts).

Definition 1. A topological space E is called c-complete if there exists a web (¢, T)
on E with the following property:
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(c) Whenever b = T'is a cofinal branch and # is a filter on E with ¢(f) € # for
all t € b, then & has a cluster point in N{¢{¢): 1 € b}.

If, in addition, the web (¢, T) is strict, then E is called strictly c-complete. g

In the frame of regular hausdorff spaces, the strictly c-complete spaces are known
under the name ‘monotonically Cech-complete spaces’, used in [CCN], and as
‘spaces with condition 7, used in [WW]. In [WW] spaces with condition 4
are characterized as those spaces which are open continuous images of paracompact
Cech-complete spaces. A slight modification of the proof given there shows that
this characterization remains valid for strictly c-complete spaces. In the completely
regular case the strictly c-complete spaces are precisely those spaces which are sets
of interior condensation in their Stone-Cech compactification (compare [WW]).

The c-complete spaces may in turn be characterized, in the frame of hausdorff
spaces, as those spaces which densely contain a Cech-complete subspace or, equi-
valently, as those spaces which densely contain some strictly c-complete space.
(For the ideas of proof compare [ AL]).

Definition 2. A topological space E is called p-complete if there exists a web
(¢, T) on E with the following property:
(p) Whenever b = T is a cofinal branch with ¢(7) # 0 for all 1€ b, then also
N{p(1): te b} + 0.
If, in addition, the web (¢, T) is strict, then E is called strictly p-complete. g

(Strict) c-completeness obviously implies (strict) p-completeness. The class of
p-complete spaces is already known under the name ‘weakly o-favourable spaces’,
introduced by White ([Wh]). However we prefer the name ‘p-complete’, since it
indicates a close relation to the class of pseudo-complete spaces, introduced by
Oxtoby (compare [Ox] and [AL]).

2. First oper mapping theorem. In this section we prove an open mapping theorem
which generalizes theorems in [We] and [BP], [Wi]. Moreover, there are similar
open mapping theorems in [BP] and [Wi] which are very close to our theorem (see
remark 4 below). Let us, however, first recall that a topological space E is called
semi-regular if it has a base consisting of regular-open sets (also: open domains, see

[E], p. 37).

Theorem 1. Let E be a semi-regular c-complete space. Let f be a continuous,
nearly open bijection from E to some hausdorff topological space F. Then f is an
open mapping.

Proof. Let x € E and a neighborhood U of x be fixed. By the semi-regularity of E
there exists an open V such that x € ¥ and int ¥ < U. The proof will be finished if
we will have proved int{cl(f(V))) < f(U). To this end let y e int (cl(f(V))). Let
z € E be chosen with f(z) = y. It will be sufficient to prove z e int(cl V). By the
continuity of f there exists an open set O with z ¢ 0 and f(0) < int (cI(f(V))). If
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we can show that O < cl V, the proof will be finished. Now take b, € O. Fix an open
neighborhood W of b, with W < 0. We have to prove Vn W = 0.
Let (¢, T) be a web on E with condition (c).

By condition (i) in 0.2 we have cl (f(V)) = cl (f(U{¢(t): te T, ¢(t) = V})). But
S(bo) € f(0) < int (cl(f(0))) < int(cl(f(V))) and f(b,) € int (cl(f(W))). Therefore
we have int (cl (f(W))) 0 f(U{¢(1): t € T, ¢(t) =V}) + 0. Choose 1, € T with ¢(1,) =
SV and a,e¢(t;) with f(a,)eint (cl (f(W))). Next we have cl(f(W)) =
= cl(f(U{¢(s): se T, ¢ls) = W})), again by (i) in 0.2. Since now f(a,)e
eint (cI(f(4(t,)))), by the nearly openness of f we have int(cl(f(¢(t,)))) N
N f(U{(s):se T, ¢(s) = W}) + 0. Choose s, € T with ¢(s;) = W and b, € ¢(s,)
such that f(b,) e int (cl (f(¢(1,)))).
Proceeding in this way we inductively define sequence (a,).ey> (Bwens (Lnens
(,)nen such that the following hold true for all n > 2:
(o) tuoy <zt a,€¢(t,), fa,)eint (] (f(¢(s,-1)));
(B) Su=1 <715, by ¢(s,), f(b,)eint (cl(f(¢(1,))).
Now, by condition (c) of the web, the sequence (b,) has a cluster point b e N{¢(t,):
neN} = W. Hence the sequence (f(b,)) in F has cluster point f(b). Now for every
open neighborhood G of f(b) there exist natural numbers n(G, 1) < n(G, 2) < ...
such that f(b,qc.y)€G for all ieN. Hence, by (B), we find elements ¢(G, i) of
Mliyc.py) such that f(c(G, i) e G for all i e N. Now let # be the directed set of all
pairs (G, i), where the order is defined in the natural way. Then, by (c), the net A~ of

all ¢{G, i) with (G, i) € & has a cluster point ¢ € N{¢(t,): n € N} = V. But, obviously,

the net f{A") converges to f(b) and, F being a hausdorff space, this yields f(c) = f(b).

This in turn gives ¢ = b for f is assumed to be injective. But now we have established

VaWx0 o

Remark 1. The assumption of semi-regularity on the space E cannot be relaxed
here, as indicates the following proposition.

Let E be a hausdorff topological space, such that every continuous, nearly open
bijection f from E to an arbitrary hausdorff space F is open. Then E must be semi-
regular.

Proof. The set of all regular-open subsets of E is a base for a new topology on E.
E, with this new topology, call F. Then the identic mapping f from E to F is bijective,

continuous and nearly open. Since F is again a hausdorff space, f is open. But then E
has the desired base. g

Remark 2. It is clear that in theorem 1 the bijectivity of the mapping f cannot be
replaced by injectivity. We can even say a little more:

Let E be a completely regular topological space. The following-conditions are
equivalent:

(1) Every continuous, nearly open and dense injection f from E to an arbitrary
hausdorff space F is open. '
(2) E is locally compact.
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Proof. (1), applied to the embedding E — BE, yields the opennes of E in BE.
On the other hand, if U is a compact neighborhood of some x € E, then ¢l (f(U)) =
= f(U), which proves the openness of /. g

Remark 3. In [BP] is given an example for the fact that theorem 1 does not
remain true if bijectivity of f is replaced by surjectivity. However, the situation is not
so hopeless as this example might suggest.

Theorem 2. Let E be a semi-regular c-complete space and let f be a continuous,
nearly open surjection from E onto a hausdorff semi-regular space F. Then f is an
extremal epimorphism (see [HS], p. 110) in the category of semi-regular topo-
logical spaces and continuous mappings.

Proof. Let f be factorized to hog where g: E — G, h: G - F, G being a semi-
regular space and h being a monomorphism (see [HS], p. 38). h must therefore be
bijective. We have to prove that it is a homeomorphism. Let x" € G and some open
neighborhood U’ of x’ be fixed. By semi-regularity, choose an open neighborhood V'
of x" with int(cl V') < U’. We prove that int (cl(h(V'))) < h(U’). Take ye
e int (cl (h(V"))). Choose z € E with f(z) = y. Let O’ be a neighborhood of g(z) in G
with h(0) < int (¢l (h(V"))). The proof will be finished if 0" = ¥V’ will be established,
for then we will have g{z) e U’, hence y € h{U’). So choose b, € O". Let W' be a neigh-
borhood of b, with W' = O’. As in the proof of theorem 1 we have to establish
V' AW’ % 0. Choose b, € E with g(b,) = b; and define W = g~ (W'), V = g~ '(V'),
0 = g~ '(0’). Repeating the proof of theorem 1, we find ¢ € V, b € Wsuch that f(c) =
= f(b). Now this yields g(c) = g(b). But g(c) e V' and g(b) e W'. Hence the proof
is finished. g

Remark 4. In [Wi] open mapping theorems like our theorem 1 are proved for
relations instead of mappings. Since the method of proof is essentially the same in
both cases, we did not adopt this more general form here. Essentially relations are
used in [ BP], too, although the terminology is not the same as in [ Wi]. Now, in [Wi],
Wilhelm has proved a theorem which, being less general than our theorem 1 as the
space E is concerned, yet is more general as the mapping f is concerned. We re-
produce his theorem here using functions instead of relations.

Theorem. (Wilhelm [Wi]). Let E be a Cech-complete space and let f be a nearly
open bijection from E to some topological space F. Suppose that for all x,yeE
with x = y there exist neighborhoods U, V of x, y respectively such that cl(f(U))) n
A f(V) = 0. Then f is open.

An analysis of Wilhelm’s proof shows that E may be assumed to be strictly c-com-
plete and regular. However the proof heavily makes use of the ‘strictness’. Therefore
it seems as if his theorem did not remain true for c-complete spaces. We will now prove
that the assumption of regularity on the space E in Wilhelm’s theorem in fact is es-
sential.

Suppose that E is a first countable hausdorff space such that the statement of
Wilhelm’s theorem is true for all f and F as above. Then E must be a regular space.
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Proof. Let 7 be the topology on E. Fix x, € E and some decreasing open neigh-
borhood base (U,: neN) of x,. Now define a new topology 7" on E by taking
{(Ver:xo ¢V} U {cl(U,): neN} as a subbase. The identic mapping 1,: (E, t) —
— (E, 7’) has all the properties mentioned in the statement of Wilhelm’s theorem
above. This follows from the fact that the closures of the sets U, are the same with
respect to t and 7’. But then 1, must be open or, equivalently, T < 7’. But now
(c1(U,)) is a neighborhood base for x, in (E, t) and, consequently, (E, 7) is regular
at x,. m

Remark 5. We conclude this section with the remark that the assumption of c-
completeness for the space E in theorem 1 is by no means necessary. Indeed theorem
1 will also hold true if E is assumed to be a H-minimal space. However Herrlich has
given an example of a H-minimal space which is of the first category ([He]) and
consequently cannot be c-complete. Beyond this we note that the space constructed
by Herrlich, is first countable. In view of remark 4 this proves that Wilhelm’s theorem
is not true for H-minimal spaces, even in the weaker form given here.

3. Second open mapping theorem. In this section we prove a variant of our first
open mapping theorem. We relax the conditions on both the spaces E, F and con-
sequently, have to assume a little more on the mapping f.

Theorem 3. Let E be a semi-regular p-complete space. Let f be a continuous,
nearly open bijection from E to a topological space F. Suppose that the graph G{f)
of f is a set of interior condensation in E X F. Then f is open.

Proof. Let (¢, T) be a web on E with condition (p). Let (¥, B) be given for G(f)
as in 0.3. Our proof now starts exactly as the proof of theorem 1. Let U, V, O, W
and x, y, z have the same meaning as in the proof of theorem 1. Again we have to
establish Vn W = 0.

Still as in theorem 1 we find some t, € T with ¢(t;) S V and some x, € ¢(t,) such
that f(x,) € int (cI (f(W))). But now (x,, f(x,)) is an element of G{f). By condition
(i) in 0.3 there exists b, € B with (x;, f(x;)) € y(b;). Now we select open sets U,
in E and V, in F such that x,eU, < ¢(t,), f(Uy) € Vy < int(cl(f(W)))and U, x
x V. < y(b,). Next we observe that int (c1(f(U;))) 0 V; is a neighborhood of
f(xy)ec (f(W)) = cl(f(U{¢(s): se T, ¢(s) = W})), where the equality follows
from condition (i) in 0.2. Hence there exist some s; € T with ¢{s;) < W and some
y1 € ¢(s;) having f(y,) eint (cI(f(U,))) n V;. But (yy, f(y,)) € G(f) and therefore
there exists ¢, € B with (y,,f(y1)) € ¥(c;). Again we choose open sets O, in E
and W, in F such that y, € 0, < ¢(s;), f(0,) e W, < int(cl(f(U,)))n V¥, and
0y x Wy < Y(cy). ,

Proceeding in this way we define sequences (x,), (y,), (1), (s,), (U,), (V,), (O,)s
(W,) and (b,), (c,) such that the following conditions are satisfied:

(1) tn—l <Ttm xned)(tn) S Un—l S ¢(tn—~1);
f(x,)ef(U,) =V, < int(cl (f(Ou=1))) N W, _,.
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(2) U, x V, = y(b,), where b,_, <, b,.

(3) Suei <15 VueP(s,) S Oh_y S P(5,-1);
f(v) €f(0,) = W, < int(cl(f(U,) N V.

(4) 0, x W, = ¥(c,), where ¢, { <pc,

Using property (p) of (¢, T) we find xe N{¢(t,):neN} = V,ye N{P(s,): neN} =
< W such that f(x)e N\{V,: ne N} = N{W,: neN}. But then we have (y, f(x)) e
€ P(s,) X Wo_y S 0,_y x W,_y S ¥{c,-,) for all n = 2, and, by condition (iii) in
0.3, applied to (y, B) we have (y, f(x))e G(f). But this also reads f(y) = f(x),
or y = x since f is injective. Hence we have proved Vn W=+ 0. g

Corollary 1. Let E be a semi-regular p-complete space. Let f be a continuous,
nearly open bijection from E to a topological space F whose diagonal A is a set
of interior condensation in F x F. Then f is an open mapping.

Proof. We only have to prove that the graph G{f) of fis a set of interior condensa-
tion. Now for A there is given a pair (¢, T) as in 0.3. Define by y(1) = {(x, y) €
e E x F:(f(x), y) € ¢(t)}. ¥(t) is the preimage of ¢(¢) under the continuous mapping
{x, ) = (f(x), y) and consequently is open. Now the graph G(f) of f is a set of in-
terior condensation with (l//, T). -

Remark 5. Theorem 1 cannot be derived from theorem 3, because the graph of
a continuous mapping f need not be a set of interior condensation.

The question, whether the bijectivity of f can be replaced by injectivity may be
answered along the route of remark 2. Using the example from [ BP], it can be shown
that bijectivity cannot be relaxed to surjectivity, here. However, a statement like
theorem 2 might be derived from corollary 1 above. We leave the details to the
reader.

4. Semitopelegical groups. In this section we apply our two open mapping theo-
rems in semitopological and topological groups. Following Husain ([ Hu]), a topo-
logical space G is called a semiitopological group if G is a group and if the right and
left translates x — xa, x — ax are all continuous with respect to the topology on G.
Of course every topological group is a semitopological group.

Theorem 4. Let G be a semitopological group. Suppose that H is a dense sub-
group of G which is semi-regular in its relative topology. Suppose further that
one of the following statements (a) or (b) is satisfied. Then H = G.

(a) H is c-complete and G is hausdorff. ‘

(b) H is p-complete and the diagonal in G is a set of interior condensation.

Proof. Assume that there exists ze G\ H. Let F :=-zH U H be endowed with the
trace of the topology of G. Now let E be the topological sum of two copies of H. We
may assume that E = H x {1} U H x {2}. Now define a mapping f: E > F by
f(x,1) = zx, f(x,2) = x for all xe H. Thus f is bijective since zH n H = 0.
Moreover, f is continuous and nearly open, the latter since zH and H are both dense
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in F. For the first assume that {(a) holds true. Then F is hausdorff as a subspace of G.
H being semi-regular and c-complete, the same must be true for E. But then f is
open by theorem 1. Next assume that (b) holds true. Then the diagonal in G is a set
of interior condensation and, consequently, the same is true in F. But now, E is
p-complete and semi-regular since H is. Therefore by corollary 1, f is open. But
now we see that both cases yield a contradiction, for H x {1} being open in E, the same
must be true for zH in F, contradicting the denseness of H in F. g

Corollary 2. Let E be a semi-regular semitopological group. Let f be a continuous,
nearly open homomorphism from E to some semitopological group F. Suppose
that f is injective and that f(E) is dense in F. Then f is open and surjective, provided
that one of the following conditions is satisfied:

(a) E is c-complete and F is hausdorff. :

(b) E is p-complete and the diagonal in F is a set of interior condensation.

Proof. In both cases, f is open as a mapping E —>f(E) by theorem 1 respectively
corollary 1. But now apply theorem 4 to the dense subgroup f(E) of F. g

Remark 6. We have proved that for semitopological groups E, F and a homo-
morphism f the bijectivity in the open mapping theorem may be replaced by dense
injectivity. We note that if E is a topological group, then injectivity may be omitted,
too. Indeed, we may then take the quotient group E/Ker / to regain injectivity. Note
that, the canonical mapping being open, E/Kerf is again c-resp. p-complete, hence
we can apply theorem 1 resp. corollary 1. The reason why we cannot do the same in
case that E is semitopological is: when taking the quotient group E/Ker f we do not
know whether this space is semi-regular.

5. Barrelledness. In the classical theory of open mapping theorems, carried out
in the category of locally convex vector spaces, the class of barrelled spaces plays
an important role in view of the following statement {[ K], p. 24):

Every surjective linear mapping f from an arbitrary locally convex space E onto
a barrelled locally convex space F is nearly open.

In the category of topological groups there does not exist a class of groups which
might play a comparably important role, for a group F which yields the analogon
of the statement above to hold true for all E, f, obviously must be discrete. However,
in certain more special situations, the class of Baire topological groups can play the
role of barrelledness:

Suppose that E is a separable or Lindeloff topological group (more generally
a g-bounded group (see [Pe])). Then every surjective homomorphism f from E
onto a second category topological group F is nearly open (See [Hu], p. 98, [Pe]).

We will now give a definition of ‘barrelledness’ in the categories of semitopological
and topological groups which takes into consideration the proposition above. First
however, we need some aids. ’

Definition 3. Let E be a semitopological group. Let V be a neighborhood of the
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unit e in E. A set # of open subsets of E is called a V-base if for every x € E there
exists Be # such that xe B S xV. g

Let us introduce the following notion. A mapping f from a group G to a group H
is called left-invariant if for every a € G there exists b € H such that for all xe G
we have f(ax) = b f(x). Every multiplicative mapping is left-invariant.

Definition 4. Let E, F be semitopological groups. Let f be a mapping from E to F.
fis called a o-mapping if for every neighborhood V of e in F there exists some V-base
2 such, that /(%) is o-d.d. in E. (See 0.4). If, in addition, f is left-invariant resp.
a homomorphism, then f'is called an invariant a-mapping resp.aag-homomorphism. g

Examples. 1) Let E, F be metrizable semitopological groups. Then a mapping
f+ E - F is o-discrete in the sense of Hansell if and only if it is a o-mapping in the
sense of definition 4. (Compare [Ha] for examples of o-discrete mappings).

2) Let F be a o-bounded topological group ([Pe]). Then every mapping f from an
arbitrary semitopological group E to F is a g-mapping.

Proof. LetV be a neighborhood of e in F. Choose some symmetric neighborhood U
of e with UU < V. By the definition of o-boundedness there exists a sequence (x,)
of elements of F with F = U{x,U:ne N} u J{Ux,: n e N}. But now the set # =
={x,U:neN} U {Ux,:neN} is a countable V-base and, consequently, f (%)
iso-dd. g

This statement is no longer true if F is a separable or Lindel6ff semitopological
group. Indeed, let S be the Sorgenfrey space ([E], p. 39). S is a separable and Lindeloff
semitopological group. However the homomorphism 1g: R — S is not a o-homo-
morphism as we will see below.

3) Note that in Hansell’s theory every continuous mapping f between metrizable
spaces is o-discrete (cf. [Ha]). In our situation this is not true a fortiori. However
if Fis assumed to have o-discrete V-bases for each of its e-neighborhoodsV, then every
continuous f: E — F, with E an arbitrary semitopological group, is a ¢-mapping.
In particular, this is the case if F is metrizable or if it is a topological group.

Definition 5. A semitopological group (resp. a topological group) E is called of
type b (resp. of type b in the category of topological groups) if every bijective,
left-invariant o-mapping (resp. every bijective g-homomorphism) f from E to an
arbitrary semitopological (resp. topological) group F is nearly continuous. g

Remark 7. The name “b-type” has been chosen in reminiscence of the name
“barrelled”. Note that b-type topological groups may be defined by the following
formally weaker condition: a topological group E is of b-type in the category of
topological groups if and only if every surjective o-homomorphism f:E — F,
F being any topological group, is nearly continuous.

The following theorem justifies definition 5.

Theorem 5. Every second category semitopological group is of b-type. Every
second category topological group is of b-type in the category of topological
groups.
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Proof. Of course we only have to prove the first part of the statement. Let f: E — F
be surjective, left-invariant and a o-mapping. Suppose that E is of the second
category. Assume that f is not nearly continuous. Hence there exist x € E and an
open neighborhood U of f{x) such that x ¢ int {cl (f ~'(U))). Now f(x)~* U is a neigh-
borhood of e. Since f, by assumption, is a o-mapping, there exists af(x)‘1 U-base 2
such that f~ (%) is o-d.d., f~Y(2) = U{#,: n € N} with #, discrete in E. Now
X := U pU)Nint (el (f71(pU))): y € Fy = U{f Y(R)Nint {c1(f'(R))): R e %}
since Z is a f(x) "' U-base. By 0.5 we may continue X < U{/~"(R)\int (cl (f~'(R))):
Re#; = UM ~int DIM): M e f~Y(2)} = U{U{M Nint D(M): M € #,}: ne N}.
By 0.5 each M \int D{M) is of the first category. But the 2, being discrete, the sets
{M~int D(M): M € #,} are also discrete and, by the Banach-category theorem,
their union is of the first category. Therefore we have proved that X is of the first
category and, E being of the second category, there exists z € EX X. Now by the left-
invariance of f we find b e F such that for all y e E we have f(zx™'y) = b f(»).
Hence f(z) e bU and by the definition of X now z eint (cl(f~'(bU))). However
this yields z € zx™ " int (cI(f ~'(U))), a contradiction. g

Remark 8. We can now prove that 1z: R — S is not a o-homomorphism. Indeed,
suppose it were. Then by theorem 5 it would be nearly continuous, respectively its
inverse 1g: S — [R would be nearly open. But the Sorgenfrey topology is finer than
the euclidean topology and moreover is regular and p-complete. In view of theorem 3
this would mean that 1g: S — R had to be open. This however is not the case.

In the category of topological groups we can prove a more general result than
theorem 5. Namely we can prove that there are b-type topological groups which are
of the first category. Such a group may be constructed in the following way. Let G
be a group and let (G,,: neN) be an increasing sequence of subgroups of G with
union G. Suppose that on each G, there is given a group topology 7, such that the
trace of 7,,, in G, is 7,. Assume that there exists a finest group topology ¢ on G
which induces 7, on G, for every n. In this case (G, 1) is called the inductive limit
of the sequence ((G,, 1,): n € N). Note that if G is commutative, then t always exists.

Theorem 6. Let (G, t) be the inductive limit of a sequence ((G,, 7,): n € N) of b-type
topological groups. Then G is itself a b-type topological group. In particular
there exist b-type topological groups which are of the first category.

Proof. Let f: G — H a bijective o-homomorphism onto a topological group H.
Let f, be the restriction f | G,. Let £ be the set of all neighborhoods of e in F. Let #*
be the set of cl(f~(N)), Ne &. #* is the neighborhood base for a new group
topology ¢ on G. But the trace g, of o on G, is coarser than t,. In fact, we have the
inclusion ¢l, (f~*(U)n G,) < cl(f~(U)) n G,, where cl, is the closure operator
in G,. However, f, being a s-homomorphism, too, each f, is nearly continuous. Hence
cl,(f, '(U)) = cl,(f~'(U) n G,) is a neighborhood of e in G, and so is ¢l (f~*(U)) n
N G,. But now, g, < 1, for each n, yields ¢ = © by the definition of 7.

For the second part of the statement we only have to choose the sequence (G,)
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such that the limit topology exists and int (c1(G,)) = 0 for all n. Then G will be of
the first category. g

The remainder of this section is devoted to an application of the concept of b-type
topological groups. Hereby we also apply an open mapping theorem. First we need
a definition.

Let F be a metrizable topological space, d a metric for F. Let ¢(F) be the set of all
convergent sequences of elements of F. Define a metric d on ¢{F) by d(x, y) =
= sup {d(x,, y,): n € N}. Of course the topology induced by d does not depend on
the choice of d. Note that the new topology is finer than the product topology on ¢(F).
Now we have the following

Lemma 1. There exists a network (cf. [E], p. 170) 2 on ¢(F), which is o-discrete
with respect to the coarser product topology on c(F). Moreover & consists of sets
which are F, with respect to the product topology.

Proof. Let 4 be a g-discrete base for F ([E], p. 350). Let £, be the set of all sets
R(By,...,B,) = II{B;:ie N} n ¢(F), where B,e # and B, = B, for i > n. &, is
o-discrete with respect to the trace of the product topology on ¢(F). But now # =
= U{2,: n e N} is a network on ¢(F).Indeed, let x € ¢(F) and ¢ > 0 be fixed. Choose
B e # with d-diameter less than 8/3 and x; e B for all i = n. For i > n choose B;
such that x; € B; and the diameters of the B; are less than ¢. Let now B; = B for all
i = n, then xeR(By, ..., B,) € By(x, ¢). The second part of the statement is obvious. g

Suppose now that (f,: n € V) is a sequence of continuous mappings from a topo-
logical space E to the metrizable space F. Then ¢(x) := (f,(x): n € N) defines a map-
ping ¢: E — FY, which is continuous with respect to the product topology on F".
Suppose now that E, F are topological groups and that the f,: E - F are homo-
morphisms. Suppose further that for every x € E the sequence (f,(x)) is convergent.
Then ¢ maps E into ¢{F). In this case we have: '

Lemma 2. ¢ is a o-homomorphism. Moreover, ¢ is Borel-measurable of the class
one (i.e. preimages of open sets are F,-sets).

Proof. ¢ is continuous with respect to the product topology. But £, defined as
in lemma 2, is o-discrete and consists of F,-sets, both with respect to the product
topology. Hence the same is true for ¢~ !(%). Since £ is a network, this proves the
lemma. g ’

Now we can state and prove the following variant fo the Banach Steinhaus theorem
in the category of topological groups.

Theorem 7. Let E, F be commutative, separated topological groups. Let E be
of b-type. Let (f,,) be a sequence of continuous homomorphisms from E to F such
that for every x € E the sequence (f,(x)) is convergent. Then the set {f,: ne N} is
equicontinuous, the limit homomorphism f is continuous and (f,) converges to f
uniformly on every precompact subset of E.

Proof. Since F is commutative and separated, it can be embedded into a product
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of completely metrizable commutative groups. Therefore it will be sufficient to prove
the statement for commutative, completely metrizable F. But then c(F) and ¢ as
above, are available. Let t be the topology on ¢(F). ¢: E — (c{F), 7) is a o-homo-
morphism by lemma 2 and, E being of b-type, is nearly continuous by the remark
following definition 5. We define a new group topology ¢ on ¢(F) by taking for a base
of the filter of neighborhoods of e of ¢ the sets of the form ¢(V). U, where V runs
through the neighborhoods of e in E and U runs through the neighborhoods of e
in (¢(F), 7). But now ¢: E — (c(F), o) is continuous and on the other hand 1,
(c(F), ©) — (c(F), o) is bijective, continuous and nearly open, the latter since ¢ is
nearly continuous. But c(F) is completely metrizable, for d being a complete metric
for F, the metric d on ¢{F) is complete, too. Since ¢ is continuous with respect to the
product totpology, it has closed graph with respect to 7. This however guarantees
that ¢ is a hausdorff topology. Consequently, by theorem 1, 1, is open, which also
reads 7 = ¢. But then ¢: E — (¢(F), ) is continuous. This however means nothing
else but the equicontinuity of the sequence ( f,,).lThe rest of the statement now follows
by a well-known argument (see for example [Bo], X, § 2.4, th. 1). g
Remark 9. Compare theorem 6 with corollary 2.1 in [Pe].
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