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EDGE NEIGHBOURHOOD GRAPHS 

BoHDAN ZELINKA, ЫЬегсс 

(Received June 8, 1984) 

At the Symposium on Graph Theory in Smolenice [l] in 1963 A. A. Zykov 
proposed a problem concerning the neighbourhood graph of vertices of undirected 
graphs. This was a hint for many authors to study local properties of graphs. A survey 
of results concerning this topic is [2]. Here we shall study a problem analogous to 
that of Zykov, but concerning edge neighbourhood graphs. 

Let G be an undirected graph, let e be an edge of G. By the symbol iV(j(e) we denote 
the subgraph of G induced by the set of all vertices of G which are not incident to e 
and are adjacent to at least one end vertex of e. The graph iV(j(e) will be called the 
edge neighbourhood graph of e in G. 

The edge neighbourhood version of the problem of Zykov is the following: 
Characterize the graphs H with the property that there exists a graph G such that 

Ма{е) = H for each edge e of G. 
We shall not solve this problem completely, but only study some special cases. 

The class of all graphs with the above property will be denoted by J^^. 
First we shall present some simple propositions. 

Proposition 1. Ä complete graph K„ belongs to Jf ^ for any positive integer n. 

Proof. The graph K„+2 has the property that N^^^^J^e) = K„ for each edge e 

Proposition 2. Ä complete bipartite graph K^^ belongs to N^ for any positive 
integers m, n. 

Proof. The graph Km+i,n+i has the property that Njr^^^^^^^^J^e) ^ K^^^ for each 
edge eofX^+i,„+i. 

The symbol C„ will denote a circuit of the length n, i.e., with n edges . 

Proposition 3. The circuits C3, C4, C ,̂ Cg belong to JV^, 

Proof. The assertion for C3 follows from Proposition 1, because C3 ^ K3. The 
assertion for C4 follows from Proposition 2, because C4 ^ K2,2- For ^6 the required 
graph is the graph of the regular icosahedron and for Cg it is the graph of the covering 
of the plane by regular triangles. 
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Now we prove a theorem. 

Theorem 1. There exists no graph G with the property that Nß^e) ^ C5 for each 
edge e of G. 

Proof. Suppose that a graph G with the required property exists. Let e be an edge 
of G, let Wi, W2 be its end vertices. According to the assumption iV(j(e) ^ C5, thus it 
is a circuit of the length 5. Let the vertices of NQ^e) be v^, V2, v^, v^,, v^ and the edges 
V1V2, V2V2, v^v^, V4.V5, v^v^. If Ui is adjacent to none of the vertices Ü^, V2, v^, V4, У5, 
then it has the degree 1 in G; otherwise iV(j(e) would contain a vertex not belonging 
to the set {v^, V2, v^, V4., v^]. The edge W2̂ i exists and u^ is an isolated vertex of 
NQ[U2V^, thus NQ{U2VI) is not isomorphic to С5, which is a contradiction. Hence u^ 
is adjacent to at least one of the vertices v^, V2, v^, i>4, v^ and, obviously, so is 1/2-
Now among the vertices v^, V2, fa, ^4,1^5 there exists a pair of adjacent ones with the 
property that one of them is adjacent to u^ and the other to W2- Without loss of 
generahty let v^ be adjacent to u^ and V2 to M2. Now we shall investigate which of the 
edges м^^з, u^v^, ^2^3, ̂ 2^5 may exist simultaneously in G. 

If Уз is adjacent to both MI, M2, then NQ{VIV2) contains a triangle with the vertices 
Wi, ^2? ^3 ^^^ is not isomorphic to C5, which is a contradiction. Analogously if ^5 is 
adjacent to both Wi, W2. 

Suppose that both v^, v^ are adjacent to м^. The vertex V4, must be also adjacent 
to at least one of the vertices u^, U2- If it is adjacent to w ,̂ then N0(^2^3) contains 
a star with the centre u^ and terminal vertices v^, v^, и2 and is not isomorphic to С5. 
If Рд. is adjacent to W25 then NQ{UIVS) contains a path of the length 2 with the vertices 
^25 4̂5 ̂ 3 and a vertex v^. As A^GI^I^S) l̂ ŝ to be isomorphic to C5, the vertex v^ must 
be adjacent to one of the vertices U2, f 3. It cannot be adjacent to ^3, because then 
М(л{е) would not be a circuit (it would contain a chord of C5). Therefore v^ is adjacent 
to W2- B^t then NQ{V^V5) contains a star with the centre и2 and terminal vertices 
u^, V2, ^4, which is again a contradiction. Hence u^ cannot be adjacent to both v^, V5 
and analogously, neither can и2. 

Suppose that ŵ  is adjacent to v^ and и2 is adjacent to 1̂ 3. The vertex V4. is adjacent 
to one of the vertices u^,U2; without loss of generahty let it be adjacent to w .̂ The 
graph NQ{U^V^ contains the edges 1/2̂ 3 ^^^^ ^1^5 j as it has to be isomorphic to C5, 
one of the vertices U2, v^ must be adjacent to one of the vertices Vi, v^. The vertex 1̂3 
cannot be adjacent to any of them, because then Мс{е) would not be isomorphic 
t o C s . 

If U2 is adjacent to v^, then NQ(V^V2) contains a triangle with the vertices u^, U2, f 5. 
Thus U2 is adjacent to v^. The graph N^(1/2^1) contains the edges u^^v^ and i;2^3-
Again one of the vertices u^, v^ must be adjacent to one of vertices V2, f 3 and this is 
possible only in such a way that u^ is adjacent to V2. But then N^(^1^5) contains 
a triangle with the vertices w ,̂ 1̂25 ^2-

Thus the last case remains, when u^ is adjacent to 1̂3 and W2 to ^5. Again without 
loss of generahty let v^. be adjacent to w .̂ Then NQ{U^V4) contains a path of the length 
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2 with the vertices W2, v^, v^ and the vertex ^3. Then ^3 must be adjacent to «2 or v^. 
It cannot be adjacent to v^, because then NQ^C) would not be isomorphic to C5, and 
thus V2 is adjacent to ^2- But then NQ{V^V2) contains a triangle with the vertices 
Wi, W2,1̂ 3, which is a contradiction. All cases are exhausted and thus the assertion 
is proved. 

Now we turn our attention to complements of circuits. The complement of a circuit 
of the length n will be denoted by C„. 

Theorem 2. A graph C„ belongs to Jf ^ if and only if n = 3 or n = 4. 
Proof. For n = 3 the graph C„ consists of three isolated vertices. Take a regular 

graph of degree 3 without triangles and insert a vertex onto each of its edges (i.e., 
replace each edge by a path of the length 2). The graph G thus obtained has the 
property that Мс(е) ~ C3 for each edge e of G and thus C3 e Ж^. For n = 4 the 
graph C„ consists of two connected components, each of which is a complete graph 
with two vertices. If G is the graph of the 3-dimensional cube, then Мс{е) ^ С4. for 
each edge ^ of G and thus C4 e Ж^. For n = 5 we have C5 ^ C5 and according to 
Theorem 1 the graph С^ф JT^. Now let n ^ 6 and suppose that there exists a graph G 
such that l^oie) ^ C„ for each edge e of G. Let e be an edge of G, let Wi, W2 be its end 
vertices. According to the assumption, ^о{е) ^ C„; let the vertices of iV(j(e) be 
üj, ..., t>„ and let the edges of its complement be v^v^^^ for i = 1, ..., n — 1 and 
v^v^. Each of the vertices v^^ ..., t̂ „ is adjacent to at least one of the vertices w ,̂ W2-
Without loss of generality suppose that v^ is adjacent to u^. The graph ^G{UIV^ 
contains the vertices ^2,1^3, ..., i^„_i. If some vertex Vi for 4 ^ i ^ n — 2 is not 
adjacent to 1/2, then the complement of ^Gi^i^i) contains a star with the centre v^ 
and with the terminal vertices W2, f j - i , i^i+i? tl'̂ is is a contradiction with the as
sumption that the complement of NG{UIV^) is a circuit. Hence all the vertices 
1̂ 4, ..., v„^2 ^re adjacent to ^2-

Now we shall distinguish the cases n = 6 and n ^ 7. We begin with the case 
n ^ 1 which is simpler. In this case we continue doing the same consideration for 
other vertices than v^. As i;„_2 is adjacent to U2, we prove that v^, ..., i;„_5 are 
adjacent to t/j. Then we proceed in the same way with u^ and г^„_5; we continue 
until we obtain the result that each of the vertices v^, ...,v^ is adjacent to both u^ 
and M2- Now consider NQ^O-^V^); this graph contains the vertices w ,̂ U2 and all the 
vertices f-for i Ф 1 and i Ф 4. As NQ{VIV4) has to be isomorphic to C„, it cannot 
contain other vertices than those just mentioned. But then in the complement of 
NQ{V^V4) the vertices w ,̂ W2 are isolated, which is a contradiction. Hence С„фМ^^. 
for n ^ 7. 

Now the case n = 6 remains. The consideration at the beginning of the proof 
implies that if v^ is adjacent to w ,̂ then v^ is adjacent to 1/2- In general, if a vertex v^ 
is adjacent to м ,̂ then Vi+^ (the subscript i + 3 being taken modulo 6) is adjacent 
to W2. Consider the graph NG{VIV^)., it contains the vertices u^, W2, V2, v^, ^5, v^ and, 
as it has to be isomorphic to C^, it contains no other vertices than those. The graph 

i. 

46 



NQ{VIV4) can be isomorphic to C^ only if exactly one of the vertices V2, v^ is non-
adjacent to Ui and exactly one of them is non-adjacent to U2, and if the same holds 
for the vertices v^, v^. Therefore none of the vertices V2, v^, v^, v^^ can be adjacent 
to both Wi, W2Î analogously this can be proved also for v^ and v^. Thus we may 
distinguish two cases:eitherÜ^, 1̂ 2,t;6 are adjacent to u^ and v^, V4.,v^ to U2, or v^, v^, 
V5 are adjacent to м̂  and V2^ v^, v^ to и2', any other case can be transferred to one of 
them by an isomorphism. In the first case consider the graph NQ{UIV^; it contains 
the vertices U2, v^, V2, v^, v^ and thus its complement contains the star with the 
centre i?2 and the terminal vertices t/2j î» ^3J this is a contradiction with the as
sumption that this complement is a circuit. In the second case consider the graph 
NQ{UIV^); its complement contains a circuit of the length 4 with the vertices U2, v^, 
Ü4,1̂ 5 and cannot be a circuit of the length 6, which is a contradiction. Hence also 

Remark . The assertion of Theorem 1 is in fact part of the assertion of Theorem 2. 
But in spite of it, we present Theorem 1 separately, because C5 is not only a com
plement of a circuit, but also a circuit, and the proof of this case is very different 
from the proof for n ^ 6. 

In the end we shall add propositions concerning a certain special class of graphs. 
By the symbol K* „ we shall denote the graph obtained from the complete bipartite 

graph K„ „ by deleting edges of the maximal matching. The graph X*„ is the com
plement of the graph K2 x K„. 

Proposition 4. The graph X*„ belongs to jV^ to for any positive integer n. 

Proof. The graph X*+2,„ + 2 has the property that '^Kl^i^n+ii'^) = ^t,n for any 
positive integer n and an each edge e of X*+2,n + 2-

Now we can state a proposition concerning the graphs of cubes of dimensions 1, 2 
and 3. If ß„ denotes the graph of the cube of the dimension n, then Qi ^ X2, 
Ô2 = ^2,2? бз = ^4,4 and hence Propositions 1, 2, 4 yield the following proposition. 

Proposition 5. The graphs of the cubes of dimensions 1, 2 and 3 belong to Jf ^, 
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