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EXTENDED SHANNON ENTROPIES 1I

MirosLAav KATETOV, Praha

(Received July 6, 1984)

This is a continuation of Part I (Czechosl. Math. J. 33 (108) (1983), 564 —601).
The numbering of sections is consecutive in Part I and II. Terminology and notation
of Part I is used, as a rule, without reference.

We continue the examination of extended Shannon entropies (semientropies)
defined on the class of sets endowed with a finite measure and a measurable semi-
metric, or on a suitable subclass. In particular, we investigate, for normal gauge
functionals 7, the C,-entropy and CX-semientropy, introduced in Part 1.

The main results are as follows. Both C(P) and C}(P) are positive unless P is
trivial (or 7 fails to satisfy a fairly natural condition) and they are finite whenever P
satisfies a certain boundedness condition. If a mild persistence condition is imposed,
then, under a set-theoretic assumption, there are not too many distinct extended
Shannon entropies on the class of all Borel metrized probability spaces. Under certain
assumptions, C, and C¥ satisfy a condition of the Lipschitz type on the collection of
all subspaces of a given semimetrized measure space. As a consequence, for any given
finite non-void set Q, both C, and C are continuous on the space of all metrized
measure spaces on Q.

The results just mentioned provide answers to the questions posed in 2.30. Namely,
Theorem X answers the questions Ib and IVb, Theorems V, VI and VII answer
(partially) the questions III and VI, and Proposition 11.4 answers the questions II
and V.

The paper is organized as follows. There are five sections (7 through 11). Each of
the sections 7, 8,9 and 10 contains a short introduction describing the topic. In Section
11, the main results of the present Part II are summarized.

The following facts, which will not be formuIaEed as propositions, are worth
mentioning. Many ‘“qualitative” properties, such as,; e.g., CX{(Q,0, u) < © or
Ded {Q, 0, #) < o (see 8.13) are not preserved under transition to a uniformly
equivalent metric (see, e.g., 8.20). On the other hand, some properties, e.g., those
just mentioned, are invariant with respect to the Lipschitz equivalence of metrics
(semimetrics). Thus, besides investigating extended Shannon entropies etc., we
examine, in fact, the following kinds of spaces: in most cases, metric or semimetric

565



spaces (in contrast to merely metrizable or semimetrizable ones) endowed with
a finite measure; in a few cases, Lipschitz spaces equipped with a finite measure;
and sometimes, see, €.g., 7.23 and 7.25, also metrizable topological spaces endowed
with a finite measure.

Acknowledgment. The author is indebted to J. Hejcman for numerous valuable com-
ments which enhanced the presentation and helped to avoid some mistakes; also,
for lemma 8.11 and the examples 10.8.1—4.

7

In this section, we consider some fairly general properties of metric W-spaces. In
particular, we show (7.25) that any metric W-space is the sum of a subspace such that
almost no point has a neighborhood of measure zero and a subspace almost all
points of which possess a neighborhood of measure zero. We also give an estimate
(see 7.39) of the number of distinct, with respect to a certain equivalence, weakly
Borel (see 7.19) metric W-spaces of a “not too large” topological weight, and an esti-
mate (see 7.57) of the number of persistent (in a broad sense, see 7.49) extended
Shannon semientropies on a fairly wide class of metric W-spaces.

7.1. We now recall some simple facts concerning what we call R-measures, i.e.,
measures in the usual sense (the value oo possible), and introduce W-spaces of the form
P | T (see 7.8).

7.2. Definition. Let Q be a non-void set. If 4 is a og-algebra on Q, u is a o-additive
non-negative function on # (possibly assuming the value o) and p(0) = 0, then u
will be called an R-measure on Q. An R-measure on Q will be called o-finite if there
exist sets A, e dom p, ke N, such that J(4,: ke N)= Q and p(4,) < o for all
ke N.

7.3. The completion of an R-measure and the product y; X u, of two R-measures
are defined in the same way as the corresponding concepts for measures. Therefore
we can omit explicit definitions.

7.4. Notation. Let Q be a set and let u be a function such that dom u < exp Q.
Let T < Q. For any Y such that Y = X n T for some X € dom g, pur (Y) =

= inf {¢(X): X e dom p, X n T = Y}. Then the function v will be denoted by uT,
provided there is no danger of confusion.

7.5. Fact and notation. Let 4 be a measure (an R-measure) on Q and let T < Q.
If T + 0, then p | T'is a measure (an R-measure) on T and [u NT] =wu I\ T. The
outer measure of T, i.e., (1 [> T) (T), will be sometimes denoted by p.(T).

7.6. Fact. For i = 1,2, let y; be a measure (an R-measure) onQ;andletg # T,
€ Qe PutT=T x T =y xpp,v;=p; [ T, v=p[ T Then v = vy X v,,
A T=[n x vl
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Since 7.5 and 7.6 are well-known facts (though in a slightly different setting) of
measure theory and can be proved in a straightforward way, we omit the proofs.

7.7. Fact and notation. If S = {(Q, @) is a semimetric space and T < Q, then
(T, ¢ |" T) is a semimetric space, which will be denoted by S [* T. — For the notation
0 |\ Tsee 1.1 D.

7.8. Fact and notation. If P = (Q, ¢, > is a W-space and @ = T < Q, then
(T, ¢ ’\ T, u ]\ T) is a W-space, which will be denoted by P [\ T.

Proof. We have to show only that the semimetric ¢ [* Tis [(u [* T) x (u MT)] -
measurable. This follows immedaitely from 7.5 and 7.6.

7.9. Now we give a simple characterization of measures u such that some {Q, ¢, u)
is a metric W-space (see 7.19 below), in other words, of probability spaces admitting
a metric. Although the result is possibly known, we will prove it in full, omitting
only the proof of a well-known proposition (see 7.12) of measure theory.

7.10. Definition. Let x4 be a measure on Q. If, for any X edom p, uX = 0 or
uX = uQ, then u is called a two-valued measure. If, for any X € dom y, the set
{uY: Yedom y, Y = X} is equal to the interval [0, uX], then p is said to have the
Darboux property.

7.11. Lemma. Let <Q, 0, uy be a W-space. If p is a two-valued measure, then
there exists a non-void set A € dom p such that (i) uA = pQ, (ii) if x, y € A, then
o(x,y) = 0.

Proof. Clearly we can assume that pQ = 1. If A, B,edom p, U(4; x By:
ke N) > {(x, y): ¢{x,y) = 0}, then, with E, = 4, B,, we have U(E, x E;:
ke N) > {(x, x): x e 0}, hence UE, = Q and therefore uE, = 1 for some ne N.
This implies £(uA,. uBy: k€ N) = 1, hence [u x p] {(x,y)e Q x Q: o(x, y) = 0} =
=1, [u x u](G) =0, where G = {(x, y): o(x, y) > 0}. Consequently, there exist
sets X, Y, € dom p, k € N, such that (X, x Y;: ke N) > G, Z(uX,.pY,: ke N) =
= 0. Put K = {k: puX, = 1}; put A = (Z\U(X,: knon e K)\U(Y;: j € K), where
Z=UX:keK)if K+0, Z=Q if K=0. Due to ZuX,.uY, =0, we have
uY; = 0 whenever j € K. This implies u4 = 1.

Suppose A contains points x, y such that g(x, y) > 0. Then, for some n,(x, y) €
e€X, x Y,. If neK, then y e \(Y;: i € K), hence y none A. If nnoneK, then xe
€ N(X;: i non € K), hence x non € A. In both cases we get a contradiction.

7.12. Proposition. Let a measure u satisfy the following condition: if X € dom p
and uX > 0, then there exists a set Y =« X such that Ye dom p and 0 < puY < uX.
Then p has the Darboux property.

This is well known (see, e.g., [2], § 2, Proposition 7).

7.13. Proposition. Let u be a measure on a set Q. Then the following conditions
are equivalent: (1) <Q, 1, u) € W, (2) there exists a metric ¢ on Q such that
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£Q, 0, iy € W, (3) there exists a countable set A = Q such that p P(Q \ A) has the
Darboux property and {x} € dom u for all x € A.

Proof. Trivially, (1) implies (2). — Assume (2). Let 4 be the set of all x € Q such
that {x} e dom g, u{x} > 0. Then 4 is countable. Put v = p [*(Q\ A). If X € dom v,
vX > 0, then v ]\X is not two-valued, for otherwise, by 7.11, there would exist an
x € X such that {x} € dom v, v{x} = vX > 0, which is a contradiction since X N A4 =
= (. Hence, for any X € dom v such that vX > 0, there exists a Y e dom v such that
Y= X and 0 < vY < vX. By 7.12, this proves that x| (Q\ 4) has the Darboux
property. — Assume (3). We are going to prove that {Q, 1, > e 9. Since clearly
{(x,x): x€ A} is (u x p)-measurable, it is enough to show that, for any & > 0,
there is a set G, dom (u x p) such that G, > {(x, x): xe QN A}, (u x p)(G,) < &.
If f(Q\A) =0, we can put G, = (Q\A) x (Q\A). If y(Q\ 4) > 0, then, since
I ]\(Q\A) has the Darboux property, it is easy to see that there exists a partition
(X): keK) of QN A4 such that, for all keK, X, edom p and pX, < &/uQ. Put
G, = U(X; x X;: keK). Then (u x p)(G,) = Z{(uX,)*: ke K) <
< (e/uQ) Z(uX,: ke K) = e.

7.14.1. Example. Let Q be an uncountable set. Let o/ be the smallest o-algebra
on Q containing all finite sets. For X € &7, put uX = 0 if X is countable, uX =1
if not. Then u is a measure which does not satisfy the condition (3) from 7.13.

7.14.2. Fact. If P = <Q, ¢, 1) € W and u is a two-valued measure, then d{P) = 0.

Proof. Let 4 = Q be a set with properties described in 7.11. Then [u x pu].
Aluy)ielx y) = 0) = [ux ] (A% A) = (na)? = (Q)* = (1 x p) (2 x Q),
hence d(P) = 0.

7.14.3. Fact. If a measure p on Q is not two-valued, then there exists a semi-
metric ¢ such that P = {Q, ¢, uy € W, d(P) > 0.

Proof. Choose X e dom p such that 0 < uX < uQ and, for x,ye Q, put
o(x,y) = 1if (x,y) or (y,x) is in X x (Q\X), o(x, y) = 0 if not. Clearly,
(e x 0 {(x, »):0(x,y) = 1} = 2uX p/G\X) > 0.

7.15. Now we are going to prove a proposition (or rather two versions of a pro-
position, see 7.23 and 7.25) which plays an important role in proving various results
(seee.g. 7.28,7.35and 7.39) on metric W-spaces and extended Shannon semientropies.

7.16. Definition. If P is a semimetric space {Q, ¢» or a W-space {Q, ¢, u», then for
any x € Q and any positive number ¢ we put B(x, t) = {y € Q: ¢(x, y) < t}, B(x, 1) =
= {ye Q:0(x, y) < t}. A set of the form B(x, ) or B(x, t) will be called a ball in P
(with a center at x). — Naote that a ball can have more than one center.

7.17. Fact. Let p be a measure on Q. Let Z = Q x Q be [u x p]-measurable.
Then there exists a p-measurable set A = Q such that p(Q\ A) = 0 and, for any
aed, {x:(a,x)eZ} edom fi. If, in addition, [p x p](Z) =0, then A can be
chosen in such a way that i{x:(a,x)e Z} = 0 for each ac A,
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This is well known.

7.18. Lemma. Let P = {Q, 0, u> be a W-space. Then there exists a set A€ dom p
such that (1) w(Q\ A) = 0, (2) any ball in P with a center in A is fi-measurable,
(3) in the W-space P |> A, all balls are [u [ A]-measurable.

Proof. For any positive number ¢, the set {(x,y)e Q x Q:¢g(x,y) <1t} is
[# x u]-measurable. Hence, by 7.17, for any rational t > O there exists a set 4, €
€ dom  such that u(Q\ 4,) = 0 and, for any a € A,, B{a, t) is ji-measurable. Put
A = (\(4,:t > 0 rational). Then 4 € dom p, p(Q\ A) = 0, and every B(a, t) where
a € A and ¢ is rational positive, is j-measurable. This implies assertion (2) Assertion
(3) follows by 7.5.

7.19. Definition. A W-space <Q, 0, ) will be called metric if ¢ is a metric. A metric
W-space <Q, ¢, uy will be called weakly Borel if every Borel set X = Q is fi-measur-
able. The class of all metric W-spaces will be denoted by 13,,, that of all weakly Borel
metric W-spaces by W,p.

7.20. Definition. Let P = {0, ¢, 4> be a metric W-space. Then (1) the (topological)
weight of {Q, ¢> (i.e., the least cardinality of an open base) will be called the topo-
logical weight (abbreviated t. weight) of P and will be denoted by tw (P); (2) the
minimum of the (topological) weights of <Q, ¢) l\ T, where Te dom p and
QN T) = 0, will be called the reduced topological weight (abbreviated r.t. weight)
of P and will be denoted by rtw (P); (3) P will be called second-countable if {Q, o>
is second-countable, i.e., if it has a countable open base.

7.21. Lemma. Let P = {Q, ¢) be a metric space. Let ;1 be a measure on Q. Assume
that every x € Q has arbitrarily small fi-measurable neighborhoods (open or not).
Let V consist of all x € Q such that gX > 0 for any ji-measurable neighborhood X
of x. Then the set Vis fi-measurable closed and the space P !\ V is second-countable.

Proof. Clearly, Vis closed. — Suppose that P [* Vis not second-countable. Then
there exists a number ¢ > 0 and an uncountable set Y = ¥V such that Q(yl, yz) > 2¢
whenever y, €Y, y,€Y, y; % y,. For each ye Y, choose a j-measurable neigh-
borhood Z, = B(y, ¢). Then the sets Z, are disjoint and jiZ, > 0 for every ye Y.
Since Y is uncountable, this is a contradiction, which proves that P [\ V is second-
countable. — For any n = 1,2, ... and any x e ¥, let M(n, x) be a ji-measurable
neighbourhood of x contained in B(x, 1/ n) Since P ]\ V is second-countable, there
exists for every n =1, 2, ... a countable set A, = Vsuch that Y(M(n, x): xe 4,) = V.
Put B, = U(M(n, x): x € 4,). Clearly, V = (\(B,:n = 1,2, ...), hence Vis fi-measur-
able. ‘

7.22. Lemma. Let {Q, o, u> be a metric W-space. Then, for any x € Q, either (i)
BG = 0 for some open neighborhood G of x, or (ii) any ball with a center at x is
[i-measurable.

Proof. Let x € Q. Let 4 be a set with the properties described in 7.18 (thus, in
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particular, all balls with a center in A4 are ﬁ-mesaruable). IfAn B(x, ¢) = 0 for some
¢ > 0, then B(x, &) = Q\ 4, hence ji(B(x,¢)) = 0. If A B(x,¢) + 0 for all ¢ > 0,
then there exist a,€ 4, n = 1, 2, ..., such that ¢(a,, x) < 1/n. It is easy to see that
if 0 < t < oo, then B(x, 1) = N\(B(a,,t — 1/n): n = 1,2,...,nt > 1) and therefore
B(x, t) is ji-measurable.

7.23. Proposition. Let P = <Q, ¢, u) be a metric W-space. Let U be the union
of all open (in {Q, ¢)) sets G such that G e dom i, iG = 0. Let V = Q\U. Then
(1) U and V are ji-measurable, U is open, V is closed, (2) the W-space P |\ Vis second-
countable weakly Borel, (3) every ball in P with a center in V is fi-measurable, (4)
if the reduced topological weight of P is countable, then gU = 0.

Proof. The assertions (1), (2) and (3) follow at once from 7.21 and 7.22. — Let
rtw (P) be countable. Then there exists a set 7€ dom p such that u(Q\T) =0
and <0Q, ¢> [\T is second-countable. Every xe U n T has an open (in <Q, ¢))
neighbourhood G, such that gG, = 0. Since <Q, ¢) [\T is second-countable, the
open cover (G,: xe Un T) of Un T contains a countable subcover and therefore
HUNT)=0.Since U= (UnT)u(Q\T)and u(Q\T) = 0, we get aU = 0.

7.24. Proposition. Let P = {Q, 9, u) be a metric W-space. If the reduced topo-
logical weight of P is countable (in particular, if P is second-countable), then P
is weakly Borel.

This is an immediate consequence of 7.23.

7.25. Proposition. For any metric W-space P = {Q, o, uy, let Z(P) denote the
set of all x € Q such that p(G) = 0 for some neighborhood G € dom p of x. Let Z
and % , denote the classes of all metric W-spaces S = (T, o, v) such that %(Z(S)) = 0
and ¥(T\Z(S)) = 0, respectively. Then (1) every metric W-space P = <Q, ¢, u)
has exactly one partition (P, P,) such that P, €% ., PoeZ,, (2) P, = V.P,
Py, = U. P, where U = J{G: G open, iG = 0}, V= G\U.

Proof. LPutyu, = V.upto=U.u, P, =V.P,Py=U.P.PutK = Z(P,) n
N V. By 7.21, the space <K, ¢ f\ K is second-countable. Hence it is easy to see that
i+(K) = 0. Since fi,(U) = 0, we have ji,(U U K) = 0. Clearly, Z(P,) c UUK,
hence [i,(Z(P,)) =0, P,eZ,. Evidently, U < Z(Po), hence Q\Z(Po) <V,
Bo(Q N Z(Py)) < fio(V) = 0, and therefore Py e Z,. — IL Let (S, So) be a partition
of P and let S, =<Q,0,vi>eZ4, So=<0,0, vope%, Clearly, Z(S,) >
> Z(P)=U and therefore 7,(U) =0, hence v, < V.pu Put M =V Z(S,).
Since (M, ¢ [> M) is second-countable, we have v,(M) = 0. Since 7o(Q N Z(So)) = O,
this proves that vo(V) = 0, hence v, (V) = u(V). Together with v, < V. u, this
yields v, = V. p and therefore vo = U . p.

7.26. Let us recall some concepts and theorems of set theory. The terminology and
(partly) notation is that of [1].

7.26.1. A cardinal « is called real-measurable (Ulam-measurable) if there exists
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a measure (a two-valued measure) u on a set Q of cardinality o such that dom u =
= exp Q, u{x} = 0 for any xe Q, and uQ > 0.

7.26.2. Every Ulam-measurable cardinal is real-measurable. If a cardinal o
is real-measurable (Ulam-measurable), then so is every cardinal B > a. The
cardinal o is not real-measurable. If a cardinal o is not real-measurable (Ulam-
measurable), then neither is a*, the smallest cardinal greater than a. If card A = o,
o is not real-measurable (Ulam-measurable), ¢, where a e A, are cardinals and
no &, is real-measurable (Ulam-measurable), then neither is £(¢,: a € A).

7.26.3. If a cardinal o is not Ulam-measurable, then neither is 2*.

7.27. Lemma. Let {Q, 0> be a metric space. Then the following conditions are
equivalent: (1) if p is a measure (a two-valued measure) on Q such that every Borel
(in <Q, 0)) set is ji-measurable, then there exists a closed set X = Q such that for
any open G = Q, iG > 0 iff G intersects X; (2) if u is a measure (a two-valued
measure) on Q such that every Borel set is fi-measurable, then for any collection 4
of open sets G such that iG = 0 we have g(U%) = 0; (3) the weight of {Q, ¢) is
not real-measurable (is not Ulam-measurable).

This follows at once from the results contained in [6] (in particular, Theorems II
and III).

7.28. Proposition. Let P = {Q, 0, 4y be a metric W-space. If P is weakly Borel
and the topological weight of P is not real-measurable, then the reduced topological
weight of P is countable. In more detail: there exists a u-measurable set Z such that
(1) (@~ Z) = 0; (2) the space P [ Z is second-countable; (3) if G = Q is open and
AG = 0, then GNZ = 0.

Proof. Let U and V be as in 7.23. Then, by 7.27, iU = 0. Choose a set Z € dom u
such that Z = V, y(Q~\Z) = 0.

7.29.1. If, in 7.28, the assumption of P being weakly Borel is omitted and ‘“‘real-
measurable” is replaced by “Ulam-measurable’’, then the proposition does not hold.
An example: Q is the interval [0, 1], A is the Lebesgue measure on Q, P = <Q, 1, A).
Clearly, P is not weakly Borel. The t. weight of P is 2, hence it is not Ulam-measur-
able. The r.t. weight of P is 2 as well.

7.29.2. Fact. Let Q be a set. If card Q is real-measurable but not Ulam-measur-
able, then there exists a measure u on Q such that P = {Q, 1, u) is a weakly Borel
metric W-space and the reduced topological weight of P is real-measurable.

Proof. Since card Q is real-measurable, there exists a-measure u on Q such that
dom p = exp Q, uQ > 0, u{x} = 0 for all x € Q. Since card Q is not Ulam-measur-
able, no u [\ T, where T < Q, uT > 0, is two-valued. Hence, by 7.12, p has the
Darboux property and therefore, by 7.13, P = {Q, 1, u) is a W-space. Clearly, P is
weakly Borel. If T = Q, uT = 0, then 4(Q\ T) = uQ > 0 and therefore card (@ \ T)
is real-measurable. Consequently, the r.t. weight of P is real-measurable.
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Remark. I do not know whether 7.28 remains true if we omit the assumption
that P is weakly Borel while retaining the assumption on the topological weight of P.

7.30.1. It is an almost immediate consequence of 7.28 that if P = <{Q, ¢, #) € Wy
and the topological weight of P is not real-measurable, then P satisfies the following
condition: (*) if d{P) > 0, then there are y-measurable sets X, Y such that uX > 0,
1Y > 0, inf {¢(x, y): x e X, y € Y} > 0. There are examples of non-metric W-spaces
not satisfying (*), see 10.19 and 10.20. On the other hand, I do not know whether
every P e Wz (or even every P € MW, satisfies (x). However, the following statement
is easy to prove.

7.30.2. Fact. Let P = {Q, 0, ) € Wy, and let d(P) > 0. Assume that the topo-
logical weight of P is not Ulam-measurable. Then there are p-measurable sets X
and Y such that pX > 0, pY > 0, inf {o(x, y): xe X, ye Y} > 0.

Proof. Let Z denote the o-algebra of all Borel subsets of Q. Suppose that for any
ZeRB, iZ = 0 or iZ = pQ. Let v denote the measure fi restricted to 4. If there
exists an x € Q such that vG > 0 for any open set G containing x, then we easily
get v{x} = vQ, hence ¥(Q \ {x}) = 0 and therefore d(P) = 0, which is a contradic-
tion. If every x € Q has an open neighborhood G such that vG = 0, then, by 7.27,
we get vQ = 0, which contradicts d(P) > 0. Thus we have shown that there exists
a Borel set Z such that 0 < gZ < uQ. Hence there exists a closed set 4 = Z such
that 0 < fid. For n = 1,2, ..., put G, = {y € Q: o(y, x) < 1/n for some x € A}.
Clearly, jiG, — jiA and therefore, for some n, we have i(Q\G,) > 0. Obviously,
o(x, y) = 1/nifx e 4, y € O\ G,. Now choose y-measurable sets X < 4, Y = Q\G,
such that uX > 0, pY > 0.

7.31. We will introduce two closely related concepts, namely PC-injections and
SC-injections. The former are closely connected (see 7.34) with identity mappings
of the form i: P f\ T — P whereas SC-injections are (cf. 7.33) straightforward gener-
alizations of injective conervative mappings (see 2.7) of FW-spaces.

7.32. Definition. Let P; = <{Q;, 0;, i, i = 1,2, be W-spaces. Let f: P, — P,
be an injective mapping. We will say that f satisfies SCI or that f is an SC-injection if
the following conditions are satisfied:

(1) if Ye dom p,, then f ~'Y e dompyy, uy(f 1Y) = p,Y;

(2) if X e dom p1y, then fX € dom p,;

(3) [w1 x ] {(x,¥) € Q1 x Q12 0a(fx, f¥) + ei(x, y)} = 0.

We will say that f satisfies PCI or that f is a PC- injection if (1), (2) hold, and (4)
02(fx, fy) = e4(x, y) for all x, y € Q.

If f is bijective and satisfies PCI, we will say that f is a PC-bijection.

If P and S are W-spaces and there exist W-spaces T, ..., T, such that T, = P,
T, = S and, for each k = 1,...,n, we have either a PC-injection (SC-injection)
f: Tt—y = T, or a PC-injection (SC-injection) f: T, — Ty, then we will say that P
is PCI-equivalent (SCI-equivalent) to S.
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Remarks. 1) This terminology is provisional. In Part 111, various kinds of “con-
servative’” mappings (not necessarily injective) and correspondences will be considered
and a more systematic terminology will be introduced. — 2) It will be shown later
(7.56) that if P and S are SCl-equivalent, then C}(P) = CI(S), C(P) = C(S)
whenever 7 is a gauge functional of the formt =r,,1 <t £ o0, or T = E.

7.33. Fact. Let P, and P, be FW-spaces. An injective mapping f: P, — P,
satisfies SCI iff it is conservative in the sense of 2.7.

7.34. Fact. Let P; = {Qj, 0;, jt;», ] = 1,2, 3, be W-spaces. If 0 &= T < Q, then
the identity mapping i: P, ’\ T — P, is a PC-injection iff Te dom py. If f: Py — P,
is a PC-injection, then f: Py — P, | f(Q,) is a PC-bijection. If f: P, > P, and
g: P, — P; satisfy SCI (PCL, respectively), then so does g o f: Py — Ps.

7.35. Proposition. If P is a weakly Borel metric W-space and the topological
weight of P is not real-measurable, then there exists a second-countable metric
W-space S and a PC-injection f: S — P.

Proof. See 7.28 and 7.34.

7.36. Although 2B, 28, , etc., are proper classes, the following question is meaning-
ful (and sometimes important): what is the cardinality of a given class 2 = 2, up
to a certain given equivalence. To put it precisely: we ask whether there exists a set
& < Z such that every P e Z is equivalent in a specified sense to some S € &, and
(if the answer is affirmative) what is the least cardinality of an & of this kind.

We will prove a proposition concerning the cardinality, up to a certain fairly
natural equivalence, of the class of those P € 2,,, the topological weight of which is
not real-measurable.

7.37. Notatior. For any cardinal o, we put exp a = 2% exp® o = expexp a,
exp® a = exp (exp® o), etc.

7.38. Fact. Let Q be an infinite set. Then card {P € 8: |P| = Q} < exp® (card Q).

Proof. Put « = card Q. Clearly, there are at most exp® « o¢-algebras on Q.
If o is a o-algebra on Q, then there are at most exp (card &) < exp® o measures
such that dom p = &. Clearly, there are exp o semimetrics on Q.

7.39. Proposition. There exists a set & of cardinality < exp®® w consisting of
second-countable metric W-spaces and satisfying the following condition: if P is
a weakly Borel metric W-space and the topological weight of P is not real-measurable,
then there exists an S € & and a PC-injection f: S — P.Informally: up to PC-in-
jections, there are at most exp® w weakly Borel metric W-spaces with topological
weights not real-measurable.

Proof. By 7.38, it is easy to see that there exists a set & of cardinality < exp®
consisting of second-countable (hence, by 7.24, weakly Borel) metric W-spaces and
such that for any second-countable P € 2B,, there is a PC-bijection f: S — P where
S e &. By 7.35, & has the properties stated in the proposition.
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Remark. It can be shown that, up to PCI-equivalence, there are exactly exp™® o
weakly Borel metric W-spaces P such that tw (P) is not real-measurable (to be precise:
there is a set & of W-spaces of this kind such that card & = exp® w, no distinct
S;, S, € & are PCl-equivalent and every W-space of the kind mentioned is PCI-
equivalent to some S e #). However, at this stage we are interested mainly in the
fact that there are “not too many” P € W, with tw (P) not real-measurable.

7.40. We intend to show that “there are at most 2“ extended Shannon semientropies
on W, and also to prove a result (7.57) of this sort concerning PCI-persistent (see
7.49) extended (b.s.) Shannon semientropies on a certain subclass of 2B.

However, since 2. is a proper class, the functionals ¢ on 2, do not form a class.
Hence we have to give an exact meaning to the expression in quotation marks. This
can be done in various ways. For instance, we can consider, for any infinite set Q,
the set W(Q) = {P € B,;: |P| = @} and the cardinality »{Q) of the set of all ¢ [* W(),
where ¢ is an extended Shannon entropy on M. It turns out that x(Q2) does not
depend on Q. ‘

7.41. In the present paper we prefer a different approach, described below, which
seems to be more general. This approach is well known (though in a sligthly different
setting) and therefore we describe it only briefly and in a rather informal manner.
A full formalization is easy though somewhat lengthy.

7.41.1. The axiomatic system we use is a version of GB, the Gddel-Bernays
system, such that all objects (in particular, all sets) are classes.

7.41.2. For n=1,2,..., a formula in GB containing exactly n free variables
will be called an n-ary condition. We assume that foranyn = 1,2, ... ,if X, ..., X,
are objects and F is an n-ary condition, then the meaning of “X, satisfies F” (for
n = 1) and of “(X, ..., X, satisfies F” (for n > 1) is clear. We will use the ab-
breviations F{X ) for “X satisfies F”’, F{(X 4, ..., X,y for “<X, ..., X,,) satisfies F”’. —
We note that (A) “X satisfies F”, etc., are not statements in GB, but in an appropriate
metalanguage of GB, (B) if some X; is a proper class, then (X4, ..., X,> does not de-
note any object and is not meaningful unless it stands in a context like “<{X,, ..., X,>
satisfies ...”".

7.41.3. Let P and S be 1-ary conditions. A 2-ary condition F will be called bijective
with respect to P and S if (1) for any X satisfying P, there is exactly one Y such that
S{Yy and F{X, Y), (2) for any Y satisfying S, there is exactly one X such that P{(X)
and F(X, Y).

7.41.4. Let P and S be 1-ary conditions. If there exists a 2-ary condition F bijective
with respect to P and S, we say that Pand S are equipollent or that there are as many
objects satisfying P as there are objects satisfying S (abbreviation: Card P = Card S).
If there exists a condition S’ implying S and equipollent to P, we will say that there
are most as many objects satisfying P as there are those satisfying S or that thére are
at least as many objects satisfying S as there are those satisfying P (abbreviations:
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Card P =< Card S or Card S = Card P). — We note that the expressions “Card P”,
etc., are not meaningful unless being in a context like “Card P = Card S, etc.
(cf. 7.41.6).

7.41.5. We introduce the following convention: if “A” is a name for objects
satisfying a certain condition P, then, e.g., “there are as many A4’s as ...” stands for
“there are as many objects satisfying P as ...”, etc.

7.41.6. If P is a l-ary condition, M is a set, card M = »x and Card P =
= Card (x e M) (or Card P < Card (x € M) or Card P > Card (x € M)), then we
will say that there are exactly x (respectively, at most x or at least x) objects satisfying
P (abbreviations: Card P =%, Card P < %, and Card P > 4) — We recall that
“Card P” is not meaningful unless being in a context like “Card P = ...”, “Card P =
= ...", etc.

7.42. Fact. If P is a 1-ary condition, o is a cardinal, Card P £ o and Card P =
= o, then Card P = «.

7.43.1. Before proceeding to the proof of Card (¢ is an extended Shannon semi-
entropy on ¥B,) < 2°, we state explicitly what a mapping is (till now, this has not
been necessary).

7.43.2. A mapping is either I) a class F such that every member of F is an ordered
pair, and if (x, y,) € F and (x, y,) € F, then y; = y,, or Il) a triple F = {f, Z, ¥
such that fis a mapping (in the sense I),  and % are sets or sets endowed with a struc-
ture (e.g., W-spaces, semimetric spaces, etc.), and dom f is equal to the underlying
set of 2. — Note that we examine only very few kinds of sets endowed with a struc-
ture, and therefore it is superfluous to define “sets endowed with a structure”
(“structured sets”) in a general manner.

7.43.3. As a rule, it is clear from the context whether “mapping” is used in the
sense I or II, and if F = {f, Z, %) is a mapping, whether dom F means Z or dom f.

7.43.4. Clearly, since 2B, is a proper class, an extended (b.s.) Shannon semi-
entropy on Wy (or on W) is a mapping in the sense I, hence a class. Therefore,
expressions like “there are exactly » extended Shannon semientropies...”” have an
exact meaning, described in 7.41.

7.44. Fact. Let K,,, m = 1,2, ..., be sets, card K,, = m. If ¢ and { are extended
Shannon semientropies on W, and for any m = 1,2,..., ¢ i\ WHK,) =¥ ’\
[ W(K,,), then ¢ = . :

Proof. Let P = <Q, 0, 4> be an FW-space. Put m = card Q and let g: K,, — Q
be a bijection. If x,yekK,, put Q'(x, y) = Q(gx, gy), If X <K, put ﬂ'(X) =
= p(g(X)). Then S = <K, o', u'> e W,(K,,) and hence ¢S = ¥S. Since ¢ and
are regular (see 2.7 and 2.8), we have P = ¢S, P = yS.
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7.45. Fact. Let Q be a finite non-void set. Then the set of all feebly continuous
(see 2.12) functions f: W(Q) — R, is of cardinality 2°.
The proof is standard and can be omitted.

7.46. Proposition. There are at most 2° extended Shannon semientropies on Wy.

Proof. Choose sets K,, n = 1, 2, ..., such that card K, = n. Let A be the set of
all sequences of the form (¢ |\ W;(K,):n = 1,2,...), where ¢ is an e.S. semientropy
on W;. Since e.S. semientropies are feebly continuous (see 2.19, 2.11, 2.12) on
every My(Q) where Q is finite non-void, we have card A < 2° by 7.45. By 7.44,
for any o € A there is exactly one e.S. semientropy ¢ on 2, such that a =
= (¢ I\EIBF(K,,): n =1,2,...). We denote this semientropy by ¢,. Clearly, the 2-ary
condition Y = ¢, (where ¥ and « are variables) is bijective for the 1-ary conditions
( is equal to some ¢,) and o € A. Thus, Card (¥ is an e.S. seminetropy on W) <
< card A.

Remark. In 10.10 it will be proved that there are exactly 2 extended Shannon
entropies (hence also semientropies) on ;. '

7.47. It will be proved later (10.12) that there exist enormously many extended
(b.s.) Shannon entropies on 93, and examples will be exhibited (see 10.11) of e.(b.s.)
Shannon entropies ¢ and W-spaces P, S such that there exists a PC-injection f: P - S
whereas @P = ¢S. This shows that the concept of an extended (in the broad sense)
Shannon entropy (semientropy) is too broad indeed, and a suitable restriction is
desirable. In fact, if we impose certain fairly mild persistence (invariance) conditions,
see 7.49 below, and consider extended Shannon entropies defined on a suitable class
M < W (possibly coinciding with 2,5, cf. 7.60), then the number of distinct e.
Shannon entropies on ./ is not too large (an estimate will be given in 7.57).

7.48. Definition. Let W, =« & < W. A functional ¢: & — R, will be called an
extended (in the broad sense) Shannon entropy or semientropy on Z (abbreviation:
e.(b:s.) S entropy or semientropy on Z) if ¢ is a hypoentropy (see 2.6) and ¢ |\51BF
is respectively an e. Shannon entropy or semientropy on ;. — We note that
e.(b.s.) S. entropies (semientropies) on B in the sense of the present definition are
exactly the e.(b.s.) S. entropies (semientropies) on 2B in the sense of 2.26.

7.49. Definition. Let £ < MW. A functional ¢:Z — R will be called persistent
with respect to injective mappings satisfying PCI (satisfying SCI), abbreviated
PCl-persistent {SCI-persistent), if pP,; = @P, whenever P, e %, P, €% and there
exists an injective mapping f: P; — P, satisfying PCI (satisfying SCI, respectively).
A PCl-persistent functional will be also called persistent in the broad sense.

7.50. Fact. Every extended Shannon semientropy ¢ on W is SCIl-persistent,
hence PCI-persistent.

Proof. If P, and P, are FW-spaces and an injective mapping f: P, — P, satisfies
SCI, then f is conservative in the sense of 2.7 and therefore, ¢ being regular, pP; =
= @P,.
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7.51. It is not immediately clear that there exist PCl-persistent e.S. entropies
(semientropies) an 8. However, it will be shown (see 7.56 below) that at least some
of the functionals C,, C; (defined on 2B) are PCI-persistent, and even SCI-persistent.

7.52. Notation. If P is a W-space, then exp P (exp* P) denotes the set of all sub-
spaces (pure subspaces, respectively) of P.

7.53. Fact and convention. Let P = {Q, 0, uy and S = (T, 0,v) be W-spaces.
Let yr: P — S satisfy SCL. Then for any U £ P there is exactly one subspace V< S
such that if V.= g .S, then U = (g o) . P. The space V will be denoted by y(U),
and the mapping U 1~ Y(U) will be also denoted by , provided there is no danger
of confusion.

Proof. If U £ P, choose a fi-measurable function f such that U = f. P. Define g
as follows: if y e yQ, then g(y) = f(y~'y); if ye TNy Q, then g(y) = 0. Then g
is v-measurable; put V=g .S. Clearly, goy =f,andif VS, V' =h.S £V,
then U % (hoy). P.

7.54. Fact. Let P and S be W-spaces and let y: P — S satisfy SCI. Then (1) the
mapping Y:exp P — exp S is bijective, (2) U < P is pure iff y(U) £ S is pure,
(3)if UL P,V P, then U < Viff Y(U) S Y(V), (4) if a,beR,, U < P,V < P,
aU =+ bV £ P, then Y(aU # bV) = ay(U) = by(V), (5) if U, £ P, keK, then
(Uy: keK) is a partition of P iff (Y(U,): k € K) is a partition of S, (6) if T, < P,
x € D, then (T,: x € D) is a (pure) dyadic expansion of P iff (Y(T,): x € D) is a (pure)
dyadic expansion of S.

7.55. Proposition. Let 1 =r, 1 <t < o0, or 1= E. Let P and S be W-spaces
and let y: P — S satisfy SCL Then (1) if U < P, V < P, then «(U, V) = t(y/(U),
¥(V)), (2) CF(P) = CI(S), C(P) = C{S).

Proof. We prove (1) and (2) for © = r, = r. The remaining cases are similar.

I. Let P = {Q, 0, ), S = (T, 0, v); put M = (Q). Let U < P, V < P. Choose i
measurable functions f, g such that U =f.P, V=g.P. For ye T put F(y) =
= f(¥ 1), G(y) = g(y~'y) if ye M, F(y) = G(y) = 0if y e T\ M. Then y(U) =
= F.S, Y(V) = G.S. Define functions k and K as follows: k(x, x') = f(x) g(x)
for x, x" € Q, K(y, y") = F(y) G()') for y, y" € T. Clearly, we have

J od(F.va.v):J‘ aKd(vxv):J okd(p x p),
TxT MxM oxQ

hence {(Y(U) W(V) = (U V).

II. Since by 3.8, t is an NGF, we have by Theorem III (in Section 6), C(P) =
= FpP)lim I'(#), C(S) = #p.(S)-lim I'(&). Suppose C(P) < C(S). Choose b
such that C(P) < b < C(S). Let ¥" = (V;:je J) be an arbitrary partition of S.
Then by 7.54, (y~'V;:j € J) is a partition of P. Hence, due to #p,.(P)-lim I'(?) =
< C{P) < b, there exists a dyadic expansion 2 = (P,: x € D) of P such that 2"
refines (Y~ 'V;:je J) and I'(#) < b.
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By 7.54, & = (Y(P,): x € D) is a dyadic expansion of S. By the assertion (1), already
proved, we have I'(¥) = I'/?) < b. Clearly, &" refines ¥". Since ¥~ was arbitrary,
we get C(S) < b, which is a contradiction. Hence C/P) = C(S). In an analogous
way, C(S) =2 C/(P) is proved. Hence C(P) = C/(S). For C, the proof is similar.

7.56. Proposition. If t =71, 1 £t £ w, or T = E, then C¥ and C, are SCI-
persistent and hence PCI-persistent.
Proof. See 7.55.

7.57. Proposition. There are at most exp™ w persistent (in the broad sense)
extended Shannon semientropies on the class of all weakly Borel metric W-spaces P
such that the topological weight of P is not real-measurable.

Proof. Let .# denote the class in question. Let & be a set with the properties
described in 7.39. If ¢, and ¢, are PCl-persistent extended (b.s.) Shannon semi-
entropies on .# and ¢, [* ¥ = ¢, [ &, then for any Pe ./ there exists a CP-
injection f: S — P, where S € &, and therefore we have ¢, P = ¢,S = ¢,S = ¢,P,
hence ¢; = @,. This shows that there are as many PCl-persistent extended (b.s.)
Shannon semientropies on .# as there are e.(b.s.) Shannon semientropies on <.
Since card ¥ < exp'® w, the proposition is proved.

7.58. In conclusion, we consider some questions of consistency. We note that some
of the statements below can be expressed in a metalanguage of GB (cf. 7.41, in
particular 7.41.1), but not in GB itself, and should be properly called metapropositions;
however, this distinction can be disregarded here.

7.59. Convention. Let S be a statement expressible in GB, (a version of) the
Godel-Bernays axiomatic system. If either S can be proved in GB or its negation
cannot be proved (in GB), we will say that S is consistent relative to GB or simply
that it is admissible to assume S. — We note that the formulation we use (either S
can be proved or non S cannot be proved) is, of course, equivalent to the usual one.

7.60. Proposition. It is admissible to assume that there are no real-measurable
cardinals.

This is a well-known fact.

7.61. Fact. If there are no real-measurable cardinals, then there are at most
exp™® w persistent (in the broad sense) Shanonn semientropies on the class of all
weakly Borel metric W-spaces.

Proof. See 7.57.

7.62. Proposition. It is admissible to assume (the conjunction of ) the following
statements: (1) the reduced topological weight of every weakly Borel metric W-
space is countable; (2) there is a set & of cardinality < exp® w consisting of
second-countable metric W-spaces and such that for any weakly Borel metric
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W-space P there is a PC-injection S — P where S€ &; (3) there are at most
exp™® w persistent (in the broad sense) extended Shannon semientropies on the
class of all weakly Borel metric spaces.

Proof. For (1), see 7.60 and 7.28; for (2), see 7.60 and 7.39; for (3), see 7.61.

8

In this section, two questions (III and VI) posed in 2.30 are answered and it is
proved that C(P) < C}(P) holds for any normal gauge functional t in a fairly wide
class of metric W-spaces.

First we prove (see 8.7) that for any gauge functional © = r and any W-space P,
CI(P) and C(P) are positive unless d(P) = 0. Then we show (see 8.28 and 8.38)
that for any normal gauge functional 7, C;(P) and C(P) are finite whenever P is
expansion-bounded (see 8.13) and C(P) < C;(P) whenever P satisfies a certain
condition (see 8.35) of the total boundedness type.

8.1. Definition and notation. Let S = {Q, ¢) be a semimetric space. The infimum
of all a e R, such that ¢(x, y) < a for each x, ye Q will be denoted by diam S.
If T< Q, then diam (S [* T) will be denoted by diamg T or simply diam T. If
diam S < oo, we will say that S is bounded, and if T = Q, diamg T < o0, we will
say that the set T'is bounded (in S).

8.2. Lemma. Let P = {Q, 0, uy be a W-space. Let diam {Q, ¢> < o0. Let ¢ > 0.
Then there exists a pure partition (Uy: k € K) of P such that Z(#U,): ke K) < «.

Proof. Choose t€R, t > diam<Q,¢)>. Put G = {(x, y):e(x,y) = 0}. Let v
denote the completion [p x pu] of pu x pu. Since G is v-measurable, there exist
A;edom y, B;e dom g, i € N,such that for V = (J(4; x B;:ie N)we have V> G,
WVNG) < gft. Clearly, [yod(u x p)<e Put X,=A4,nB, Y,=X, Y=
=X \UX;:j<i)for i=12.., T=U(Y; x Yi:ieN). Then T < (X, x
x X;:ie N)< V, hence [red(u x p) < e. Since Y; are disjoint, we have [ d{p x
x p) = X[y, xy, e d(u x p):i€ N) and therefore Z(H(Y;): ie N) < e.

Put Z, = U(Y;:i>n). Then Z, > Z,,,, U(Z,: ne N) = 0 and therefore #Z,) -
— 0. Hence there exists an m e N such that Z(#(Y;): i < m) + #Z,) < e. Clearly,
(Yo, ..., Y, Z,,) is a pure partition of P.

8.3. Fact. Let P = {Q, 0, u) be a W-space. Let % = (U,: ke K) and ¥ =
= (V,;: me M) be partitions of P. If % is finer than ¥, then L(#(U,): ke K) <
< X(#(V,,): me M).

Proof. Let (K,:me M) be a partition of K such that X(U,: ke K,,) = V,, for
each me M. Let f;, ke K, be functions such that U, = f; . P for all ke K. For
me M put g, = Z(f;: k€ K,,). Define u: Q x Q » R, v: @ x Q - R, as follows:
u(x, y) = Z(fi(x) il(y): ke K), v(x, y) = Z(gu(x) gu(y): me M). It is easy to see
that u(x, y) < o(x, y) for all x,ye Q. Clearly, foud(u x p) = Z(#(U,): k e K),
fovd(u x p) = Z(#(V): m € M). This proves the assertion.

579



8.4. Fact. Let # = (P,:xe€ D) be a dyadic expansion of a W-space P. Then
I'(?) z Z(4#(P,o, P,y)/WP,: x € D').

Proof. By 2.16.1, H(wP,o, wP,;) = 4wP.,.wP, /WP, for each xe D’. Hence
I'(#?) = Z(H(WP,o, WPy;) r(Pyo, P11): x € D') 2 Z(4WP,o . WP, . 1(Pyo, P,y)[WP:
x€ D') = Z(4#(P,o, P,;)|WP,: x € D").

8.5. Fact. Let & = (P,: x€ D) be a dyadic expansion of a W-space P. Then
I'(?) + 2X(#(P,): ze D")[wP = 2#(P)|wP.

Proof. By 8.4, we get I' (%) = Z(4#(Po, P,): x € D')[wP. It is easy to see that
Z(2#(Pyo» Pyy1): x € D') + X(#(P,): z € D") = #(P). This proves the assertion.

8.6. Proposition. If t is a gauge functional and t© = r, then for any W-space P,
CI(P) = 2#(P)[wP, C{P) = 2#(P)|wP.

Proof. If wP = 0, then #(P) = 0. Hence we may assume that wP > 0. Let P ==
= (Q, 0, uy. We first prove the proposition for the case = r and diam {Q, ¢> <
< o0. Let ¢ > 0 be given. By 8.2 there exists a pure partition % = (U,: k € K) of P
such that X(#(U,): keK) < . Let 2 = (P,:xe D) be a dyadic expansion of P
such that 2" refines %. Then by 8.3 and 8.5, I',(?) + 2¢/wP = 2#(P)/wP. By Theorem
I (in Section 6) we get C,(P) + 2&/wP = 2#(P){wP, C}(P) + 2¢/wP = 2#(P)/wP.
Since ¢ > 0 was arbitrary, this proves the proposition for T = r and diam {Q, ¢) <
< 0.

Now, retaining T = r, we omit the assumption diam <{Q. ¢) < co. We define the
semimetrics ¢,, t€R,, as follows: ¢(x, y) = min (¢(x, y), ) for all x,ye Q. We
put P, = <Q, 0, py. Clearly, for any x,ye Q, ¢(x,y) < ofx,y) if t <s, and
e{x, y) = o(x, y) if t - co. This implies #(P,) — #(P) for t - 0. As we have shown,
C(P,) = 2#(P,)/wP, C}(P,) = 2/(P,)|wP for every t eR,. Since ¢, < ¢, this implies
C/(P) = 2#(P)/wP, C}(P) = 2#(P)|/wP.

Finally, if © = r is a gauge functional, then we apply Proposition 3.20.

Remark. There are examples (see 10.21) showing that the proposition is not valid
if the assumption 7 = r is omitted. I do not know whether it remains true if instead
of T = r we assume that 7 is normal (in fact,I do not know whether there are normal
gauge functionals 7 not satisfying © > r).

8.7. Proposition. If P is a W-space, t is a gauge functional and © = r, then
C(P) and C{(P) are positive whenever d(P) > 0. If P is a W-space and d(P) = 0,
then C}(P) = C/(P) = 0 for each gauge functional t.

Proof. The first assertion follows from 8.6 since d(P) > 0 implies #(P) > 0.
The second assertion follows from 3.14 and the definition (see 3.17 of C; and C..)

Remark. An outline of proof of the first assertion has been given in [4], 3.9 and
3.10 (in fact, only for 7 = r; however, it is obvious that if T = r, then C,(P) >0
and C}(P) > 0 imply, respectively, C(P) > 0 and C}(P) > 0).
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8.8. Definition and notation. Let S = {0, ¢) be a semimetric space. An indexed
set (Sy: k € K) will be called a partition of S if K is a finite non-void set and S, =
= S " T, where (T;: k € K) is a partition of the set Q. An indexed set & =
= (S,: x € D) will be called a dyadic expansion of S if there is a dyadic expansion
(see 4.16) (Ty: x € D) of the set Q such that S, = S > T, for all x e D. We put &" =
= (S,:xeD").

8.9. Definition. A W-space P will be called bounded if d(P) < co. If P is a W-space
(a semimetric space), then (I) we will say that P is partition-fine (in more detail,
d-partition-fine or, respectively, diam-partition-fine) if for each ¢ > 0 there exists
a partition (U,: k € K) of P such that for any ke K, d(U,) < ¢ (respectively,
diam U, < ¢), (II) we will say that P is totally bounded (in more detail, d-totally
bounded or, respectively, diam-totally bounded) if P is partition-fine and bounded.

Remark. There are partition-fine W-spaces P and semimetric spaces S such that
d(P) = oo, diam S = 0. An example: S = (N, ¢), P = (N, ¢, py where ¢(x, y) =
= 0if x — yiseven, o(x, y) = x + yif x — y is odd, u is any measure on N such
that dom u = exp N, u{x} > 0 for all xe N.

8.10. Fact. A partition-fine metric space is bounded, hence totally bounded.

8.11. We are now going to prove the following proposition, due to J. Hejcman:
Sfor any W-space P = {Q, ¢, u», if <Q, @) is totally bounded, then so is P (in fact,
we prove a sligthly stronger assertion, see 8.11.3 below).

8.11.1. Fact. Let P =<Q,0, 1) be a W-space. Let A< B < Q, Bedom ji.
If iB is equal to pu(A), the outer measure of A (see 7.5), then d(B . P) = d(P ]\A) <
< diam A.

Proof. Clearly, d(P [* A) = d(B. P). We are going to prove d(B. P) < d(P |* A).
Put v = u x p. By the definition of d, there exists a set Z € dom v such that vZ = 0
and ¢{x, y) < d(P ’\A) whenever x, ye A4, (x,y)noneZ. Let G consist of all
(x, )€ B x B such that o(x,y) S d(P " A). Put Z, = Zn (B x B), G, = G U Z,.
Then A x A = G,, hence ¥G; = v(4 x A) and therefore, by 7.6, 7G; = (u(4))*
This shows that ¥G, > (iB)* and therefore, due to G; = B x B, %B x B\G;) = 0
and B x B\ G) = 0. Since ¢(x, y) < d(P |> A) whenever (x, y) € G, we have shown
that d(B . P) < d(P | A).

8.11.2. Lemma. Let P = {Q. 0, u) be a W-space. Let (A;: k € K) be a partition
of Q. Then there exists a pure partition (U: k € K) of P such that d(U,) <
< d(P [ 4;) < diam 4, for each ke K.

Proof. Clearly, there are sets B, € dom p such that 4, = B,, uB, = /te(Ak) for
each ke K. By 8.11.1, d(B,. P) = d(P | 4,) < diam A,. Let f:K — {0, ..., n} be
a bijection and put T, = B,\U(B;: f(j) < f(k)), U, = Ty P. Clearly, (U;: ke K)
is a pure partition and d(U,) < d(B, . P).
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8.11.3. Lemma. Let P = <0, 0; &) e a W-space. If for any ¢ > 0 there exists
a partition (A,: k € K) of Q such that d(P | 4,) < & for each k € K, then P is parti-
tion-fine.

This is an immediate consequence of 8.11.2.

8.11.4. Proposition. Let P = {Q, ¢, &> be a W-space. If {Q, ¢ is totally bounded
(respectively, partition-fine), then so is P.

This follows at once from 8.11.3.

Remark. There exist W-spaces {Q, ¢, 1) such that (1) <Q, @) is totally bounded,
(2) if (T;: ke K) is a partition of Q and all T, are in dom fi, then max {diam T}: k €
€K} = 1. See 10.23.

8.12. There are examples (see 10.28) of totally bounded metric W-spaces P such
that C(P) = C*(P) = oo. Therefore we introduce (see 8.13 and 9.27) some properties
stronger than the d-total boundedness defined in 8.9.

8.13. Notation and definition. Let P be a W-space or a semimetric space. Then
Ded (P) (De-diam P) will denote the infimum of all a € R, such that for any ¢ > 0
there exists a dyadic exansion (P,:xe D) satisfying the following conditions:

(1) d(P,) < e (respectively, diam P, < ¢) for all x € D",

(2) X(max {d(P,): x€{0,1}" " D}: {0,1}" " D % 0) < a or,
respectively, Z(max {diam P,: x € {0, 1}" n D}: {0, 1}" n D #* 0) < a.

If Ded (P) < oo (or De-diam P < o0), we will say that P is De-bounded. — The
following terminology will also be used provided there is no danger of confusion:
Ded (P) (or De-diam P) will be called the expansion-diameter of P and a De-bounded
space will be called expansion-bounded.

Remark. For examples of De-bounded spaces and of totally bounded spaces
which are not De-bounded see 8.20.

8.14. Fact. Every De-bounded W-space or semimetric space is totally bounded.

8.15. Fact. If S is a subspace of a semimetric space P, then De-diam S <
< De-diam P. If P; = {Q;, 0:), i = 1,2, are semimetric spaces and f: Q; = Q,
is a surjective mapping such that 0;(fx,fy) £ o4(x,y) for all x,ye€ Q,, then
De-diam P, < De-diam P;. If P =<Q, 0> is a metric space and S is a dense
subspace, then De-diam S = De-diam P.

8.16. Proposition. Let P = {Q, 0, 1) be a W-space. Then d(P) < diam (@, ¢>
and Ded (P) < De-diam <Q, 0, hence, in particular if {Q,¢) is expansion-
bounded, then so is P.

Proof. The first assertion is evident. To prove the second, let b = De-diam {Q, ¢).
Choose ana > b. Lete > 0 be given. Then there exists a dyadic expansion (Q,: x.€ D)
of Q such that (i) diam Q, < ¢ for each x € D”, (ii) Z(max {diam Q,: x € {0, 1}™ n
N D}: meK) < a, where K = {me N:{0,1}" n D # 0}. — It is well known and
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easy to prove that the following assertion holds: (x) if for i = 1,2, A; = B, < 0,
B;edom ji, iB; = pJ4;), then {B; U B,) = (A, u 4,). — Choose B,, ze D",
such that B,edompu, B, > Q. uB, = u(Q.) for each zeD". Put M =
= \(B.: z € D(x) n D") for each x € D. Then, for any x € D, we have M, > Q_ and,
by (%), uM, = pu(Q,). Consequently, by 8.11.1, d(M,.P) < diam Q, for each
xeD. Now let f: D" — {0, ..., n} be a bijection, put U, = B,\U(B,: /() < f(2))
for each ze D", and put V, = UY(U,: z e D(x) n D") for each x e D. Clearly,
(Vi . P:x e D) is a dyadic expansion of P and we have V, = M,, hence d(V, . P) <
< diam Q. for each x e D. This proves that d(V,.P) <& for each x& D" and
Zmax {d(V,.P):xe{0,1}"nD}:meK)<a. Since a>b and &¢>0 were
arbitrary, we have shown that Ded (P) < b.

8.17. Notation and conventions. Let 1 < p < o0. Let n=1,2,.... If x =
= (x;:i <n)eR" or x = (x;:ie N)eR", then we put |x|, = (Z|x;]))""" if p < oo,
|x|., = sup |x;|. The Banach space consisting of all x = (x;:i < n)eR" (or of all
(x;:ieN)eR" satisfying |x|, < oo) and endowed with the norm |x| = |x|, will
be denoted by Z (n) (respectively, £ ,(N)) and will be equipped, as usual, with the
metric (x, y)+> |x — y|,. If n =1,2,..., then the Banach space Z,(n) will also
be denoted by R". — If B is a normed linear space, then B will also denote the set of
points of B, and if Q < B, then Q will also denote the metiic space {(Q, 0> where
o{x, y) is equal to the norm of x — y in B. — We recall that, by 1.6, if either x =
=(x;)eR", y = (y)eR" or x =(x;)eR", y = (y)) eR", then x < y means that
x; < y; for all i.

8.18. Lemma. Let m = 1,2, .... Let a = (a;:i < m)eR", a = 0. Let P be the
subspace of R™ consisting of all x = (x;: i < in) such that for any i < m, x; =0
or x; = a;. Then De-diam P = |a,.

Proof. Clearly, we can 2ssume that ag = ... = a,,_; > 0. Let Q be the set of all
points of P. — 1. Put E,, = U({0, 1}/:j < m). For any z = (z;:i < j)€E,, let B,
consist of all x = (x;) € Q such that x; = z,a; for all i <j. Then (B,:z€E,) is
2 dyadic expansion of Q, diam B, = 0 for any z € E},, and for any z € {0, 1}/, j < m,
diam B, = a;. Hence De-diam Q < X{a;:j < m) = |a|,. — IL Clearly, there are
sets Q; = Q, j =0,...,m — 1, such that card Q; = 2/*' and ¢(x, y) Z a; for all
x,y € Qj, x + y. Choose a positive ¢ < a,,_;. Let (Bz: zZE D) be a dyadic expansion
of Q such that diam B, < ¢ for all ze D". Then D n {0, 1}™ # 0, for otherwise
we would have card D” < 2", hence (due to card Q,_, = 2") card B, = 2 for
some z € D" and therefore diam B, = a,,_; > & For j=0,...,m — 1 let M; be
the union of D n {0,1}/ and D" n (U{{0, 1}:i < j)). It is easy to see that
0 < card M; < 2/ and that (B,: z € M}) is a partition of Q. Hence there is a z € M;
such that card (B, n Q;) = 2 and therefore diam B, > a;. Since diam B, < & < a,,_;
whenever ze D", we have ze D {0,1}/ and therefore max {diam B,:ze D n
n {0, 1})} = a; for j < m, hence I(max {diam B,: ze D n {0, 1}}: j < m) =
2 Xa;:j < m)=|d,.
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8.19. Proposition. Let a = (a;) € Z(N), a 2 0, a; — 0 for i - 0. Let P be the
subspace of £.(N) consisting of all xe %,(N) such that 0 < x < a. Then
la|; = < De-diam P < 2|al,.

Proof. I. Forn = 1,2, ... let S, be the subspace of P consisting of x = (xi) eP
such that, for i < n, x; is equal either to 0 or to a;, and x; = 0 for i = n. Now, 8.18
and 8.15 imply that De-diam S, > X{a;:j < n) and therefore, n being arbitrary,
De-diam P = |al;.

II. We are going to prove De-diam P < 2|al,. It is easy to show that it is enough
to prove this inequality under the assumption that (*) a; > 0 for all ieN,
X(a;:ie N) < oo, and 2*a,, + a, for each m, n, ke N, m * n.

If b=(b), c=(c;) are in L,(N), b, <¢; for all ie N, and ¢; — b; —» 0 for
i— o0, put T(b,c) = {x = (xzie N)e L, (N):b; £ x; <c; for all ieN}. To
prove De-diam P < 2|a|, it is sufficient, by 8.15, to show that De-diam T(0, a) <
< 2|a|1.

For any x = (x,) € £,(N) such that x = 0, x, - 0 for n - o, put K(x) =
= min {h: x, = max {x, :ne N}}. If X = T(b, ) for some b, ¢, we define X*®, X*1
in the following way. Let s =(s;), s; = (b; + ¢;)[2 if i = K(c — b), s; = ¢; if
i+ K(c — b). Put X' = T(b,s), X'V = X\X'O=T(b+ ¢ —s,c).

For me N put E,, = U({0, 1}/:j £ m). Put E = ({0, 1}/: j € N). By induction
we define B, for all z € E. Put B, = T\0, a). If B, are already defined for all z€ E,,,
then for any zi€ E,.;\E, put B,; = B{). It is easy to see that for any m € N,
(B.: z € E,) is a dyadic expansion of T(0, a).

Now we define a,, ,, m € N, n € N, in the following way. Put a,, = a,forallne N.
If me N and a,,,, n€ N, are already defined, we put h = K(a,, ,; n€N), a1, =
= App/2, Apiy, = Ay, for n #+ h. Clearly, for each me N, a,, — 0 for n - co.
We put 8,, = max (a,,: n€ N) for each me N.

It is easy to show that for any m = 1, 2, ... and any z€ E,\E,,_; we have
diam B, = §,,. We are going to prove that £(6,: me N) < 2%/a,:ne N), §,, > 0
for m - oo.

Clearly, every a,, is of the form a;27% ke N. Hence, by the assumption (x),
for any m, all g, are distinct. By the definition of K(x,: n € N), every 8, is equal
to a,, where h = K(a,,: n € N). Since a,,, are distinct, we have 8,, > a,, for n + h.
Since @,,. 1, = apf2, We get 8,4 < 6, for all me N. Hence all §,, are distinct
numbers of the form a;27% ke N. This easily implies that Z(,: me N) £
< ¥a;27%ieN, ke N)< 2%(a,: ne N), and therefore §,, - 0 for m — 0.

Now let ¢ > 0 be given. Choose m such that 8,, < &. Consider the dyadic expansion
(B,: x € E,). Then diam B, < ¢for x € E), = E,,\E,,_, and max {diam B,: x€ E,, N
n {0,1}} = §;forj = 0. ..., m, hence Z(max {diam B,: x € E,, n {0, 1}/}: j <’m) <
< %(6;:j £ m) £ 2|al,. Since ¢ > 0 was arbitrary, we obtain De-diam T(0, a) <
< 2|a[1. This proves the proposition.
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8.20. Proposition. Let a = (ai) €ZL,(N), a=20, a;—>0 for i > co. Let P(a)
be the (metric) subspace of & o(N) consisting of all x e &L o(N)such that 0 £ x <
< a. Then (1) P(a) is totally bounded, (2) P(a) is expansion-bounded if and only if
Xa; < oo.

Proof. See 8.19.

8.21. Notation. Let 7 be a gauge functional. If P is a W-space, then the supremum
of all I'(S, T), where S< P, TS P, S+ T £ P, will be denoted by I',-diam P.
If % = (U,: keK) is a partition of a W-space, then X(I'-diam U,: k e K) will be
denoted by XI'-diam %.

8.22. Fact. Let t© be a gauge functional. If P is a W-space, then I' -diam P <
< wP.d(P). If % = (U,: keK) is a partition of a W-space, then EI'~diam % <
< wP max {d(U,): ke K}.

Proof. Let S + T < P. Then I'(S, T) = H(wS, wT) «(S, T), H(wS, wT) <wS +
+ wT < wP by 2.4, and (S, T) £ d(P) by (GF2). The second assertion is an evident
consequence.

8.23. Lemma. Let t be a normal gauge functional. Let P be a W-space. For each
neN let #,=(P,,:xeD,) be a dyadic expansion of P. If XI'-diam 2" — 0
for n > oo, then C(P) < lim I'(#,). If, in addition, all 2, are pure, then C;(P) <
< lim I'(#,).

Proof. We can assume lim I'(#?,) < co. Let ae R,, a > im I'(#,). Let % be
a partition of P. We can assume that % = (U,,..., U,,,_l), m > 1. Choose an
¢ > 0 such that a — me > lim I'(2,). Choose ne N such that II-diam 2, < ¢,
I'(2,) < a— me; write D instead of D,, P, instead of P, ,, 2 instead of #,. Choose
functions g,, z € D, such that P, = g, . P.

Let E be the set of all sequences (a;: i < j)e ({0, 1}/:j < m) such that a; = 1
if0<i<j—1PutTy=P If yeE, y=(azi<j),j>0, putT,=U;_, if
a;-;=0and T, =X(U;:j<i<m)ifa,_; =1 Then, by 4.6.1, 7 = (T,: y € E)
is a dyadic expansion of P and J " is equal to % re-indexed. It is easy to see that
card E' = m — 1.

Let F consist of all ze D' and all z. y, where ze D", y € E. Clearly, Fe 4. If
zeD,put S,=P,;if x=z.y,zeD", yeE, y+0,put S, =g,.T, Put & =
= (S,: x € F). Clearly, & is a dyadic expansion of P, " = (g, . T,: ze D", y e E"),
and therefore &” refines (7,: y € E"), hence also %.

It is easy to see that I' (%) is equal to I'(P,: z e D) + X(p,: y € E), where p, =
= 3(I'(9. - Ty0» 9. Ty): z€ D"). Clearly, p, < X(T ~diam (g, . T}): z € D"). Since
g.. T, < P,, we obtain p, < E(I-diam P,: ze D") = EI-diam & < ¢ for any
yeE' Sincecard E' = m — 1, we have I'(¥) < I'(?) + (m — 1) ¢, hence I'(¥) <
<a—me+ (m—1)¢ < a. Since ¥ refines % and % was an arbitrary partition
of P, we have shown that #p.-lim I'(#) < a. Hence by Theorem III (in Section 6),
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C{P) < a. Since a > lim I'(#,) was arbitrary, we have proved that C(P) <
< lim I'(2,).

Now assume that all £, are pure. Then for any pure partition  of P, the dyadic
expansion & described above is pure. This implies & p -lim I'/#) < a, hence
C¥(P) £ a, which proves (since a > lim I'{#,) was arbitrary) that C;(P) <
é h__m r t(‘W”)'

8.24. Proposition. Let T be a normal gauge functional. Let P be a W-space. Let U,,
n € N, be t-admissible partitions of P. Assume that XI' -diam %, — 0 for n — .
Then C(P) < lim C¥[%,].. If, in addition, all %, are pure, then C;(P) <
< lim C7[%,]..

Proof. By 4.28 there exist dyadic expansions £, such that for every n e N, 2, is
equal to %, re-indexed and I'(#,) = C[%,].. Since EI-diam 2, - 0 we have,
by 8.23, C{P) £ lim I'(2,) = lim C;[%,].. If %, are pure, then all 2, are pure,
and we get C*(P) < lim I'(2,) = lim C}[%,]..

Remark. A related but weaker assertion has been proved in [4], 3.11 for = = r.

8.25. Now we show (see 8.28) that if 7 is a normal gauge functional, then neither
C¥(P) nor C(P) can exceed wP . Ded (P). Then we prove, under assumptions con-
siderably weaker than Ded (P) < oo, the inequality C(P) < C}(P). As an immediate
consequence, we get (see 8.39) the inequality C(P) £ Cf(P) < oo for all De-bounded
W-spaces and all normal gauge functionals .

8.26. Fact. Let 2 = (Px: X€E D) be a dyadic expansion of a W-space P. Then
Ir'(#) £ X(I'~-diam P.: x € D') < wP Z(max {d(P,): x€ {0, 1}™ n D'}: {0, 1}" n
N D +0).
Proof. We have I'(?)= X(I'(P,o, P,,): xe D') < X(I'~diam P,: x € D’). By
"8.22 we obtain X(I'-diam P,: x € D') < X(wP, . d(P,): xe D'), from which the
assertion follows at once.

8.27. Fact. Let 2 = (P,: x e D) be a dyadic expansion of a W-space P =
= {Q, 0, ). Then there exists a pure dyadlc expansion & = (S,: x e D) such
that d(S,) < d(P,) for each x € D.

Proof. For any z e D” choose a function f, such that P, = f,. P and put B, =
= {g€ Q:f.q > 0}. Choose a bijection y: D" — {0,...,n}. For any ze D" put
E, = B,N\(\(B,: ye D", ¥y < yz). Forany xe D put S, = X(E, . P: ze D" n D{x)).
Clearly, & = (S,: xe D) is a pure dyadic expansion of P.Itis easy to show that
d(S,) < d(P,) for each x € D.

8.28. Proposition. If t is a normal gauge functional and P is a W-space, then
Cf{P) £ wP .Ded (P), C(P) < wP .Ded (P), hence C¥(P) and C(P) are finite
whenever P is expansion-bounded.

Proof. The assertion is evident if wP = 0 or Ded (P) = oo. Hence we assume that
wP > 0 and Ded (P) < co. Choose a number b > Ded (P). Then there exist dyadic
expansions #, = (P, ,:xeD,), n = 1,2, ..., such that d(P, ) < 1/n for all xe D)
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and X(max {d(P,,,): x€ {0, 1}* n D,} : {0, 1}* n D + 0) < b. By 8.27 we can assume
that &, are pure. By 8.22 we have ZI'-diam &, < wP[n. By 8.26, I'(2,) < b . wP.
Hence, by 8.23, C¥(P) < b.wP, C(P) < b. wP. This proves the proposition, since
b > Ded (P) was arbitrary.

8.29. Definition. A W-space P will be called Zwd-partition-fine if for any ¢ > 0
there is a partition # = (U,: k € K) of P such that Z(wU, . d(U,): ke K) < &.

8.30. Fact. Every partition-fine W-space is Twd-partition-fine.

Proof. We can assume wP > 0. Let ¢ > 0. There exists a partition (U,: k € K)
of P such that for all keK, d{U,) < ¢/wP. Clearly, X(wU, . d U,): ke K) <
< I(wUp keK)e/wP = e.

Remark. There are Zwd-partition-fine W-spaces which are not partition-fine.
An example: P = (N, 1, uy € W, where u{n} > 0 for infinitely many n.

8.31. Lemma. Let P be a W-space. Let (Uk: k =0, ..., n) be a partition of P.
Assume that dU,) < d(U,) for k =1,...,n. Then there exists a partition
(Vitk =0, ..., n) of P such that V, is a pure subspace of P and Z(wV . d(V,): k =
=0,..,n) £ ZwU,.dU): k=0,..,n).

Proof. Choose functions f;, k = 0, ..., n, such that U, = f,. P,0 < fk(q) < 1for
allgeQ and k =0,...,n, ¥(f{q):k=0,...,n) = 1 for all g€ Q. Put go(q) = 1
if fo(q) > 0, go(q) = 0 if fo{q) = 0. For k = 1,..,n put hy = figo, 9 = fi — .
Clearly, go = fo + hy + ... + h,. Put V, =g,.P, k=0,...,n, and T, = h,.P,
k=1,...,n Then Vo, =Uqy+ Ty + ... + T,, d{V,) = dU,), d(V;) < d(U,) for
k=1,...,n Since wV, = wU, + wTy + ... + wT,, wV, = wU, — wT; for k =
=1,...,n,wegetX(wV,.d(Vi): k = 0,...,n) < (WU, + wTy + ... + wT,) d(Uo) +
+ Z(wV, . dU): k = 1,...,n) = wU, . d(Ug) + Z(WU, . dUy): k = 1,..., n).

8.32. Lemma. Let (U,: k € K) be a partition of a W-space P. Then there exists
a pure partition (V,: k €eK) of P such that Z(wV, . d(V,): ke K) < Z(wU, . d(U,):
keK).

Proof. The assertion follows at once from 8.31 by induction.

8.33. Proposition. Let P be a bounded weakly Borel metric W-space. Assume that
the reduced topological weight of P is not real-measurable. Then P is Zwd-partiti-
on-fine.

Proof. Let P = {Q, 0, u). We can assume wP > 0, d(P) > 0. It follows from
7.28 that there exists a u-measurable set Z such that u(Q\Z) =0 and P I\Z
is second-countable. Let ¢ > 0 be given. Put & = ¢/4wP. There exist balls B, =
= {xeZ:o(x, a,) < &} such that Y(B,:;ne N)=Z. Put X, = B,\U(B;:i < n).
Then X, are disjoint, U(X,:ne N)=Z, diamX, <25, X(uX,:ne N)= wP.
Choose m such that Z(uX,:n = m) < ¢/2d(P) and put U, = X, . P for k = 0, ...
coom — 1, Uy, = (UX,: n 2 m)) . P. Clearly, (U, ..., U,) is a partition of P and
I(WU, . d(Uy): k= 0,...,m) < 25.wP + g2 < e.
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8.34. Proposition. Let P be a bounded metric W-space. If the reduced topological
weight of P is countable, then P is Zwd-partition-fine.

Proof. See 7.2.4 and 8.33.

8.35. Definition. Let 7 be a gauge functional. Let P be a W-space. If for any ¢ > 0
there exists a pure partition % of P such that X(I'-diam V;: k € K) < ¢ whenever
(Vi: k € K) is a pure partition refining %, then we will say that P is strongly L*I -
partition-fine.

8.36. Lemma. Every Xwd-partition-fine W-space is strongly X*I-partition-fine
for every normal gauge functional .

Proof. Let P be Zwd-partition-fine. Let &¢ > 0. Then there exists a partition
(Uy: k € K) such that Z(wU, . d(U,): k € K) < &. By 8.32 there exists a pure partition
¥ = (Vit keK) such that Z(wV;.d(W}): keK) <e — Let & = (S,: meM) be
a pure partition refining ¥". It is easy to see that X(wS,,.d(S,,): m € M) < e. Since,
by 8.22, I'-diam S,, < wS,, . d(S,,), we get X(I'-diam S,,;: m € M) < e. This proves
the assertion.

Remark. For an example of a strongly X*I',-partition-fine space with is not
Xwd-partition-fine, see 10.29.

8.37. Proposition. Let © be a normal gauge functional. If P is a strongly Z*I'-
partition-fine W-space, then C(P) < C}(P).

Proof. Since P is strongly X*I'-partition-fine, there exist pure partitions %, =
= (U,: ke K,) such that, for n = 1,2, ... and any pure partition ¥~ = (¥,,: m € M)
refining %,, we have X(I'-diam V,,: m € M) < 1/n. Put b = CJ(P). We can assume
b < oo. Then, by Theorem III (in Section 6), there exist pure dyadic expansions
2, = (P,,: xe D,) such that &) refines %, and I'(#,) < b + 1/n. Since 2, refines
,, we have II'-diam #; = X(I'-diam P,: x € D;) < 1/n. Hence, by 8.23, C(P) <
< limI'(2,) < b.

8.38. Proposition. Let © be a normal gauge functional and let P be a W-space.
Then C(P) < C}(P) provided one of the following conditions is satisfied: (1) P is
partition-fine, (2) P is bounded weakly Borel metric and the reduced topological
weight of P is not real-measurable (this condition is satisfied, in particular, if P
is a bounded metric W-space and the reduced topological weight of P is countable).

Proof. See 8.37, 8.36, 8.30 and 8.33.

8.39. Proposition. Let t be a normal‘gauge functional and let P be a W-space.
If P is De-bounded, then C(P) < C}(P) £ wP .Ded (P) < .
Proof. See 8.14, 8.38 and 8.28.

8.40. Proposition. Let T be a normal gauge functional and let {Q, ¢, 1) be a W-
space. If <Q, 0> is expansion -bounded, then C{P) < C;(P) £ wP . De-diam <Q, ¢>.
Proof. See 8.16 and 8.39.

588



8.41. Fact. Let {Q, 0> be a subspace of R". Then De-diam {Q, ¢> <
< 2¥/diam {teR:t = x; for some x = (x;)e Q}:j < n) £ 2n.diam Q.
Proof. See 8.15 and 8.19.

8.42. Proposition. Let P = {Q, ¢, u) be a W-space and let {Q, 0> be a bounded
subspace of R". Then C(P) < C}(P) < 2n.wP.diam Q for any normal gauge
functional .

Proof. See 8.41 and 8.40.

8.43. Proposition. Let v be a normal gauge functional and let P = {Q, o, u)
be a W-space. If {Q, ¢ is a bounded subspace of some ,?p(n), n=12..,1=
< p £ o, then C}{P) and C(P) are finite.

Remark. This has been stated without proof in [4], 3.12, for the following special
case: T =r, p = 1, {Q, 9> is bounded Lebesgue measurable and p is the Lebesgue
measure.

Proof. The assertion is an easy consequence of 8.42.

8.44. Proposition. If there are no real-measurable cardinals, then C¥(P) < C(P)
for any bounded weakly Borel metric W-space and any normal gauge functional <.
This is an immediate consequence of 8.38.

8.45. Propesition. It is admissible to assume that C(P) < C¥(P) for any bounded
weakly Borel metric W-space and any normal gauge functional .

Proof. See 7.61 and 8.44.

9

The main results (see 9.4 and 9.36) of this section are as follows: if 7 is a normal
gauge functional, then C, is finitely continuous (see 2.13) and, for a fairly broad
class of W-spaces P, C, [ exp P and C} [ exp P satisfy certain conditions of the
Lipschitz type.

After giving some simple facts, we prove the key lemma 9.4. From this lemma, the
proof of which is rather long, the main results follow in a number of relatively easy
steps.

9.1. Notation. We denote (cf. 2.23.1) by Vthe function defined as follows: if x, y R,
x >0, y >0, then V(x,y) = H(x, y)/xy. — The letter ¥V will sometimes be used
with a different meaning (e.g., to denote a W-space) provided there is no danger of
confusion.

9.2. Fact. [f neR,, n > 0,x; Zny, >0,i=1,2, then V()’b yz) > nV(xl, Xz)-

Proof. By 22313 V(xh xZ) é V(nyl, nyz). By 24A, V(nyl, nyz) = n—IV(yl’ yz).

9.3. Fact. LetneR,.,n = 1,1 < Y < nx. Then H(l, x)/H(I,y) >1- logn/logy.
Proof. For any z > 0 we have H(l,z) =fz(1) —fz(o) where fz(t) _ (z + t)
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.log(z + 1). Since f,(r) = loge + log(z + t), there is, by the Cauchy Mean Value
Theorem, a u, 0 < u < 1, such that

loge + log(x + u

H(1, x)[H(1, y) = 8¢ + log (x + u)

loge + log(y + u)

and therefore H(1, x)/H(1, y) = 1 — h, where

b= log(y + u) — log (x + u)
loge + log (y + u) )

Clearly, h < (log (nx + u) — log(x + u))/log y = log((nx + u)/(x + u))/log y <
< log n[log y. This proves the assertion.

9.4. Lemma. Let © be a normal gauge functional. Let ¢ be a hypoentropy. Let
P =<0Q, 0, 1uy be a W-space and let wP < 1, d(P) < 1. Let m be a positive number
and let T < m . wT for any T < P. Let # = (P,: x€ D) be a dyadic expansion
of P. Let S<P, a=wP—S). Let b,teR, b>1,1>1, and put u =
= (b + 1) 1/(b — 1)(t — 1).If either ¢ is T-projective or ¢ is t-semiprojective and P
is pure, then ¢S < uTl(?)+ (1 + b)ma + bH(1,2")a + Z(sup (pU: U < P,):
x € D").If g ist-semiprojective and both # and S are pure, then the inequality holds
with sup (pU: U < P,) replaced by sup (pU:U < P,, U pure).

Proof. I. By 1.35, there exist ji-measurable functions &, 5., x € D, such that S =
=¢.P,P.=n,.Pforeachxe D.Puté, =&, S, = ¢&,. P. Then ¥ = (S,: xe D)
is a dyadic expansion of S, S, < P, for all xe D, (P, — S,: xe D) is a dyadic
expansion of P — S, and if £ is pure, then so is &. For any x € D, put p/x) = wP,,
s'x) = wS,, ax) = p{x) — s(x). Put

(1) Z = {xe D: balx) > s(x)}.

Clearly,

(2) if x0e Z, x1 € Z, then x € Z; if xOnon € Z, x1 non € Z, then x non € Z.

Let X be the set of all minimal (with respect to the order < introduced in 4.1) ele-
ments of Z. Clearly,

(3) X = Z = DX), and the sets D(x), x € X, are disjoint. It is also clear that

(4) if X, < X, x € D, then for any dyadic expansion (Uz: z € D) of a W-space,

U, yeX,n D(x)) = Z(U,:ze D" n D(D(x) n X,)) = U,.

Put

(5) Y= {xeX:p(x) = 2s(x)}.
For xe D put T, = X(S,: ye Y D{x)); put T = T,. By (4) we have T, £ S. For
any xe Dput S, = S, — T,, o(x) = wS,, and put § = S — T. By 4.5, if & is pure,
then all T,, S, are pure subspaces of S and (S’, T) is a pure partition of S. If both &
and S are pure, then S, are pure subspaces of P. Since T = X(S,: y € Y), we have
wT = Z(wS,: ye Y) and therefore, by (5), wT < Z(p(y) — s(y): ye Y) < Z(p(x) —
— s5(x): x € D"), which implies

(6) wT £ a.
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II. Put D = D\(DX)\X). It is easy to see that D € 4 and

(7) D' = D'\ DX), D" = X U (D"~ D(X)).

Put # = (S,: x € D).Clearly, & is a dyadic expansion of S and if & is pure, then so
is 2.
II1. Put

(8) E; = {xeD':x0noneZ, xl noneZ}.

Since for any xe D', x none D(X), hence, by (3), xnoneZ, we have, by (2),

(9) if xe D'\E,, then there is exactly one ke {0, 1}, denoted by k,, such that
xk e Z.

Let x e D'\ E,. Suppose xk, € Z \ X. Then there exists an x’ € X such that x' < xk,
and this implies x" < x, x € D(X), which contradicts (7). Hence

(10) if x e D'\ E,, then xk, e X.

For k = 0, 1, let k stand for 1 — k. We put

(11) E, = {xe D": xk, e Y},

(12) E; = {xe D": xk, e X\ Y, 2'o(xk,) = o(xk,)},

(13) E, = {xe D": xk, e X\ Y, 2'0(xk,) < o(xk,)}.

Clearly, by (10) and (8) we have

(14) (E,, E,, Es, E,) is a partition of the set D".

We introduce the following abbreviations (for y e D): g(y) = H(p(y0), p(y1)),
1(3) = H(@(0). o(31). G0) = 90) Pros Py FO) = 13) (8,00 S,). We put
v=(b—1)[b + 1). Clearly,

(15) I'(2) = Z(G(y):ye D),

(16) (%) = X(Fiy): y< D),

IV. We shall need the following facts:

(17) for any x e D, s(x) — o(x) < a'x),

(18) if xe D\ Z, then o(x) = v p{x),

(19) if xe X \Y, then s{x) = a(x), p(x) < 2 a(x).

The assertion (17) is proved as follows. We have s(x) — o(x) = wTx =
= Z(wS,: ye Y D(x)) = =(s'y): y e Y D(x)). By (5) we obtain wT, < Z(P(y) —
—s(y):ye Yn D(x)) = Z(wP, — S,): y € Y D(x)). By (4) we have Z(w(Py — S,):
y€Yn D{x)) £ w(P, — S,) = «x), hence wT, < a(x).

To prove (18), observe that if x non € Z, then, by (1), b a(x) < s(x). Together with
s{x) — o(x) < afx), this yields o{x) = (1 — b™*) s(x), p(x) = (1 + b™Y) s(x), hence
o(x) = v p(x).

Finally, if xe X\ Y, then Yn D(x) = 0, hence wT, = 0, S, = S|, s(x) = a(x),
and, by (5), p(x) < 2 o{x).

V. We are going to show that

(20) if x € E;, then G(x) = v F(x).

If o(x0) = 0 or o(x1) = 0, then F(x) = 0. Therefore we can assume thay ¢(*0) and
o(x1), hence also p{x0) and p(x1), are positive. We have

F(x) = V(o(x0), o(x1)) 6(x0) o(x1) 1(S,0, Ss1)

G(x) = V{o(x0), p(x1)) p(x0) p(x1) o Prgy Prr),
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If k = 0, 1, then, by (8), xk non € Z, hence, by (18), o(xk) = vp(xk). This implies,
by 9.2, V(p(x0), p(x1)) = vV(a(x0), o(x1)), hence, by (NGF 2), G(x) = v F(x).
VI. Let x € E,. Then, with k = k,, we have xk € Y and therefore (see (4)), Ty = Sy
wS,, = 0. Consequently,

(21) if x € E,, then F(x) = 0.
VII. Let x € E;. Then, with k = k,, we have xk € X \ 'Y, 2* o(xk) = o(xk) and there-
fore (since ©(Uy, U,) < d(P) <1 for any U; £ P, U, £ P) F(x) £ H(o(xk),
2! o(xk)) = a(xk) H(1,2"). Hence, Z(F(x):xe€E,) < H(1,2) X(o(xk,): x € E3) <
< H(1,2") Zo(y): ye X\ Y). By (19) and (1), we get Z(F(x): x € E;) < bH(1,2').
CE(ofy): yeX N Y). By (4), with X, = X\Y, x = 0e D, we have Z(w(P, — S,):
yeX\Y) < wP — S) = a. Since, for any ye D, ofy) = w(P, — S,), we obtain
X(oy): y€XNY) < a and therefore

(22) Z(F(x): x € E3) < bH(1, 2) a.
VIIL Let x € E,. We are going to prove that G(x) = v(1 — t~') F(x). Put k = k,.
By (13) and (19) we have

(23) 2" a(xk) < o(xk), p(xk) < 2 o(xk).
Thus, o(xk) and o(xk), hence also p(xk)and p(xk) are positive. Put p* = p(xk)/p(xk),
o* = o(xk)[o(xk). By (23), we have

(24) 2 < o* < 2p*.
By 9.3, the inequalities (24) imply

(25) H(1, p*)[H(1,0%) 2 1 — t%.
Clearly, V(p(xk), p(xk))[V(a(xk), o(xk)) = (H(1, p*)[H(1, 6*)) o(xk)/p(xk)). Since
x € E,, we have xk non e Z by (14) and (9). Hence, by (18), o(xk) = vp(xk), and
therefore, by (25), we get

(26) V{plxk). p(xk)[V(o(xB) o(xk) = of1 — 1°7)
It follows by (NGF 2) that

(27) if x € Ey, then G(x) Z v(1 — ™) F(x).
IX. By (15), (16), (14), (20), (21), (22) and (27), and in view of u™' = »(1 — 7 1),
we obtain

(28) T'{#) = uT(P) + bH(1,2") a.
Since either ¢ is t-projective or & is pure and ¢ is t-semiprojective, we have by
4132, S < T{¥) + X(pS,: xe D). Since U < m . wU for any U < P, we get
S,: xeX) £ mE(wS,: xeX) = mZ(o(x): xe X) < mE(s(x): x € X), hence, by
(1) and (4), X(¢S,: x € X) < mb X(a(x): x € X) < mba. Since, by (7), D" = X U
U (D" \ D{X)), we obtain

(29) @S < I'(#) + mba + X(S,: x e D"\ D(X)).
Since either ¢ is t-projective or ¢ is t-semiprojective and (.§, T) is a pure partition
of S, we have ¢S < ¢S + @T + H(wS, wT) 1(S, T). Since (S, T) < d(P) < 1 and
oT < m.wT, we get by (6) and 2.4,

(30) ¢S < ¢S + ma + H(1 — a, a). 2

From (28), (29) and (30), the assertion of the lemma follows at once, for, if both 2
and S are pure, then S, are pure subspaces of P.
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9.5. Fact. If 0 < a < 1, then H(a,1 — a) < 2a** + 2a.
The proof consists in an easy, though somewhat lengthy calculation, and can be
omitted.

9.6. Lemma. Let 7 be a normal gauge functional. Let ¢ be a hypoentropy. Let P
be a W-space, wP < 1, d(P) < 1. Let m be a positive number and let 9T < m . wT
for any T < P. Let ? = (P,: x € D) be a dyadic expansion of P. Let S < P, S + P.
Put a = w(P — S).If either (1) ¢ is t-projective or (2) ¢ is t-semiprojective and P
is pure, then @(S) £ T'(?)+ (3a'7 + 2a*P)I'(?) + a'® + (m + 6)a* +
+ (2m + 5)a + Z(sup (U: U £ P,): xe D"). If (3) ¢ is t-semiprojective and both
# and S are pure, then the inequality holds with sup (pU:U < P,) replaced
by sup (pU: U < P,, U pure).

Proof. We consider only the case (1); the remaining cases are analogous. By 9.4,
¢S S TLP) + (u — 1) I(#) + (1 + b)yma + H(a, 1 — a) + bH(1,2") a +
+ Z(sup (pU: U < P,): xe D"), where u = (b + 1)t/(b — 1)(t — 1), and b > 1,
t > 1 are arbitrary. Put t = b = a~ /3 + 1. Then

(1) (u = 1) T(2) = (3a' + 2a*7*) T (),

(2) (1 + b) ma = ma*? + 2ma.

By 9.5 we have

(3) H(a,1 — a) < 2a*7 + 2a.

Since H(1, x) = (x + 1) log (x + 1) — x log x is equal, by the Mean Value Theorem,
to loge + logx + s), where 0 < s < 1, we get H(1,2") < log(e2' + es), hence,
due to t = 2, H(1,2") <t + 2, bH(1,2) < (a™ ' + 1) (a~ /3 + 3), and therefore

(4) bH(1, 2') a < a'® + 44?3 + 3a.

Now, (1)—(4) imply the inequality asserted in the lemma.

9.7.1. Definition. Let P be a W-space and let ¢ be a non-negative functional,
dom ¢ o exp P (see 7.52). If for any ¢ > 0 there exists a partition (pure partition)
(Uy: k e K) of P such that {oU,: k e K) < ¢, then we will say that P is Z¢-partition-
fine (respectively, *@-partition-fine). If for any ¢ > 0 there exists a partition (pure
partition) % of P such that for any partition (pure partition) ¥~ = (V;: k € K) refining
% we have Z(V;: k€ K) < ¢, then we will say that P is strongly Zo-partition-fine
(respectively, strongly T*@-partition-fine). Instead of “Zg-partition-fine”, etc., we
will often write “Sq-fine”, etc.

9.7.2. Clearly, wd-partition-fine (see 8.29) W-spaces are exactly the Z¢-partitione
fine ones, where ¢ is the functional P+ wP . dP, strongly ZI-partition-fine (se
8.35) W-spaces are exactly the strongly S¢-partition-fine ones, where ¢ is the func-
tional P+ I'~-diam P, etc.

9.8. Lemma. Let t be a normal gauge functional. Let ¢ = C, or ¢ = C¥. Let P
be a W-space, wP < 1, d(P) < 1. Let m be a positive number and let 9T < m . wT
Jor any T< P. Let S < P, S + P. Put a = w(P — S). If either (1) ¢ = C, and P
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is strongly Zo-fine or (2) ¢ = C;, P is strongly Z*¢-fine and S is pure, then ¢S <
< @P + (30" + 2a*) P + a'® + (m + 6) a** + m(2 + 5) a.

Proof. We consider the case (1); the other case is quite analogous. Choose an
¢ > 0. Let % be a partition of P such that for any partition ¥~ = (V,,: m € M) refining
U, Z{@V,,: m € M) < &. By Theorem III (in Section 6) there exists a dyadic expansion

= (P,: x€ D) of P such that 2" refines and I'(#?) < ¢P + &. It is easy to see
that Z(sup (pU:U < P,):xe D") <& By 9.6, ¢S < ¢P + ¢ + (3a'® + 2a*7).
(9P + &) + a'® + (m + 6) a®? + (2m + 5)a + Zlsup (pU: U < P,): x € D).
Since ¢ > 0 was arbitrary, the lemma is proved.

9.9. Fact. Let © be a normal gauge functional. Let P be a W-space, wP < 1,
d(P) £ 1. Let ¢ be a hypoentropy. Let me R be positive and let oT < m . wT
for any TS P. Let S £ P, a = w(P — S). If either ¢ is t-projective or S is pure
and ¢ is t-semiprojective, then P < ¢S + 2a*3 + (m + 2) a.

Proof. We have ¢P < ¢S + ¢(P — S) + H(wS, w(P — S)) ©(S, P — S), hence
®P £ ¢S + ma + H(a,1 — a). By 9.5, H(a,1 — a) < 2a** + 2a.

9.10. Fact and notation. Let S; = {Q, 0, u;», i = 1,2, be a W-space. Assume that
{Q,0, ny + Ky is a W-space. Then there exists exactly one W-space U such that
(Y UZS,U=S,, (i)if VS, VS,, then V< U. — The space U will be
denoted by S; A S,, and the space S; + S, — (S; A S,) will be denoted by
S; v S,

Proof. Put u = u, + u,, S = <Q, 0, u). By 1.35 there exist g-measurable func-
tions f;, i = 1,2, such that S; = f;. S. Put g = min (f,/,), U =g.S. It is easy
to see that the space U satisfies (i) and (ii).

9.11. Fact. Let P = {Q, 0, uy be a W-space, S; £ P, S, < P. Let S;=f;. P
Then S; A S, = min(fy,f2).P, S; v S, = max(f, f2).P. If S;, S, are pure
subspaces, S; = A;. P where A, Q are [i-measurable, then S; A S, = (4,0 4,).

.P,S; Vv S, =(4,UA4,).P.
9.12. Notation. If S, S, are W-spaces and there exists a W-space P such that

Sy £ P, S, £ P, then w((S; v S,) — (S; A S,)) will be denoted by md(S,, S,)
and will be occasionally called the measure-distance of S; and S,.

9.13.1. Fact. If S; =<Q,0, 1y, i = 1,2 are FW-spaces, then md Sl, S,) is
equal to dist (S;, S,), see 2.11.

9.13.2. Fact. If P = {Q, 0, 1) is a W-space, S; < P, S; =f;. P, i = 1,2, then
md (Su Sz) = IQ |f1 - fz‘ dp.
This follows at once from 9.11.

9.14. Fact and notation. If P is a W-space, then (Sy, S;) — md (Sy, S3) is a n;etric
on exp P (see 7.52). — This metric will be denoted by md, or simply by md and, for
any subset X of exp P, X will also denote the metric space (X, md [\X >.
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9.15. Lemma. Let P be a W-space. Let ¢ be a non-negative functional, dom ¢ >
>exp P. If P is strongly To-fine (strongly T*@-fine), then so is every S < P
(every pure S < P, respectively).

Proof. Let P be strongly Z¢-fine. Let ¢ > 0 be given. Let % = (U;: ke K) be
a partition of P such that for any partition ¥~ = (V,,: m € M) refining %, Z(¢V,,:
me M) < &. Choose functions f, such that U, = f,. P for all ke K. For each
keKput U = f, .S, UP = f,.(P — S). Then U{", U, k € K, form a partition
of P and %V = (U": k e K) is a partition of S. If a partition 7 = (Tj:je€ J) of S
refines %", then the spaces T}, j € J, and U{®, k € K, form a partition of P refining %,
and therefore X(¢T;: je J) + Z(pU: ke K) < &. This proves that S is strongly
Zo-fine. — The other case is analogous.

9.16. Lemma. Let t be a normal gauge functional. Let ¢ = C, or ¢ = C¥.
Let P = <Q, 0, uy be a W-space, wP < 1, d(P) < 1. Let m € R be positive and let
oT = m.wT for all T< P. Assume that ¢ = C, and P is strongly Zo-fine (or
@ = C* and P is strongly Z*@-fine). Let S;, S, be subspaces (pure subspaces,
respectively) of P. Put a =md (S, S,). Then |pS; — ¢S,| < (3m + 1)a'/® +
+ (3m + 8)d®® + (3m + 7)a < (9m + 16) a'/>.

Proof. Assume that ¢ = C, (the other case is analogous). Put U = S; A S,.

By 9.11 and 9.13.2 we have w(S; — U) < a, i = 1, 2. By 9.15, S, is strongly Y ¢-fine.
Since ¢S; < m, we have by 9.8,

oU < ¢Sy + (3" + 2a**)ym + a'® + (m + 6) a*® + 2m + 5)a.

By 9.9 we get
S, £ U + 2a*? + (m + 2)a.
Hence
¢S, < ¢Sy + (3m + 1) a'? + (3m + 8)d®? + (3m + T)a.

This proves the lemma, since S; and S, can be interchanged.

9.17. Proposition. Let T be a normal gauge functional. Let ¢ = C, or ¢ = Cy.
Let P = <Q, 0; ) be a bounded W-space. Let me R, and let 9T < m . wT for all
T<P. Let S;=<Q,0,v;) £ P, i =12 If either (1) ¢ = C, and P is strongly
So-fine, or (2) ¢ = CY, P is strongly T*¢-fine and S;, i = 1,2, are pure subspaces,
then |pS; — ¢S,| < (9m + 16d(P)) (wP)** (md (S}, S2))'/>.

Proof. Put p = wP, t = d(P), a = md (S, S;). By 8.7 we can assume p > 0,
t>0. Put P=<0Q,t %, p'u, S;=<0,t Y, p v, i =12 Then wP <1,
d(P) =1, md(S,, S,) = p~'a, and, for any T< P, ¢T < (m|t) . wT. By 9.16 we
get |¢S; — 0S| £ (9m[t + 16) (p~'a)'”?. Clearly, |pS; — @S,| = pi|pS; — ¢S,
hence |pS; — @S,| < (9m + 161) pla/p)'”>.

>

9.18.1. We shall need the concept of a functional satisfying a Lipschitz type con-
dition with respect to a non-negative functional y. Although in this section y will
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be either P+ wP, defined on 2, or some mdp (see 9.14), the definition is given in
a fairly broad form (see also 9.46).

9.18.2. Definition. Let ¢ and y be functionals and let ¥ be non-negative. Let
O<p=<landlet 0 <b < 0. Let X beaclass. f 0 <m < o0, X =« dom¢n
ndom Y and |p(x)| < m|y(x)|” whenever xeX and y(x) £ b, then we will say
that ¢ satisfies L(p, ¥; b, m) on X or that m is a Lipschitz bound of order p for ¢
on X with respect to  (restricted by b). If ¢ satisfies L(p, ; b, m) for some m,
then we will say that ¢ satisfies L{p, y; b, +) on X or that ¢ is Lipschitz of order p
on X with respect to Y (restricted by b). If ¢ satisfies L(p, ¥; oo, m), then we will
also say that m is a y-Lipschitz bound of order p for ¢ on X, and if ¢ satisfies
L(p, ¥; o0, *) on X, we will also say that ¢ is Y-Lipschitz of order p on X. — “On X”
will be omitted if X = dom ¢, and ““of order p”’ will be often omitted if p = 1.

9.19. Definition and conventions. Let U = <{Q, ¢> and V = (T, ) be semimetric
spaces and let f: U —» V be a mapping. If the functional (x, y) — o(fx, fy) satisfies
L(p, 0; b, m), then we will say that f satisfies L(p; b, m) or that m is a Lipschitz
bound of order p for f, with distance bound b. If (x, y)— o(fx, fy) satisfies
L{p, 0; b, +), we will say that f satisfies L{p; b, *) or that f is Lipschitz of order p,
with distance bound b. In both cases, the words “with distance bound b” will be
omitted if b = oo; if p = 1, then we often omit “of order p”’. — We note that for
metric spaces {Q, 0>, (T, o), this definition is equivalent to the usual one.

9.20. Proposition. Let © be a normal gauge functional. Let P be a bounded
W-space. If C, is w-Lipschitz on exp P and P is strongly XCfine, then C, l\exp P
is Lipschitz of order 1/3. If C¥ is w-Lipschitz on exp P and P is strongly XC*-fine,
then C} |>exp* P is Lipschitz of order 1/3.

Proof. It follows at once from 9.17.

9.21. Remarks. A) Proposition 9.20 does not assert anything concerning
C¥ !i‘exp P. However, it will be proved below (9.26) that under the assumptions
in 9.20, C7 | exp P is Lipschitz of order 1/4. — B) It seems that the Lipschitz orders
1/3 (for C, [Nexp F and CJ | exp* P) and 1/4 (for C, [>exp P) are not the best
possible. — C) Clearly, if, e.g., P = <{1,2}, 1, uy, where pul = p2 =1, then
C,NexpP = C} [ exp P is not Lipschitz of order 1, since H(1 — &, ¢)/e — oo for
e—-> 0. — D) If a W-space P and a normal gauge functional t are given, then it is
often rather difficult to check the assumptions in 9.20. Therefore we shall introduce
(see 9.27) a property which implies, for any , the assumptions stated in 9.20, and is
easier to check.

9.22. Lemma. Let © be a normal gauge functional. Let P=<Q, 0, u) be a W-space.
Let 0 < u < 1. Let S = {Q, @, v) be a subspace of P and let v Z up. Then C}(P) &
z u C(S), C{P) z u C{S)-

Proof. We prove the second assertion only; the proof of the first is analogous.
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Let ¢ > 0. Let g be a ji-measurable function such that S = g . P; clearly, i{q € Q:
g(q) < u} =0. Let % = (U;: ke K) be a partition of S, Let f, be j-measurable
functions such that U, = f, . S. Since u = v = up, f; are f-measurable. Put % =
= (fi. P: keK). Then there exists a dyadic expansion 2 = (P,: x € D) of P such
that 2" refines % and I'{(#) < C{P) + e. Let h,, x € D, be i-measurable functions
such that P, = h..P. Put S, = h,.S, & = (S,: xe D). Clearly, & is a dyadic
expansion of S and %" refines #. For each x € D' such that wS,, > 0, wS,, > 0,
we have I'(Pyo, Pyy) = V(WPio, WPy) . WPyo . WPy . T(Pyo, Pyy), I'i(Sy00 Sy1) =
= V(wS, 0, wSy1) . WSyo . WS,y - ©(Sy0s Sy1)- Since S, = g . P, for all y e D, we get
WSxo Z U . WPy, WS,y = u.wP,,. Therefore, by 9.2 and (NGF 2), I'(P,o, P,;) =
= u.T(So, S,y). This implies I'(?) = u I'(¥), hence u I'(¥) < C(P) + & We
have shown that for any partition % of S there is a dyadic expansion & of S such
that & refines % and u I' (¥) < C(P) + &. It follows by Theorem IIT (in Section 6)
that u C/S) < C/(P) + e. Since ¢ > 0 was arbitrary, the lemma is proved.

9.23. Lemma. Let t© be a normal gauge functional. Let ¢ = C, or ¢ = CF,
Let P =<Q,0,u> be a W-space. Let 0 <u <1, v=1—u. Let uP < S < P.
Then ¢S = u.@S, ¢S = u®*. P, and if v<1%, then lqu — (pS| < 2v. @P,
|oP — ¢S| < 6v. @S.

Proof. By 9.22, 9P = u . ¢S. Put T= u~!S. Then P £ T, uT < P, hence, again
by 9.22, ¢T = u.@P and therefore ¢S = u®. @P. Thus, we have u~l. gP =
2 ¢Sz u®. oP, u"?. ¢S = ¢P 2 u. ¢S  Hence |pP — ¢S| <
smax(u ' =1, 1 —u?). P, |pP — @S| < max(u"? —1,0).¢S. If v=1}
then u™' — 1 <20, 1 —u? <20, u™2 — 1 £ 6v. This proves the lemma.

9.24. Lemma. Let t be a normal gauge functional. Let P = {Q, ¢, n) be
a bounded W-space, wP < 1[16. Let P be strongly LC}-fine. Let meR, be a w-
Lipschitz bound for C¥ on exp P.If S £ P, then |C¥(S) — CX(P)| < (18m(wP)*?* +
+ 32d(P) (wP)*® + 2m . wP) a'/*, where a = md (S, P) = w(P — §).

Proof. Let f be a ji-measurable function such that S = f. P, 0 < fg < 1 for all
geQ. Put v=a"* u=1—-v, X={qeQ:fg <u}, Y= 0 \X. Then a =
=wP —58)=fo(1 —f)du = [x (1 — f)du = v p(X), hence w(X . P) < av™' =
= a3/* and therefore

(1) md(Y. P, P) < a¥*, md(Y.S, S) < a*/*.

Since Y. P and Y. S are pure subspaces of P and S, respectively, we obtain by 9.17
the following inequalities:

(2a) |CH(Y.P) — C¥(P))| £ (9m + 16d(P)) (wP)*/* (md(Y. P, P))'53,

(2b) |CH(Y. S) — CX(S)| = (9m + 16d(S) (wS)** (md(Y. S, S))'7°.
Clearly, u.(Y.P)< Y.S< Y.P. Since u =1—0, v=a'/* <1/2, we get by
9.23

(3) |[C¥(Y.S) — C(Y. P)| < 2a'/*m . wP.

Now, (1), (2a), (2b) and (3) imply the inequality asserted in the lemma.
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9.25. Proposition. Let © be a normal gauge functional. Let P be a bounded
W-space. Let P be strongly LC¥-fine. Let m e R, be a w-Lipschitz bound for C¥ on
expP.If S; £ P, S, <P, then

|C¥(Sy) — CX(S,)| £ F(m, d(P), wP) (md(S,, S,))"/*,

where F: R, — R, is defined as follows: F(x, y, z) = 8(7x + 11y) z>/%.
Proof. We can assume wP > 0. Put U = S; A S,,a = md(S;, S,). If wP = 1/16,
then by 9.24 with 1/16 substituted for wP we get, for i = 1, 2.
(1) [CX(S)) — CHU)| < 3(Tm + 11d(P)) a'/*.
Hence
(2) |CX(Sy) — CX(S2)| £ (Tm + 11d(P)) a*/*.
If wP > 0 is arbitrary, put ¢ = 1/16wP. Since w(tP) = 1/16, we have by (2)
|CH(tS,) — CX(1S,)| £ (Tm + 11d(P)) (ta)'/*,
hence
|CH(Sy) — CX(S,)| = t73%(Tm + 11d(P)) a'/*,
|CH(S1) — CX(S,)| < F(m, d(P), wP) a'/*.

9.26. Proposition. Lett be a normal gauge functional. Let P be a bounded
W-space. If C} is w-Lipschitz on exp P and P is strongly £C-fine, then C} | exp P
is Lipschitz of order 1/4.

Proof. See 9.25.

9.27. Definition. Let P be a W-space or a semimetric space. If for any ¢ > 0
there exists a partition (U,: k € K) of P such that for all ke K, Ded (Uy) < ¢
(De-diam U, < ¢, respectively), then we will say that P is De-partition-fine. If,
in addition, P is De-bounded (see 8.13), then we will call P De-totally bounded or
totally expansion-bounded.

9.28. Fact. Let <{Q, @) be a De-totally bounded (De-partition-fine) semimetric
space. Then (1) any subspace of <Q, ¢) is De-totally bounded (De-partition-fine,
respectively), (2) if (T, ) is a semimetric space, f: Q — T is a surjective mapping
and o(fx, fy) < o(x, y) for any x, y € Q, then (T, ¢) is De-totally bounded (De-
partition-fine, respectively).

Proof. See 8.15.

9.29. Lemma. Let P be a bounded semimetric space. If there exists a partition
U = (Uy: keK) of P such that all Uy are expansion-bounded (De-partition-fine,
totally expansion-bounded), then P is expansion-bounded (De-partition-fine,
totally expansion-bounded).

Proof. I Let all U, be De-bounded. It is enough to consider the case % = (U, U,),
since for an arbitrary %, the assertion will follow by induction. Put ¢ = diam P+
De-diam U, + De-diam U,. Let b > a. Let¢ > 0. For i = 0, 1, there exists a dyadic
expansion &; = (P, x¢€ D,-) of U; such that diam P;, < ¢ if xe D] and
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¥(max {diam P;: x € {0, 1}" n D;}: {0,1}" A D # 0) < De-diam U; + (b — a)/2.
Let D consist of the void sequence § and of all (0) . x, x € Dy, (1) . x, x € D,. Clearly,
Ded. PutS, =P If z=(i).x, i=0,1, xe D, put S, = P, .. Clearly, & =
= (S,: z € D) is a dyadic expansion of P. It is easy to see that X(max {diam S,: z €
e{0,1}"n D}:{0,1}" n D + 0} < diam P + ) X(max {diam P, :x€ {0, 1}" n
i=0,1

n D;}: {0, 1}™ n D; # 0} < diam P + De-diam U, + De-diam U, + (b — a) = b.
Since b > a was arbitrary, we have shown that De-diam P < a. — II. It is easy to
see that if U, are De-partition-fine, then P is De-partition-fine. — III. If U, are De-
totally bounded, then P is De-bounded, by I, and De-partition-fine, by II.

9.30. Fact. A metric space S = {Q,0) is totally expansion-bounded if and
only if it is De-partition-fine.

Proof. Let S be De-partition-fine. By 8.10, S is bounded. Since S is De-partition-
fine, there is a partition (U,: k € K) such that De-diam U, < 1 for each keK.
Hence, by 9.29, S is De-bounded.

9.31. Lemma. Let P = <{Q,0,u) be a W-space. Let A < B< Q, Bedom i
and jiB = p(A). Then Ded (B. P) < De-diam {4, ¢ |> A).

Proof. Put S = <4,¢0 > A). We can assume that De-diam S = t < oo. Let
"e€R, t > 1, and let ¢ > 0. Then there exists a dyadic expansion (V,: x € D) of 4
such that (1) diam V, < for each xe D’, (2) Z(max {diam V,:x e {0, 1}"
N D}:{0,1}" n D # 0) < t'. Choose sets U, > V,, ze D", such that U, € dom g,
uU, = pu(V,) for each z € D". For each x € D put T, = U(U,: z € D(x) n D"). Then
T, o V, and, by (*) in 8.16 (proof), uT, = p(V,). Thus Ty o A, uT, = p(A) =
= [iB, hence T, . P = B . P. By 8.11 we have d(T, . P) < diam V, for each xe D. —
Now let f: D" — {0, ..., n} be a bijection, put M, = U, \NU(U,: f(y) < f(2)) for each
ze D" and put E, = U(M.: z € D(x) n D") for each x € D. Clearly, T, > E, for each
x e D. Since T, = E,, we have E; . P = B. P. We also see that (E,.P:xe D) is
a dyadic expansion of B.P and that d(E,.P) < d(T,.P) < diamV, for each
xe D. Hence d(E..P) <¢ for each ze D" and X(max {d(E,.P):xe€{0, 1}" n
N D}:{0,1}" n D % 0) < ¢'. Since t' > ¢ and ¢ > 0 were arbitrary, we have shown
that Ded (B . P) < De-diam S.

9.32. Proposition. Let P = {Q, ¢, 1) be a W-space. If {Q, ¢ is totally expansion-
bounded (De-partition-fine), then so is P.

Proof. I. Let S = {Q, ¢)> be De-partition-fine. Let ¢ > 0 be given. There exists
a partition (A: k € K) of Q such that De-diam (S |> 4;) < & for each k € K. Choose
sets B, o A, such that uB, = u(4,) for each k € K. By 9.31 we have Ded (B, . P) <
< De-diam (S }\Ak) < ¢ for each ke K. Let f:K — {0, ..., n} be a bijection and
put E, = B,NU(B;: f(i) < f(k)), U, = E, . P. Then (U,: k €K) is a partition of P
and Ded U, < ¢ for each k € K. This proves that P is De-partition-fine.

II. If <Q, @) is totally expansion-bounded, then it is expansion-bounded and
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therefore, by 8.16, P is expansion-bounded as well, hence, by I, it is totally expansion-
bounded.

9.33. Proposition. Let a = (a;:ie N)e £ (N), a 20, Xa;:ie N) < . Then
the subspace {x:0 < x < a} of Z,(N) is totally expansion-bounded.

Proof. Clearly, we can assume that all a; are positive. If b = (b;), ¢ = (c;) are in

o(N), by <¢; for all ie N and ¢; — b; > 0 for i — oo, put T(b,c) = {x =
= (x;:ieN)e L (N): b, < x; < cfor all i e N}. Clearly, it is enough to show that
T(0, a) is De-totally bounded. By 8.20, T(0, a) is De-bounded. Hence we have only
to show that T(0, a) is De-partition-fine. Let & > 0. Choose a pe N such that
Y(a;:i= p) <e/d. Choose an me N such that E(a;:i < p)/m <el4. If » =
= (kg ... kp—1) €{0, ..., m — 1}7, define u(x) and v(x) as follows: u(x)(i) =
= kja;[mif i < p, u(») (i) = 0if i = p, vo(x) (i) = (k; + 1) a;/m if i < p, v(x) (i) =
= q;if i = p. It is easy to see that (T(u(x), v(x)): x € {0, ..., m — 1}7) is a partition
of T(0, a) and every T(u{x), v(x)) is isometric to T(u(0), v(0)). By 8.19 we have
De-diam T(u(0), v0)) < 2 %(a;: i < p)/m + 2%(a;: i = p)) <e. This proves the
proposition.

9.34. Remark. I do not know whether there are expansion-bounded metric spaces
which are not totally expansion-bounded.

9.35. Proposition. Every bounded subspace of R", n = 1,2,..., is totally
expansion-bounded.
Proof. See 9.33.

9.36. Fact. Let P be a De-totally bounded W-space. Let t be a normal gauge
functional. Let ¢ = C; or ¢ = CJ. Then (1) ¢ is w-Lipschitz on exp P (and Ded (P)
is a w-Lipschitz bound for ¢ on exp P); (2) P is both strongly Z¢-fine and strongly
X*p-fine.

Proof. The first assertion follows from 8.28 since, clearly, Ded (T) < Ded (P)
for all T < P. — We are going to prove that P is strongly XC.-fine. The proof of
the remaining assertion is analogous. We can assume wP > 0. Let ¢ > 0. Then there
exists a partition % = (U,: k € K) of P such that for any k € K, Ded (U;) < &/wP.
Let (V,: me M) be a artition refining %. Let (M,: k € K) be a partition of M such
that X(V,,: m e M,) = U, for all k € K. Then, by 8.28, forany k € K, m € M,, C(V,,) <
< wV,,.Ded (V,) < wV,, .Ded (Uy), hence C(V,) < (¢/wP).wV,, for any me M
and therefore Z(C(V,,): me M) < (¢/wP). wP = e. ‘

9.37. Proposition. Let T be a normal gauge functional. Let P = {Q, o0, u) be a W-
space. If P is totally expansion-bounded (in particular, if {Q, ¢ is totally expan-
sion-bounded), then C, [ exp P and C} > exp* P are Lipschitz of order 13, and
C! INexp P is Lipschitz of order 1[4.

Proof. It follows from 9.36, 9.20, 9.26 and 9.32.
Remark. As already mentioned, 1/3 and 1/4 are merely estimates of the Lipschitz
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order of C, ’\exp P, etc., possibly rather rough. Therefore, we do not try to find
tolerably good Lipschitz bounds (of order 1/3 or 1/4, respectively) for C | exp P,
etc. Some bounds are given in 9.17 and 9.24.

9.38. We are now going to consider the functionals C} [*W(Q), C. P‘IB,,(Q)
where 7 is a normal gauge functional and Q is a non-void finite set. Various proposi-
tions concerning continuity and Lipschitz type properties of these functionals will
be proved.

Let us recall, partly in a slightly modified form, some propositions from Section 5
(7 denotes a normal gauge functional, Q a non-void finite set). — The functionals
C¥ | ,(Q) are continuous (see 5.7); every C, > W(Q, o, *) (see 2.11) is continuous
at every point P = <Q, o, u) of the space W(Q, ¢, *) such that ug > 0 for all g € Q
(see 5.8); every CF [\ﬂB(Q, -, ) satisfies L(1; oo, H(u)) (this follows immediately
from 5.1); every C, [\QB(Q, -, 1) is continuous (see 5.4).

9.39. It will be proved (see 9.43 below) that the functionals C, FQBF(Q) are
continuous. It will also be shown that the functionals C I\B where B is a bounded
subspace of M,(Q) are Lipschitz of order 1/4 and the functionals C, > B where is
a bounded subspace of some 23(0, o, +) are Lipschitz of order 1/3. However, I do
not know whether the functionals of the form C, }\ B, where B is a bounded subspace
of some QB(Q, ., u), are Lipschitz (of some order). Therefore, we will also examine
the question whether the functionals C; [\QBF(Q) are Lipschitz at some points
of W,{(Q) (the definition of “Lipschitz at a point™ will be given in 9.46).

9.40. Lemma. Let © be a normal gauge functional. Let Q be a finite non-void set.
Put n = card Q. Let P; = <Q, 0, t;p) €Wy, i = 1,2. Then
|C(P,) = CLP,)| < m(dist (P, P,))'/3,
where m = (9 log n + 16) diam <Q, o> (w(P; v P,))*>.
Proof. Put t=diam<{Q,¢). If T=<Q,0,v)eW;, then clearly C(T) <
< CQ, 1, v), hence, by 3.9.2 and 3.20, we get C(T) < 1Cx<Q, 1, v). By Theorem
II (in Section 6) we have Cx<Q, 1,v) = H(v); by 2.4 we have H(v) < (log n) wT.

Therefore, C(T) < (tlogn) wT. Clearly, every FW-space is strongly XC,fine.
By 9.17 we obtain

|C{P;) — C{P,)| < (9tlogn + 16 d(P)) (w(P, v P,))**(md(P,, P,))".
Since, by 9.13. 1, md(P,, P,) = dist (P,, P,), the lemma is proved.

9.41. Fact. Let Q be a non-void finite set. Let B be a bounded subspace of W{Q).
Then there exist numbers a, b such that (1) wP < a for every Pe B; (2) if x€ Q,
yeQ,<{Q, 0, py€B, then o{x, y) < b.

9.42. Proposition. Let T be a normal gauge functional. Let Q be a finite non-void
set. Let B be a bounded non-void subspace of M(Q, ¢, ). Then C, ]\B is Lipschitz
of order 1/3.
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Proof. Let a, b satisfy (1), (2) in 9.41. Put n = card Q, k = (9 log n + 16b) (2a)*>.
Let Py, P, € B. Clarly, w(Py v P) < 24, diam {Q, ¢ < b. By 9.40 we get |C(P,) —
— C[P,)| £ k(dist (Py, P2))'.

9.43. Proposition. Let © be a normal gauge functional. Let Q be a finite non-void
set. Then the functional C; \\‘IBF(Q) is continuous.

Remark. For 7 = r this has been stated in [4], 1.7, and [3], 3.5. A very short
outline of proof is contained in [3], 4.1—4.9.

Proof. Let Py = <Q, 0o, Ho) € We(Q). Let & > 0. By 5.4, C, P W(Q, *, po) is
continuous, hence there exists an o > 0 such that

(1) if S = €Q, @, Hoy € Wy, dist (S, Py) < «, then |C,S) — C(Po)| < &/2.
Let B be the set of all P e W;(Q) such that dist (P, P,) < o. Since B is bounded,
by 9.40 and 9.41 there exists a number k such that

(2) if S; =<Q,0,v>eB, i = 1,2, then |C(S,) — C(S,)| £ k(dist (Sy, S,))"/>.
Choose & > 0 such that & < o, ké'3 <¢f2. Let P = <Q, 0, p) € B(Q),
dist (P, Py) < 6. Put P; =<Q,0, uo)>. Clearly, dist(Py, P,) < dist(P, P,) < 6,
hence, by (1), we have
(3) [CPy) — C{PY)| < 5f2
Since P € B, P, € B, we get by (2) the inequality
(4) |C(P) — C(Py)| < k(dist (P, P,))!/* < ké'/* < ¢]2.
By (3) and (4) we have |C(P) — C(P,)| < e.

9.44. Lemma. Let © be a normal gauge functional. Let Q be a finite non-void set.

Let B be a bounded non-void subspace of MWy(Q). Then there exist k', k" e R, such
that

(1) if P; = <Q, 0, vy € B, i = 1,2, then |C}(P,) — CX(P,)| < K'(dist (Py, P,))"';
(2) if Si=<Q,0iv>€B, i =1,2, then |C¥(S,) — CX(S,)| < k" dist (S}, S,).
Proof. Let a, b satisfy (1) and (2) in 9.41. Put n = card Q, m = blog n. Let F be
the function introduced in 9.15. Put k' = F(m, b, 2a), k" = sup {H(w): {Q, ¢, > €
€ B}. Since B is bounded, k" < co. We have C(T) < m . wT for every Te B; this
can be shown in the same way as the corresponding assertion in the proof of 9.40.
Let P, = {Q,0,v,>e B, i = 1,2. By 9.25 we get

|CE(Py) — CE(Po)| < F(m, d(Py v P,), w(Py v P,))(md(Py, Py))'*.

Clearly, d(P; v P,) < b, w(P, v P,) < 2a. Since F is increasing (in each variable),
we get

|CE(P;) — CE(P,)| < F(m, b, 2a) (md(P,, P,))*/*.
LetS; = <Q,0;,v)eB,i=1,2. By 5.1 we have
|CE(S1) — CX(S,)| < H(v) dist (Sy, S,) < k" dist (S, S2) -

9.45. Proposition. Let T be a normal gauge functional. Let Q be a finite non-void
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set. Let B be a bounded non-void subspace of W(Q). Then C} | B is Lipschitz of
order 1/4.

Proof. Let k', k" e R, satisfy (1) and (2) from 9.44. Let b satisfy (3) from 9.41.
Put k = k' + k"b>*. It is easy to see that for any Py, P, € B we have |C/(P,) —
— C}(P,)| £ k(dist (Py, P,))"/*.

9.46. Definition and convention. Let U = {Q, ¢) and V = (T, o) be semimetric
spaces and let f: U — V be a mapping. Let ze Q and let g, denote the function
x > g(x, z) defined on Q. — (1) If the function x — o(fx, fz) satisfies L{p, o.; b, m)
on Q (see 9.18.1), then we will say that f satisfies L(p; b, m) at z or that m
is a Lipschitz bound of order p for f at z, with distance bound b. — (2) If x>
> o(fx, fz) satisfies L(p, ¢; b, *) on Q, then we will say that f satisfies L'p: b, *)
at z or that f is Lipschitz of order p at z, with distance bound b. — (3) If for some b
and some m, f satisfies L(p; b, m) at z, then we will say that f satisfies a Lipschitz
condition of order p at z. — (4) The words “with distance bound b are omitted
if b = 00. — Note that by the convention just introduced, “f is Lipschitz of order p
at z” means “‘f satisfies L(p; o0, m) for some m”.

9.47. Proposition. Let © be an NGF. Let ¢ = C, or ¢ = C¥. Let Q be a finite
non-void set. Let P = <Q, ¢, 1) GQBF(Q) and assume pq > 0 for all qe Q. Put
t = min {uq: g € Q}. Then ¢ | W(Q, o, *) satisfies L(1; 1[4, 5oP|t) at P.

Proof. Let S = <Q, 0, v) € W(Q), dist (S, P) = ¢ < t/4. It is easy to see that for
all geQ, vg = (1 —¢/t)ug, (1 + ¢/t)ug = vq, and therefore S = (1 — ¢[t) P,
(1+e/t)P=S. Put Py=(1+eft)P. Put u=(t—¢)(t+e), v=1—u=
= 2¢/(t + ¢). Clearly,v < 1/2. We haveuP; < S < P, hence, by 9.23, |¢S — ¢P,| <
< 2v. P, <4et™' . @P. Clearly, oP, — oP =et™'. ¢P. Hence |pS — ¢P| <
< (5¢P[t) .

9.48. Proposition. Let ¢ be a hypoentropy. Let Q be a finite non-void set. Let
Wr(Q) = dom ¢. Let P = {Q, 0, 1y € W(Q) and let ¢(x, y) > 0 for all x,y e Q,
x # y. Put s = min {o(x, y):x€Q, ye Q, x * y}. Then ¢ [W(Q, «, p) satisfies
L(1; s/2, 3¢P|s) at P.

Proof. Let S = <Q,0, 1) € W{Q), dist(S, P) = ¢ < s/2. Clearly, ¢ < 7 + ¢,
c<go+e hence g < (1 +¢f(s—¢)o, 0 <(1+¢fs)o, and therefore ¢P <
S (1 + ¢/(s — &) ¢S, @S = (1 + ¢[s) @P, which implies P — ¢S < (¢/(s — ¢)) ¢S,
@S — @P < (gfs) oP. Since ¢S < (1 + &fs) P, we get |pP — S| <
< ¢(s +¢e)s™!(s — &) @P. Since ¢ < s5/2, we have (s + &) (s — ) < 3, hence
|oP — @S| < (3¢P/s) e.

9.49. Proposition. Let © be a normal gauge functional. Let Q be a finite non-void
set. Let P = {Q, 0, uy € Wy(Q). Assume that ug > 0 for all ge Q and o(x,y) >0

for all x,y e Q, x+ y. Then C, | W,(Q) satisfies a Lipschitz condition of order 1
at P.

Proof. It is an easy consequence of 9.47 and 9.48.
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9.50. Remark. It has been shown by I. Neumann in his Master Thesis (Charles
University, 1984) that for any finite non-void set ¢ and any semimetric ¢ on Q,
cr I\B is Lipschitz of order p for any p € (0, 1) and any bounded subspace B of
W(Q, ¢, *). The proof is straightforward, though not quite simple, and involves
only elementary calculus and basic properties of the functional H.

10

The section is organized as follows. First we present examples showing that (1)
all C} [ M, where t = r,, 1 £t < o0, or © = E, are distinct, (2) C, [ W, + Cy [}
I\QBF. Based on these facts, a proof is given (see 10.10) of the fact that there are
exactly 2 finitely continuous extenced Shannon entropies on IB,. We also prove
(see 10.12) that there are enormously many (as many as there are classes) extended
(in the broad sense) Shannon entropies on 2. Then we turn (see 10.17 and 10.18)
to examples announced in or connected with Part I. Finally, we present a number of
examples connected with Sections 7 through 9.

10.1. Fact. Let P =<{Q,0,u) be an FW-space, Q = {0,1,2}, ¢(0,1) =1,
0(1,2) = 2, ¢(0,2) =3, p{0} = u{1} = p{2} = 1. Then C},(P), where we put
(1) = r,, see 3.2, is a strictly increasing function for te[1, oo].

Proof. If 1 <t < oo, T = r(t), then by 4.20, C}(P) is equal to the least of the
numbers 2 + H(1, 2) (2' + 3)21%, 4 + H(1,2) (1 + 3)2, 6 + H(1,2) .
(1 + 29421*. Now, it is well known that any function of the form f(f) =
= (pa' + qb")"!|(p + q)'"", where p, g, a, b are positive, a # b, is strictly increasing
for 1 <t < co. This proves the assertion for t e [1, o). Clearly, Cy,\(P) =2 +
+ 3H(1 2) > Cy(P) for all te[1, o).

r(H\

10.2. Fact. Let Q = {0, 1,2}. Let ¢ be the semimetric on Q such that (0, 1) =
=0(0,2) =0, o(1,2) = 1. Let 0 < b < 1/2. Let p, be the measure on Q such that
m{0} = a =1 —2b, u{1} = {2} = b. Put S, = <Q, ¢, ppy. Then (1) Cx(S,) =
= H(b, 1 — b); (2) C¥..,(Sy) = 2b; (3)if 1 < t < oo, then C%,(S,) =
= min (2b, H(b, 1 — b) b"/(1 — b)~*/*), hence, in particular, (4) C}.\(S;) =
= H(b, 1 — b) bJ(1 — b); (5) for any t, 1 <t < o, we have C,(S,) < (4b?)"",
hence, in particular, (6) C,\(Sp) < 4b* < Cly)(Sp), and (7) C,1)(Sy) < 4b* <
< Ci(S,).

Proof. Using again 4.20, we get (8) C5(S,) = min (H(b, 1 — b), H(2b, 1 — 2b) +
+26),(9) Cl(S,) = min (2b, H(b, 1 — b) and (10)it1 S 1 < <o, then C(5y) =
= min (2b, H(b, 1 — b) b'/*|(1 — b)'/*, which is the equality (3). It is easy to show
that for any x, 0 < x < 1/2, we have (11) 2x < H(x, 1 — x) < H(2x, 1 — 2x) + 2x,
(12) H(x, 1 — x)/(1 — x) < 2. The inequalities (8) and (11) imply (1); (9) and (11)
imply (2); (3) and (12) imply (4).

Let ¥ = (S,: x € D) be the dyadic expansion of S, such that D" = {0, 1}%, Soo =
= 3{0} . S, So1 = {1} . S S0 = 3{0}. S,, Sy1 = {2} . S,. Celarly, for 1 < ¢ < oo,
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I(F) = (4b*)', hence, by 4.24, C,,(S,) < (4b%)"/". By 2.16.1, 4x(1 — x) <
< H(x,1 —x) for any x, 0 <x < 1/2. Hence 4b> < H{(b, 1 — b) b/(1 — b),
which proves (6). Since b/(1 — b) < 1, we have 4b> < H(b, 1 — b), which proves (7).

Remark. The spaces S,, 0 < b < 1/2, provide examples mentioned in [4], 3.7.

10.3. Examples in 10.1 and 10.2 show that (i) all C} [*2,, where © = r,
1 £t < oo, o0rt = E,are distinct, (ii) C, ’\ﬂBp + CF | ;. The following questions
remain open: (1) Does there exist, for any normal gauge functional © = r, an FW-
space S such that C(S) < CJ(S)? It seems that the answer is affirmative if © = r,,
1 =t £ oo, or 1 = E. However, this question will not be examined here since only
the fact that C, [ W, + C} [ W, will be used in some of the proofs below. — (2)
Does there exist, e.g. for t = r, a metric FW-space P such that C(P) < C¥(P)?
A negative answer would mean, among other things, that C,(P), P eWp n W,,,
could be calculated in finitely many steps. — (3) Are all C, |> W;, where t = r,,
1 <t <00, o0rt=E, distinct? In what follows, only a special case will be solved:
we shall prove that C, [\QBF % Cp | W,. To this end, we need some facts con-
cerning C, and Cj.

10.4. Lemma. Let P = {Q, 0, ) be a W-space. Let (U, k € K) be a partition of P.
Then there exists a pure partition (Uy: ke K) such that d(U}) < d(U,) for all
ke K and HwU; : ke K) £ HwU,: k € K).

Proof. If 7 = (T,: me M) is a partition of P, put s.7) = card {(i, j)e M x
x M:i =+ j, w(T; A T;) > 0}. We are going to show that (x) for any partition ¥~ =
= (V: ke K) of P such that s{¥") > 0, there exists a partition ¥~ = (V,: k e K)
such that s(¥”) <s(¥"), HwV/:keK) < HwV,:keK) and d(V}) < d(V,) for
each ke K.

Choose i,je K such that i+ j, w(Vi A Vj) > 0, wV, =z wV;. There exist ji-
measurable functions f;, f; such that V; = f;. P, V; = f; . P. For any g e Q, put
9{q) = fia) + f(a) if f{q) > 0, and gi(q) = 0if fi(q) = 0. Put g; = f; + f; — g;,
Vi=g,.P,Vi=g,.P,V. =WV if keK, k + i, k + j. Clearly, ¥’ = (V;: ke K)
is a partition of P. It is easy to see that s(¥™) < s(7), d(V;) = d(W;) for all ke K.
Clearly, wV; > wV, = wV; > wV;, w(V/ + V{) = w(V, + V). Since V; =V, for
k =+ i, k + j, we get HwV,: ke K) < HwV,: k e K).

The assertion () implies that there exists a partition #* = (U k € K) such that
SU*) = 0, d(U}) < d(Uy) for all ke K and H(wU;: k € K) < H(wU,: k € K). Since,
clearly, for any partition 7, s(7) = 0iff 7 is pure, the lemma is proved.

10.5. Lemma. Let P = {Q, 0, u)> be a W-space. Assume that [ x p]{(x, y)e @ x
x Q:0 % o(x,y)* 1} =0. Let # = (P,:xeD) be a dyadic expansion of P.
Let Z consist of all minimal elements of the set {t€ D: d(P,) = 0 or t € D"}. Then
(P.:z€Z) is a partition of P and I'y(#) = H(wP,: z€ Z) £ H(wP,: y € D").

Proof. We can assume d(P) > 0. By the definition of I'z, we have I' H(P) =
= X(H(wP,,, wP,;) d(P,): x € D'). Clearly, for any x € D, we have either d(P,) = 1
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or d(P,) =0, and therefore (see 2.1) I'g{?) = E(L(wP,,) + L(wal) — L{wP,)):
xe D', d(P,) > 0) = X(L(wP,): z€ Z) — L(wP). Clearly, (i) for any z€Z, WP, =
= S(wP,: y € D{z) n D"), (ii) for any u, ve Z, D{u) n D(v) = 0, and (iii) U(D(z) n
nD":zeZ) = D". Hence, (P,:z€Z) is a partition of P, wP = I(wP;:ze€ Z),
X(L(wP.): z € Z) — L(wP) = H(wP,: ze Z) and I'f(?) = H(wP,: z€ Z). By 412.1
we have H(wP,:ze Z) + S(H(wP,: ye D(z) n D"):ze Z) = H(wP,: y € D).

10.6. Proposition. Let P = {Q, 0, u> be a W-space. Assume that [u X H] {(X, Y) €
€0 x 0:0 % g(x,y) + 1} = 0 and that there exists a partition % = (Uss .., U,)
of P such that d(U;) =0 for i =1,...,n. Then C{P) = C§(P) =
= inf {H(wV;: k € K) : (V;: k € K) € Pt(P), max (d(V;): ke K) = 0} =
= inf {H(wV;: k € K) : (V;: k € K) € Pt*(P), max (d(V;): k € K) = 0}.

Proof. Let h and h* denote, respectively, the infima mentioned in the proposition.
By 10.4 we get h = h*. — Let ¢ > 0 and choose a partition ¥~ = (V;: k eK) such
that H(wV,: ke K) < h + ¢and d(V;) = 0 for all k € K. By 4.6.2 there exists a dyadic
expansion 2 = (P,: x € D) of P such that 2" is equal to ¥ re-indexed, hence d(P,) =
=0 for all xe D". By 10.5 we have I'y(#) < H(wP,: xe D") = H(wV,: ke K).
By 4.12.4 and Theorem I1I, this proves CE(P) < h + ¢, hence, ¢ > 0 being arbitrary,
we get Cz(P) < h. In a similar way one proves Cx(P) < h*.

We are going to show that Ci(P) = h (the proof of C§(P) = h* is similar). Let
U = (Uy,...,U,) e Pt(P), d(U;) = 0 for each i. Let 2 = (P,: xe D) be a dyadic
expansion of P such that 2" refines %. Let Z consist of all minimal elements of
{te D:d(P,) = 0 or te D"}. By 10.5, I'y(?) = H(wP,: z € Z). Since 2" refines %,
we have d(P,) = 0 for all xe D", hence d(P,) = 0 for all ze Z. Since, by 10.5,
(P,:zeZ) is a partition of P, we get I';(#) = h and therefore Cy(P) = h. This
proves the proposition.

10.7. Proposition. Let P = {Q, 0, up be an FW-space. Assume that for any
x,y€ 0, 0(x,y) = 0or g(x, y) = 1. Then Ci(P) = C§(P).
This follows immediately from 10.6.

10.8. Fact. Let 0 < b < 1/2. Let S, be the space described in 10.2. Then C,(S,) <
< Ci(Sy).
Proof. See 10.2 and 10.7.

10.9. Fact. For 0 < u < 1, Pe W, put ¢,(P) = uC,1)(P) + (1 — u) Cg(P). Then
every ¢, is a finitely continuous SCI-persistent extended Shannon entropy on T3
and all @, > Wy are distinct.

Proof. Let 0 < b < 1/2. Let S, be the space described in 10.2. Then, by 10.8,
C,1(Ss) < C(S;) and therefore all ¢, [*MW;, 0 < u < 1, are distinct. By 2.28
every ¢, 1is an extended (b.s.) Shannon semientropy on IB. Clearly, every ¢, is strongly
regular (see 2.9), hence an extended (b.s.) Shannon entropy. By 9.43, C,(;, and*Cg
are finitely continuous, hence so is every ¢,. By 7.57, C,.1) and C are SCl-persistent,
hence so is every @,
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10.10. Proposition. There are exactly 2° finitely continuous SCI-persistent
extended Shannon entropies on Wp and also exactly 2° extended Shannon semi-
entropies on Wy.

Proof. See 7.46 and 10.9.

10.11. Proposition. If A is a class of infinite sets, put, for any P € B, (1) 4(P) =
= C/(P) if |P|non € A4, (2) p4(P) = Cx(P) if |P| € A. Then (1) @, is a finitely con-
tinuous extended (b.s.) Shannon entropy on B and ¢, " W, = C, > Wy, (1) if U
and V are distinct classes of infinite sets, then @y % @y, (I1) if A is a class of infinite
sets, Ty and T, are infinite sets, Ty A, T, non e Aand: Ty — T, is a bijection, then
there are W-spaces P, and P, such that |P,~| =T, y: P, > P, is a PC-bijection,
and ¢4(Py) * ‘PA(P2)~

Proof. The proof of (I) is easy and can be omitted. To prove (II) and (III), we
show that (IV) if Q, and Q, are infinite sets, ¥: Qo — Q, is a bijection, U and V
are classes of infinite sets and Q, non e U, Q; € V, then there are W-space P;, i =
=0, 1, such that |P;| = Q, Y: P, — Py is a PC-bijection and ¢y(Po) = C,(P,) *
# Cg(P;) = ¢y(P;). — In 10.2, we have exhibited FW-spaces S, = <0, 1, 2}, gy, tp»-
By 10.8, if 0 < b < 1/2, then C(S,) # Cg(S;). Choose a fixed b, 0 < b < 1/2.
Choose an injective mapping fo: |S,| = Qo and put f; = ¥ o fo. For x, y € Q;, let
0i(x, ) = e(f7'x, f7y) if x, y € f{|Ss]), i, ) = O otherwise. For X = Q; put
wX = u(f'X). Then P; = <Q;, 0; u;», i =0,1, are W-spaces, y: P, — Py is
a PC-bijection, and the mappings f;: |S,| — Q; satisfy SCI. Hence, by 7.56, C,(P,) =
= C[S;), Ci(Po) = Cx(Ss). Since C(S,) + Cg(S;), we get ¢, (Po) = C(P,) +
* CE(PI) = §0u(P1)-

We are going to prove (II). We can assume that there is an infinite set Q € V\U.
Put Q, = Q, = Q and let ¥: Q, — Q, be the identity mapping. Then the spaces P,
and P, from (IV) coincide and ¢y(P,) * ¢@y(P;).

To prove (1II), it is enough to put in (IV), U = V = A.

10.12. Proposition. There are exactly as many extended (b.s.) Shannon entropies
on W as there are classes.

This follows easily from 10.11 (for the definition of “there are exactly as
many ... as ...”, see 7.41.4).

10.13. Fact. Let P be a W-space and let S be an FW-space. Let {y: S— P satisfy SCI.
Then for any gauge functional t, C}(S) = C}(P), C{S) = C{(P).

Proof. Put %, = ({1} .S:t€|S]), ¥y = ({yt} . P: 1€|S]). Clearly, %, and ¥,
are pure partitions of S and P, respectively. By 7.54 and 7.55, % = (U,: ke K) is
a (pure) partition of S refining %, iff ¥~ = (YU,: ke K) is a pure partition of P
refining 7"y, and it is easy to show, using (GF6), that [7"], = [#].. By the definition
(3.17) of CY and C, we get C¥(S) = C¥(P), C(S) = C(P). '

10.14. Fact. Let A be a non-void class of infinite sets, and let ¢4 be the extended
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(b.s.) Shannon entropy described in 10.11. Then for any gauge functional t, ¢4 =+
+ C, @4 *+ CF.

Proof. By 10.8 there exists an FW-space S such that C,(S) Ci(S). Clearly, there
exist a W-space P and a mapping y: S — P such that |P| = Q€ 4 and ¥ satisfies
SCI. We have @4(S) = C,(S) and ¢,(P) = Cg(P), hence, by 10.13, ¢,(P) = CgS)
and therefore ¢ 4(P) # ¢ (S). On the other hand, for any gauge functional 7, C}{(P) =
= CX(S), C{P) = C(S) by 10.13.

10.15. Proposition. For any class A of infinite sets and for any P,, P, € W such
that P, + P, < P for some Pe®B put n4 Py, P,) = r{P{, P,) if |Py|none4,
n4(Py, P;) = E(Py, P,) if |P,| € A. Then (1) n, is a gauge functional satisfying
(NGF2) and (NGF3), (I) if U and V are distinct classes of infinite sets, then
Ny * My

Proof. The proof of (I) consists in a straightforward verification of (GF1)—(GF7),
(NGF2) and (NGF3), and can be omitted. To prove (II), choose a set Q € (U V) u
v (P~ U). We can assume Qe V\U. Choose distinct points a;€ Q, i =0, 1, 2.
Put o{a;, a;) = |i — j|. If x,y€ Q, {x, ¥} \{ao, a;, a,} + 0, put ¢(x, y) = 0. For
X < Q put uX = card (X n {ao, ay, a,}). Then P = {Q, 0, u) is a W-space. Put
B, = {ao}, By ={a,,a,}. Clearly, ny(B,.P,, B,.P)=r(B,.P, B,,P)=3]2,
ny(Bo . P, By . P) = E(B, . P, B, . P) = 2.

Remark. It can be shown that 5,, A # 0, do not satisfy (NGFI). However,
we shall not do it, since in 10.18.1 we exhibit a simple example of a gauge functional
which satisfies (NGF2) and (NGF3), but does not satisfy (NGF1), even if restricted
to the FW-spaces.

10.16. Proposition. There are exactly as many gauge functionals as there are
classes.
Proof. See 10.15.

10.17. In 1.27 we have stated that there are W-spaces <Q, 0, u;», i = 1, 2, such
that dom p; = dom u, and <Q, ¢, u; + u,) is not a W-space. In fact, there are even
metric W-spaces of this kind, as the following example shows. — Let Q = [— L1] e
=R, A =[-1,0], B=(0,1]. Let 1 be the Lebesgue measure on Q. Put y; = 4. 4,
{; = B.A Let f: A x B—[1,2] be an arbitrary non-measurable (with respect
to [A x A]) mapping. For x, ye Q put (1) o(x,y) = 0 if x = y, (2) o(x, y) = 1 if
x #+ y and (x,y)e(4 x 4) U (B x B), (2) o(x, y) = f(x,y) if (x,y)e A x B, (4)
o(x, y) = f(y, x) if (x, y) € B x A. Clearly, ¢ is a metric on Q. — Let an open set
G < R be given. Put Z = {(x,y)€ Q x Q:¢(x,y)€G}. Then Z = X U Y, where
Y<(Q x Q)\(4 x A) and X is equal either to A x A or to {(x,x): xe A}.
Consequently, Z is [pl X py]-measurable. This proves that <{Q, ¢, p;) is a metric
W-space. In the same way, {Q, ¢, u») is shown to be a metric W-space. — On the
other hand, ¢: Q x Q — R is not [l X A]-measurable, for otherwise 9: A x B — R,
ie., fi A x B— R, would be [A x A]-measurable as well.
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10.18. We present examples (10.18.2—10.18.4) showing that a gauge functional
can fail to satisfy any of the conditions (NGF1)—(NGF3), see Section 3. The examples
are due to J. Hejcman.

10.18.1. Fact. If t, and 1, are gauge functionals, a;,a,€R,, a; + ay =1,
then a,t, + a,t, is a gauge functional. If, in addition, 1, and t, satisfy (NGFj)
with j = 2 or j = 3, then so does a7, + a,T,.

10.18.2. The gauge functional }(r + d) does not satisfy (NGF1).

Proof. Put m = (r + d). Let Q = {a,b,c,e}. Let 0 < & < 1. Let ¢ be any
metric on Q such that o(a, b) = o(a, c¢) = J, 0(a,e) = 1, and let pa = ... = pe = 1.
Then P = {Q, g, u) is an FW-space. Let % = (Uy, U,, Us) = ({a}. P, {b}.P,
{c,e} . P), S =[%].=<K,0,v). Then o(1,2) = m(U;, U,) =6, o(l,3) =
=m(U,, Uz) =34+ 5[4, v =12=1, v3=2. Put v, = {1} v, v, = {2,3},
S, = (K, 0, v, i = 1,2. Since (S, S;) = 1)2 + 8]2, d(S;, ) = 3/4 + 3J4, we
have m(Sy, S,) = 5/8 + 36/8. — Let ay = vik[vk for i = 1,2, keK (ie, k=
=1,2,3). Then ay; = az; = dy3 = 1, ay, = a;3 = a; = 0. We have (U, U, +
+Us) = 1)3 + 26[3, d(U, U, + Us) = 1, hence m(U, U, + Us) = 2J3 + 8/3 >
> 5/8 + 35/8 = m(S,, S,), and therefore (NGF1) is not satisfied.

10.18.3. If 0 < t < 1, then the gauge functional r, does not satisfy (NGF2).

Proof. Let P = ({a, b}, 1, u), where pa = pb = 1. Put P, = {a}.P, P, = P,
S; =Py, S, ={b}.P. Then for any t >0, r(S;,S,) =1, r{P;, P,) =271,
wS; . wS, . 7(Sy, S;) =1, wPy.wP,.r(P;, P,) =2"""" Hence, for t< 1,
(NGF2) is not satisfied.

10.18.4. The gauge functional r,,, fails to satisfy (NGF2) and (NGF3).

Proof. Let P = {{a,b,c}, 0, up €Wy, 0(a, b) =0, o(a,c) =1, pa = pb =
=pc=1 Put p ={a}.pu py=1{bc}.p, o =0+1, P;=<{{a,b,c}, o u,
S; = <{a, b, c}, 0, . Then ry,5(Py, P,) = 1[4, r,,(Sy, S;) = (1 + 2Y2)*/4 >
> 1/4 + 1. Hence (NGF3) is not satisfied.

10.19. We are going to construct the example announced in 7.35.1. We shall need
some facts (10.19.2-—10.19.4), all of which are known and easy to prove.

10.19.1. Notation. In 10.19.2 through 10.20, A denotes the Lebesgue measure on R
or on some Lebesgue measurable non-void subset of R.

10.19.2. Fact. Let a,beR, a < b. Let X be a A-measurable subset of the interval
[a, b]. Let k,p be positive numbers. If 21X > k(b - a), zeR, |z| £ p(b — a),
then \{xeX:x + zeX} > (2k — 1 — p)(b — a).

10.19.3. Fact. Let X and Y be A-measurable subsets of R and let AX > 0, AY > 0.
Then there exists a non-void open set G = R and a positive number ¢ > 0 such that
MxeX:x + zeY} > ¢ for every z€G.

Although this is well known, we give an outline of proof. Choose positive p and ¢
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such that ¢ < 1, p < 4g — 3. It is a well-known fact that there are ue X and ve Y
such that
MX[u—202, u+062])>q6, AYn[v—252, v+ 62]) > qb

for all sufficiently small 6 > 0. Put T=Xnn{y — v + u: ye Y}. Choose a suf-
ficiently small 6 > Oand put S = T [u — 6/2, u + 6/2]. Clearly, S > (2q — 1) 4.
Hence, by 10.19.2, if |z| < pd, then A{x € S: x + ze S} > (49 — 3 — p) § and there-
fore A{xeX:x+v—u+zeY} > (49 —3 — p)d.

10.19.4. Fact. There exist A-measurable disjoint sets Ay = R, A, = R such that
MA;n G) > 0 for i =0, 1 and each non-void open G < R.

An outline of proof follows. Let & consist of all nowhere dense closed sets X = R
such that AX > 0. Let G, = R, ke N, be open non-void sets such that {G,: k e N}
is an open base. Assume that for some n € N we have chosen sets A,-(k) eF, k <n,
i =0,1, such that A(k) = G, for each k < n, i =0,1, and A{h)n A)k) =0
whenever (i, h) + (j, k). Clearly, there are disjoint sets Ao(n) € F, Ay(n)e F such
that Ay(n) U 44(n) = G,\NU(4,(k): k < n,j =0,1).

10.20. Example. Let Q be the interval [0, 1] and let A be the Lebesgue measure
on Q. Let Ay, A; be sets with the properties described in 10.19.4. Let B consist of
allx eR, N A, and all x such that —x e R, 0 A,. Let Z consist of all (x, y) € Q x Q
such that x — ye B. For x, ye Q put ¢(x,y) = 0 if x = y or (x, y) € Z, and put
o(x,y)=1if x+y, (x,y)noneZ. Then (1) P =<Q,0, 4> is a W-space, (2)
d(P) > 0, (3) if X = Q, Y = Q are i-measurable, AX > 0, AY > 0, then [1 x A].
A(x,¥)eX x Y:g(x,y) = 0} > 0 (hence inf {¢(x, y): x€ X, ye Y} = 0).

Clearly, ¢ is a semimetric. Since B is Lebesgue measurable, the set {(x, y) e
eR*: x — ye B} is also Lebesgue measurable (as a subset of R?) and therefore Z
is [A x A]-measurable. This proves the first assertion.

It is easy to see that A(Bn [—1,1]) <2, hence [4 x A](Z) < 1. This implies
[A x 2](@ x @\Z) > 0 and proves the second assertion.

We are going to prove (3). By 10.19.3 there exists a non-void open set G = R and
an & > 0 such that for any ze G, A{xeX:x — y = z for some ye Y} > &. Since
the Lebesgue measure of G B is positive, this implies [A x 4] {(x, y) e X x
X Y:x —yeGn B} >0, hence [A x 2] {(x,y)e X x Y:(x,y)eZ} > 0.

10.21. The following example shows that the inequalities in 8.6 can fail to hold
for a gauge functional t not satisfying ¢ = r. — Let © = ry,,. Let P be the space
described in 10.18.4. Clearly, C}(P) < H(1, 2)«({a}.P, {b,c}.P)+ H(1,1).
- (b, ¢) = H(1/2)/4 + 2¢(b, c). On the other hand, #(P) = 2 + 2¢(b, ¢), 2/(P)[wP =
= (4 + 49(b, ¢))/3. Since H(1,2)/4 <1, we have C¥(P) < 2#(P)/wP provided
o(b, c) is sufficiently small.

10.22. We are going to exhibit an example of a metric W-space P such that
$I'-diam % = oo for any partition % of P. — For m, n € N, put ¢(m, n) = [4™ —47],
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For X = N, put u(X) = £(27":neX). Then P = (N, ¢, k) is a metric W-space.
Let % = (Uy,...,U,) be a partition of P, U; = (N, @ K:)- Then, for some k =
=1,..., p, the set 4, = {x®N: w{x} = p~'u{x}} is infinite. Clearly, if m € 4,,
ned, m<n, then I({m}.U, {n}.U)z=p 'H2™27") 4" — 4| >
>p 'H(2™"27").3.4""' > 3.2 !'p~'. Since A, is infinite, this implies
I',-diam U, = oo.

10.23. We present an example, due to J. Hejcman, of a W-space with the properties
mentioned in 8.11.4 (Remark). — Put Q = [0, 1]; let A denote the Lebesgue measure
on Q; for any X = Q let A(X) denote the outer Lebesgue measure of X. For any
ueRputZ, = {yeR:y — uisrational}. Let L = Q be a set such that card (LN Z,) =
= 1 for each u e R. For x, y € Q put g(x, y) = 1if x + y, x — y is rational and x
or yis in L, and g(x, y) = 0 in all remaining cases. It is easy to see that [A x 4] .
A(x,y)e @ x Q:o(x,y) = 1} = 0. Hence P = <Q, ¢, A is a W-space and d(P) =
= 0. Clearly, diam L = 0, diam (@ \ L) = 0, hence {Q, ¢ is totally bounded.

We are going to show that (x) if Te dom 4, A(Tn L) > 0, then diam T = 1.
Clearly, there is a number a < 1 such that A {xe Tn L:x < a} > 0. Put A =
={xeTn L:x < a} and choose a set Be dom A such that Tn [0,a) > B > 4,
AB = A(A). Let S consist of all rational numbers s€[0,1 — a). For any s€ S,
put B, = {x + s: xe B}. Clearly, ((B;:s€S) < Q and AB; = AB for all s€S.
Since AB > 0, this implies that for some se S, t€ S, s < t, we have (B, B,) > 0,
hence A(B N B,_,) > 0. Since AB = 2,(4), we get 1.(4 n B,_;) > 0. Choose a point
xeAnB,_gandput y=x —(t —s). Then xe Tn L, x€B,_, x =y + (t — s),
hence ye B = T. Since x — y is rational, we have g(x, y) = 1. This proves that
diam T = 1.

Clearly, (*) implies that for any (T,: n € N) such that T, are A-measurable and
UT, = Q, we have diam T, = 1 for some n.

10.24. We are going to present (see 10.28 below) the example announced in 8.12.
We shall need some simple facts.

10.25. Fact. Let P, = {Q, 0, u;>, i = 1,2, be subspaces of a W-space P. Let
aeR, and assume that [y x p,] {(x,y)€ Q x Q:¢(x,y) * a} = 0 and wP; > 0,
d(P) < a,i = 1,2. Then ©(Py, P;) = a for any gauge functional t.

Proof. See (GF6).

10.26. Lemma. Let © be a gauge functional. Let P = {Q, ¢, u) be a W-space and
let S = (T, 0,v) be an FW-space. Let f: Q — T be a surjective mapping such that
f~}t)edom i and j(f~ (1)) = vt for any te T, and o(fqy,fq;) = 0(41, 42) for
any q,, 4, € Q. Let K,, t € T, be finite non-void sets, let by, te T, k e K,, be non-
negative numbers and let X(b,: ke K,) = 1 for each te T. Put K = {(t, k): te T,
keK,}, U = (bu{t}.S:(t, k) eK). Let ¥ be a partition of P refining the partition
(baf*(t) . P:(t, k) € K). Then CS)=cCi[7]. = cHa]..

Proof. Let ¥" = (V,,: me M). Let (M, (z, k) € K) be a partition of M such that
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X(V,:meMy) = byf '(t). P for all teT, keK, Let g be the mapping of M
onto K such that g(m) = (¢, k) if m e M,. By using 10.25 it is easy to see that
g: [7"]: — [%]. is conservative. Hence, by 3.21, C}[¥"], £ C[#].. By 3.24 and
3.26 we have C[¥], = C[%]., C[7]. < C![¥].. Let h be the mapping of K
onto T such that h(t, k) = ¢. By 10.25, h is conservative and therefore, by 3.24,
C[a]. = C{S). This implies C*[7"], = C(S).

10.27. Proposition. Let © be a gauge functional. Let P = {Q, ¢, u) be a W-space
and let S = (T, 6,v) be an FW-space. Assume that there exists a surjective map-
ping f: Q > T such that f~*(f)edom i and a(f~'(f) = vt for any teT, and
o(fa1.fa2) = o(ds, 42) for any 4, 42 € Q. Then CI(P) < C{(S), C(P) = C(S).

Proof. Put %, = ({t}.S:teT), ¥ =(f""(t).P:teT). By 1046, C(S) <
< CI[77]. £ CH,]. for any ¥ € P(P) finer than ¥7,. Since, by 3.21, C}[%,], =
= C}(S), we get (see 3.17 and 3.15) C(S) < C(P) < C{(S), C(S) £ C¥(P) <
< CX(S). If C(S) = oo, this proves the proposition. If C(S) < oo, let p > C(S).
By 3.17 and 3.15 there exists a partition %, of S finer than %, and such that
CH,]. < p. We can assume that %, is of the form %, = (bu{t}.S: (1, k) € K),
where by 2 0, Z(b,: (1, k)eK) =1 for each te T. Put 7| = (byf '(f).P):
:(1, k) eK). By 10.26 we have CI[¥"], < C¥[#,],, hence C}[¥"], < p for any
¥ € Pt(P) finer than ¥";. This implies C(P) < p and proves the proposition, since
p > C(S) was arbitrary.

10.28. For any ke N put m(k) = 5% n(k) = 2"®. Let X consist of all (i, ),
ieN, j=0,...,n(i). Define a metric ¢ on X by o((i, ), (h, k)) = max (27%,27")
for (i, j) % (h, k). Let p be a measure on X such that dom u = exp X, u{(i,j)} =
= 2’i/n(i). Clearly, P = <X, ¢, 1y is a countable metric W-space. It is easy to see
that P is totally bounded.

We are going to show that C(P) = . Let pe N, p = 1. Put X, = {(p, j):j =
=0,1,...,n(p)}, let p, be a measure on X, such that u,{(p,))} = u{(p,j)} for
j=1,..,n(p) and p,X = pX, and put S, = <X,, 277, u,>. Let f, be the mapping
of X onto X, defined by f,(p,J) = (p,j) and f,(i,j) = (p,0) if i & p. For x, ye Y
put ¢,(x, ) = 277 if f,(x) & f,(¥), ¢)(x, ¥) = 0 if f,(x) = f,(y). Clearly, <X, g, p>
is a W-space and ¢, < ¢. It is easy to see that f,: <X, g,, u) — S, has the properties
described in 10.27. Hence, by 10.27, C<X, ¢,, u> = C/(S,) and therefore, due to
0, < 0, we have C,(P) = C/(S,).

Clearly, C(S,) = 27"H(u,) = 277 X(1,{(p, )} log p,{(p, )} : 0 < j < n(p)) +
+ 27PuX log pX. Since u,{(p,Jj)} = 27?[n(p) for j > 0 and 1 < p,{(p, 0)} < pX,
we get C/(S,) >277.272log (2" n(p)) > 477.5" and therefore C,(P) > (5/4).
Since p = 1, 2, ... was arbitrary, we have shown that C,(P) = oo.

10.29. We present an example announced in 8.36, of a W-space P such that (I) P is
a metric W-space, (II) P is strongly =*I',-partition-fine, (II) P is not wd-partition-
fine, (IV) C}(P) < c0. — Let P = (N, o, u), where o(m, n) = |m — n|, dom p =
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= exp N, u{n} = 27". We are going to show that P has the properties (I)—(IV).
This will be done in several steps.

10.29.1. Evidently, P is a metric W-space. Clearly, if S = (N,g,v) = P and
v(n) > 0 for infinitely many n, then d(S) = co. Hence, P is not £ wd-partition-fine.

10.29.2. Fact. For ne N let 0 < x, < 27" Let ue N, 27" < s, where s =
= X(x,:ne N). Then X{nx,:ne N) < (u + 2)s.

Proof. It is easy to see that X(nx,:ne N) = E(nx,: n < u) + X(nx,:n > u) <
Sul(x;nSu)+ul(xin>u)+E(n—u)x,n>u) < us +
+27"%(k27"keN)=us + 27" < (u + 2)s.

10.29.3. Fact. Let U S P,V P. Letue N,ve N, u < v, and let 27 < wU £
<27utl 270 < WY < 270 Then

(1) KU, V) < (u + v + 4) wU . w,

Q) U, V)Su+v+4,

BT U, V)<2v—u+4)(v+u+42"

Proof. Let U = (N, g, &,V = (N, 0,n), X, = &{n}, y, = n{n}. Then U, V) =
=X(|m — n|x,y,:meN, neN)= Z(mx,y,:meN, neN)+ X(nx,y,: meN,
neN)=wV.%(mx,:me N)+ wU.Z(ny,:ne N). By 10.29.2 we get #U, V) <
SwV.(u+2) 2x,:meN)+wU.(v+2)Z(y,:neN)=(u+ v+ 4).wU.wV.
This proves (1) and (2). — Clearly, H(wU, wV) < 2H(27% 27°). It is easy to see
that if 0 < x < 1, then H(1, x) < —x1log x + 4x. Hence H(27* 27") =
=2""H(1,2"") < 27" (v —u)2“"" + 4.2"") = (v — u + 4) 27" and therefore
H(wU, wV) < 2(v — u + 4) 27°. By (2), this proves the inequality (3).

10.29.4. Fact. Let U < P, V< P. Let ke N and let wU < 27kl )y < p=k+1,
Then I'/U, V) < 16(k + 2) 27

Proof. We can assume 0 < wV < wU. Choose u, ve N such that 27 < wU <
<271 270 < WP < 2701, Clearly, k £ u < v. Hence, by 10.29.3, r(u,v) <
< f(u, v), where f(u,v) = 2(u + v + 4) (v — u + 4) 27". Clearly, we always have
f(u,0) = f(u,v + 1) and f(u,u) = f(u + 1, u + 1). Hence I'(U, V) < f(k, k) =
= 16k + 2) 27,

10.29.5. Fact. For any ke N put P, = {n:n 2 k}.P. Then I,-diamP, <
< 16(k + 2) 27%.
Proof. See 10.29.4.

10.29.6. Fact. Let 0 &+ X = N. Then I',-diam (X . P) < 16(k + 2) 27k where
= min X.
Proof. See 10.29.5.

10.29.7. Fact. Let k € N. Let (U;: j € J) be a pure partition of P,. Then
XI-diam U;:je J) < Z(16(n + 2)27":n 2 k).
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Proof. Let U; = X; . P. We can assume that X; are non-void. Put p(j) = min X;.
By 10.29.6, I',-diam U; < 16(p(j) + 2) 27?9, Since (U;:je J) is a pure partition,
X;n X; = 0 for any distinct i, j € J. Hence all p( j), Jj € J, are distinct, and therefore
I(I,-diam U;:je J) < Z(16(n + 2)27": n Z k).

10.29.8. Fact. The space P is strongly X*I',-partition-fine.

Proof. Let ¢ > 0. Since Z{(n + 2) 27": n € N) < oo, there exists a k € N such that
2(16(n + 2)27":n 2 k) < e. Then by 10.29.7, for any pure partition (V,,: m € M)
refining the partition ({0} . P, ..., {k — 1} . P, P,) we have X(I',-diam V,,;: m e M) <
<e.

10.29.9. Fact. C;(P) < 8.

Proof. We are going to compute I'({k — 1}.P, P) for any k=1,2,....
Clearly, r({k — 1} . P, P,) = Z(n27*""*1:n = 1,2, ..)/5(27": n 2 k). Hence
r({k — 1} . P, P,) = 27*"15(n2"": ne N)[27**! = 2. Since w({k — 1} . P) =
= w(P,) = 27%"", we get I({k — 1} . P, P,) = 27¥*3, — Now choose an m =
=1,2,3,... and let D consist of all (a;: i < j)e {0, 1}/ such thatj < m and a; = 1
whenever i + 1 < j (thus, e.g., if m =3, then D = {0, (0), (1), (10), (11), (110),
(111)}). Put Sy = P.If x = (azi < j)e D,j > O,put S, = {j — 1} . Pifa;_, = 0,
Sy = P; if a;_; = 1. Clearly, & = (S,: x€ D) is a pure dyadic expansion of P.
Since (S,:xeD") is equal to ({0}.P,....,{m — 1}. P, P,) re-indexed, we have
X(I'-diam S,: x € D") = I';-diam P,, < 16(m + 2) 27" by 10.29.6. Clearly, I'(¥) =
= X(T({k} - P, Pryy): k < m), hence I'(¥) = £(27%*2: k < m) < 8. By 8.23, this
proves C;(P) < 8.

11

As in Part I, we sum up the main results in the form of a number of propositions,
some of which are labelled as theorems (as rule, the more important ones). The theo-
rems are numbered consecutively through Part I and II.

Proposition 11.1. The folloving properties of a (finite) measure on a set Q are
equivalent: (1) (Q, 1, p) is a W-space, (2) there is a metric g on Q such that {Q, o, >
is a W-space, (3) there is a countable set A = Q such that p [\(Q \A) is Dabroux and
every {a} = A is y-measurable.

This is 7.6, slightly re-formulated.

Proposition 11.2. Let P = {Q, 9, u) be a metric W-space. Let V consist of all
x € Q such that iX > 0 whenever X is a ji-measurable neighborhood of x. ThenV
is closed pf-measurable and P ]\ V is second-countable. If, in addition, P is weakly
Borel, then either i(Q\ V) = 0 or the topological weight of P is real-measurable.

Proof. See 7.23 and 7.28.

Proposition 11.3. If © is a normal gauge functional and P is a totally expansion-

614



bounded W-space, then the functions S+ C(S) and S+ CX(S) defined for all
S < P, as well as S~ Cf(S) restricted to pure subspaces S = P, are Lipschitz of
order, respectively, 1/3, 1/4 and ]/3, in all cases with respect to the measure-
distance md,(S,, S,).

Proof. See 9.37.

Remark. Though this proposition is fairly important, it is not labelled as a theorem
since it is an open question whethe the orders 1/3 and 1/4 can be replaced by some
(or, perhaps, any) p from the interval (1/3, 1) or, respectively, (1/4, 1).

Proposition 11.4. There are at most exp®w persistent (in the broad sense)
extended Shannon semientropies on the class of all weakly Borel metric spaces with
the topological weight not real-measurable. It is admissible to assume that this
assertion remains true if the condition on the topological weight is omitted.

See 7.57 and 7.62. For the meaning of the expression “it is admissible to assume ...””
see 7.59.

Theorem V. If P is a W-space of positive diameter, then C(P) and C(P) are
positive for every gauge functional t satisfying 1 = r.

Theorem VL. If 7 is a normal gauge functional and P is a semimetrized probability
space, then neither C(P) nor C}(P) exceed Ded (P), the expansion-diameter of P.
Proof. See 8.28.

Theorem VIL If P is an expansion-bounded W-space (in particular, if P =
= <Q, ¢, ¥y and {Q, ¢ is a bounded subspace of some £ ,(n)), then C(P) and C}(P)
are finite for every normal gauge functional 7.

Proof. See 8.40 and 8.43.

Theorem VIIL If P is either a totally bounded W-space or a second-countable
bounded metric W-space, then C(P) < CJ(P) for every normal gauge functional .
It is admissible to assume that C{P) < C}(P) for every bounded weakly Borel
metric W-space P and every gauge functional 7.

Proof. See 8.38 and 8.45.

Theorem IX. On Wy, the class of all FW-spaces, there are exactly 2° finitely
continuous extended Shannon entropies and also 2° extended Shannon semi-
entropies.

Proof. See 10.10.

Theorem X. For any normal gauge functional t, the extended Shannon entropy C.
is finitely continuous.

Proof. See 9.24.
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