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Czechoslovak Mathematical Journal, 36 (111) 1986, Praha 

WEAKLY REGULAR ALGEBRAS IN VARIETIES WITH PRINCIPAL 
COMPACT CONGRUENCES 

IVAN CHAJDA, Prerov 

(Received March 4, 1985) 

An algebra Ä with a nullary operation 0 is weakly regular if every two con
gruence в, Ф on A coincide when ver [0]<9 = [0]^. Varieties of such algebras were 
characterized by many authors, see [5] or [6] and references therein. 

It is an interesting problem to find weakly regular algebras in varieties which are 
not varieties of weakly regular algebras. One can find such attempts e.g. in [3]. 

An algebra A with a nullary operation 0 has (^-transferable principal congruences 
(briefly 0-TPC) if for each a, b e A there exists an element с of A such that в[а, b) = 
= 0(0, c). Varieties of such algebras were characterized in [1]. It is easy to prove 
that every variety i^ with a nullary operation 0 whose all members have 0-TPC 
is a variety of wekly regular algebras. There is a natural question: under which con
dition on 'f" also the weak regularity of algebras of iT impHes 0-TPC. The aim of 
this paper is to pick out some broad class of varieties whose members have this 
property. 

An algebra A has Principal Compact Congruences if every compact congruence 
on A is principal, i.e. if for every elements a,-, bie A[i = 1, ..., n) there exist elements 
a, b of A such that 

Ö(öi, bi) V ... V 9{a„, bn) = e(a, b) 

in the lattice Con A, Varieties of such algebras were characterized in [9], [8], [7], 
in the case of permutable varieties also in [2]. This conpcet can be modified in the 
following way: 

Definition. Let A be an algebra with a nullary operation 0. A has 0-Principal 
Compact Congruences if for every elements a^, ..., a„e A there exists an element aeA 
such that 

0(0, ai) V ... V e{0,a„) = 0(0, a) 

in Con A, A variety i^ with a nullary operation 0 has 0-Principal Compact Con
gruences if every Ae'f has this property. 

First we characterize such varieties by a Mal'cev type condition: 
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Theorem 1. Let f" be a variety with a nullary operation 0. The following con
ditions are equivalent: 
(1) "V has ^"Principal Compact Congruences; 
(2) there exist a binary polynomial p and 4-flr_y polynomials TĴ , ..., r„, s^, ..., 5^ 

such that 
p{0, 0) = 0, 
0 = ri(0, p{x, y), X, y), 
ri{p{x, y)^ 0, X, y) = r^+i(0, p{x, y), X, y) for / = 1, ..., П - 1, 
X = r„{p{x, v), 0, X, y), 
0 = Si(0, p{x, y), X, >'), 
Sj{p{x, y), 0, X, y) = 5y +1(0, p{x, y), x,y)forj=l,.,., m - 1, 
У = s^{p{x, у), О, X, у). 

Proof. (1) =>(2): Let У̂  be а variety with a nullary operation 0 which has 0-
Principal Compact Congruences. Let A = F2{x, y) be a free algebra of i^ with two 
free generators x, y. Then there exists an element a e A such that 

(*) 0(0, x) V 9(0, y) = 0(0, a ) . 

Since a e F2{x, y), there exists a binary polynomial p of i^ such that a = p(x, y). 
Then (*) implies 

<0, x> e 0(0, X^, y)) , 

<0,3^>eö(0,i7(^,j;)). 

By Theorem 1 in [4], there exist 4-ary polynomials r^,... , r„, 5^, ..., 5^ such that 

0 = ri(0, p{x, y), X, j;) , 

Ы К ^ ' )^)' Ö' ^' 3̂ ) = ^f+i(0, P{x, y), X, y) for i = 1, ..., n - 1, 

X = r„(27(x, j ) , 0, X, j ) , 

0 = 5i(0, p(x, };), X, y) , 

5/p(x, y), 0, X, y) = S/+i(0, p(x, y), X, j ) for J = 1, ..., m - 1, 

У = Snr{p{x, у), о, X, у) . 
Let us inspect the factor algebra AjO, where в = ö(0, x) v 9(0, y). Since Л/9 e i^, 
the condition 

9(0, x) V 9(0, y) = 9(0, p{x, y)) 
gives in Aje 

со = 9(0, 0) = 9(0, 0) V 9(0, 0) - 9(0, p{0, O)) , 
whence p{0, 0) = 0. 

(2) => (1): Let iT be a variety with a nullary operation 0 satisfying (2). Let Aei^ 
and let a, b be elements of A. Then, by (2) and Theorem 1 of [4], 

<0, a} E 9(0, K^, b)) , 

<0, by G 9(0, p{a, b)) , 
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thus 
ö(0, a) V ö(0, b) ç 0(0, p{a, b)) . 

Further, 
<0, a> e 0(0, a) v 0(0, b), 

<0, by e 0(0, a) v 0(0, b) , 
whence 

<0, p(a, b)> = <p(0, 0), K« , b)> e 0(0, a) v 0(0, b) -

which implies the converse inclusion, thus 

0(0, a) V 0(0, b) = 0(0, p{a, b)). 
By induction, we obtain (1). • 

There exist varieties with 0-Principal Compact Congruences which have no 
Principal Compact Congruences: 

Example 1. Every variety of lattices with the least element 0 has O-Principal 
Compact Congruences. 

We can put n = m = 1, p{x, y) = xvy and ri(a, b, c, d) = a л с, s^(a, b, c, d) = 
= a A d. Then p{0, 0) = 0, 

ri(0, p{x, У\Х,У) = ОАХ = 0, 

ri{p{^, y), 0, X, y) = {x V y) A X = X , 

Si(0, p{x, y\ X, y) = 0 A у = 0 , 

s^{p{x, y), 0, X, y) = {x V y) A у = у . 

Example 2. The variety of all v-semilattices with the least element 0 has 0~ 
Principal Compact Congruences. 

We can put n = m = 2, p(x, y) = x v y, 

ri(a, b, c, d) = a , ^2(0, b, c, d) = b v с , 

Si(fl, b, c, d) = a , «2(0, b, c, d) = b V d . 
Then p{0, 0) = 0, 

ri(0, p{x, y), x,y) = 0, 

ri{p{x, y),0,x,y) = xvy = xv{xvy) = Г2(0, p{x, y), X, y), 

riipi^, y),0,x,y) = Ovx = x, 

51(0, p{x, y), x,y) = 0, 

5i(p(x, y), 0, X, y) = X V у == {x V y) V у = S2(0, p{x, y), X, y) , 

Siiri^^ y),0,x,y) = Ovy = y. 

The 0-principahty of compact congruences can be characterized also in another 
way similar to that of B. Csakany [5] for regularity: 
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Theorem 2. Let Y be a variety with a nullary operation 0. The following con
ditions are equivalent: 
(1) "V has 0-Principal Compact Congruences', 
(2) there exists a binary polynomial b{x, y) of i^ such that 

b{x, j;) = 0 if and only if x = 0 and y = 0 . 

Proof. Let -îT be a variety of algebras with a nullary operation 0. Suppose i^ has 
0-Principal Compact Congruences and let F2{x, y)ei^ be a free algebra with 
generators X, y. Then there exists a binary polynomial b(x, y) such that 

(**) 0(0, x) V 0(0, j;) = 0(0, b(x, j;)). 

By the same argument in F2(x, y)/0 for 0 •= 0(0, x) v 0(0, y) as in the proof of 
Theorem 1 we obtain b(0, 0) = 0. Conversely, suppose b(x, y) = 0. 

Then 0(0, b(x, y)) = 0(0, 0) = со, thus (**) imphes 

0(0, x) V 0(0, y) = 0). 

Hence 0(0, x) = со, 0(0, у) = со which gives x = 0 and j ; = 0. 
Thus (1) => (2) is true. Prove (2) => (l): Clearly 

<0, x> G 0(0, x) V 0(0, y), 

<0, y} G 0(0, x) V 0(0, y) 
gives 

<0, b{x, y)y = <b(0, 0), b(x, y)y G 0(0, x) v 0(0, y), 

thus 0(0, b(x, y)) £ 0(0, x) V 0^0, y) for every x, y e Aei^, where i^ satisfies (2). 
Further, consider the factor algebra А1ф for ф = 0(0, Ь(х, у)). Then 

[0 ] ,= [Ь(х,з;)],=:=Ь([х]„М,). 
Since А1Ф G -Г, by (2) also 

М Ф = М Ф and [у]ф = [0]ф , i.e. <0, х} е ф and <0, у} е ф . 

Hence 0(0, х) я 0(0, Ь(х, у)), 0(0, у) ç̂  0(0, Ь(х, j;)), thus 0(0, x) v 0(0, y) ç 
^ 0(0, b(x, y)). The condition (1) is evident. П 

Example 3. For a variety of lattices with the least element 0 we can put b(x, y) = 
= X V y. The same polynomial b{x, y) can be chosen also for the variety of all 
V -semilattices with 0. 

Example 4. By the same argument as in the previous example, every variety of 
p-algebras or Hey ting algebras has 0-Principal Compact Congruences. A variety 
of all Boolean algebras has 0-Principal Compact Congruences. 

Example 5. Every variety of loops has 0-Principal Compact Congruences (0 is 
the unit element). 

We can put b(x, y) = x\y. 
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Example 6. Although varieties of rings need not have Principal Compact Con
gruences, see [7], [9], every variety of rings has 0-Principal Compact Congruences. 
Clearly we can take b(x, y) = x — y. 

Now, we can formulate our characterization of weakly regular algebras in varieties 
with 0-Principal Compact Congruences. 

Theorem 3. Let i^ be a variety with a nullary operation 0. Let У has ^-Principal 
Compact Congruences. The following conditions are equivalent for Ae"f^: 

(1) Л 15 weakly regular', 
(2) A has 0-TPC. 

Proof. {!)=> (2). Let A be weakly regular and let a, b be elements of A, Denote 
N = [О]0(я,ь). Let в(В) be the least congruence on A such that 

x,yEB=>ix,yyee{B), 

and let 0[Б, С] be the least congruence on A such that 

xeB, J e С => <x, j> e в[В, С] 
for В я A, С ^ A, 

Clearly N is the congruence class of Ö(JY) and, by (1), 9(N) = 0(a, b). Clearly 
e{N) = Ö[{0},iV], thus 

Ö(a,b) = ö[{0},iV], 

i.e. <(3, b> 6 ö[{0},iV]. This implies the existence of a finite subset F Я: N with 
{a, by G ö[{0}, F ] . Denote F = [c^, ..., c j . Then we have 

<a, b> e 0(0, ci) V .. . V 0(0, c„). 

Since A has 0-Principal Compact Congruences, there exists an element с of A with 

0(0, ci) V ... V в{0,с„) = 0(0, с ) , 

thus <ö, Ь> e 0(0, с). Hence 9{a, b) я {О, с). Since CIEN, we have 0(0, с,) Ç 
с 0[{0},ЛГ] = ö(a, Ь), thus 

ö(0, с) = ö(0, Cl) V .. . V ö(0, c„) Ç Ö(a, b) , 
whence 

e{a, b) = ö(0, c) , 
i.e. Л has 0-TPC. 

(2) => (1): Let A have 0-TPC and let в e Con Л. Denote N = [О]^. To prove (1) 
we only need to prove 9 = 0(iV), i.e. that every congruence on A is determined by its 
congruence class containing 0. 

(i) Suppose <a, by e 9 and denote М^ъ = [р]в{а,ьу Evidently, 9[Nab) S ö(a, b). 
By (2), there exists an element с e N„b such that 9{a, b) = 0(0, c). However, с e N^b 
implies 0(0, c) с о(АГ̂ ь). Thus 0(a, b) = 0(iV«i,). 
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(ii) Clearly N^^ ^ N for all (a, b} e 9. Hence 

and, by (i), we obtain 

в = y{0{a, b); <a, b} e в} = V{e[N,,); {a, b} e в} ^ 0(N) ^ в , 

i.e. в = 9[N) which completes the proof. П 

Example 7. A lattice L with the least element 0 is weakly regular if and only if 
all its congruences are of the form 0(0, x) for x e L. E.g. the lattices in Fig. 1 have 
this property. 

1 1 

Corollary. Join semilattice S with the least element 0 is weakly regular if and 
only if it has at most two elements. 

Proof. If iS has one or two elements, the assertion is trivial. Suppose S has at 
least three elements. Then S contains a three element chain. 

0 < a < b . 

Clearly [О]̂ ^̂ ,̂) = {0}, thus there exists no element CGS with в{а, b) = 0(0, c). 
Thus S is not weakly regular. 
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