Czechoslovak Mathematical Journal

Tôru Saitô

Archimedean classes in an ordered semigroup. IV

Czechoslovak Mathematical Journal, Vol. 37 (1987), No. 1, 86-119

Persistent URL: http://dml.cz/dmlcz/102138

Terms of use:

© Institute of Mathematics AS CR, 1987

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

ARCHIMEDEAN CLASSES IN AN ORDERED SEMIGROUP IV

Tôru Saitô, Saitama

(Received July 10, 1985)

In our previous papers [2], [3] and [4], we studied archimedean classes in an ordered semigroup. The difficulty occurs because of the fact that the set product of two archimedean classes is not necessarily contained in a single archimedean class.
In this paper, we propose to set up the notion of modified archimedean classes of two archimedean classes. Fortunately, for each pair of modified archimedean classes, their set product is contained in some modified archimedean class. In § 1, we prove this fact. Using the results in $\S 1$, in $\S 2$ we study the behavior of the set product of a finite number of archimedean classes.
The terminologies and notations of our previous papers [2], [3] and [4] are used throughout. In particular, we denote by S an ordered semigroup and by \mathscr{C} the set of all archimedean classes of S.

§ 1

Let $C \in \mathscr{C}$. First we suppose that C is a torsion free archimedean class of S. Then by [2] Theorem 3.5, the δ-class $C \delta$ contains at most two elements of \mathscr{C}. We define $m_{ \pm}(C)$ when and only when $C \delta$ has two elements of \mathscr{C}. Thus, in this case, $C \delta$ consists of two torsion free archimedean classes A and B such that $A<B$. Now we define $m_{ \pm}(C)$ as the set of all elements x of S such that the archimedean class X of S which contains x lies between A and B. It can be easily seen that $m_{ \pm}(C)$ is the set of all x such that $a \leqq x \leqq b$ for some $a \in A$ and $b \in B$. Also we have either $C=A$ or $C=B$ and $m_{ \pm}(C)=m_{ \pm}(A)=m_{ \pm}(B)$. Now $m(C) \in\left\{C, m_{ \pm}(C)\right\}$ is called a modified archimedean class of C.

Next we suppose that C is a periodic archimedean class of S. Then C contains the unique idempotent, say e. We denote $m_{0}(C)=\{e\}$. Also we denote by C_{+}and C_{-} the set of all nonnegative elements and the set of all nonpositive elements of C, respectively. We define $m_{+}(C)$ when and only when there exists an idempotent f of S such that $e<f, e \mathscr{D}_{E} f$ and e and f are consecutive in $e \mathscr{D}_{E}$. In this case we define $m_{+}(C)=[e, f]$ as the set of all elements x of S which lie between e and f. Similarly we define $m_{-}(C)$ when and only when there exists an idempotent g of S such that $g<e, g \mathscr{D}_{E} e$ and g and e are consecutive in $e \mathscr{D}_{E}$. In this case we define $m_{-}(C)=$
$=[g, e]$ as the set of all elements x of S which lie between g and e. Now $m(C) \in$ $\in\left\{m_{0}(C), C_{+}, C_{-}, C, m_{+}(C), m_{-}(C)\right\}$ is called a modified archimedean class of C.

Lemma 1.1. Let $C \in \mathscr{C}$. Then a modified archimedean class $m(C)$ of C is a convex subsemigroup of S.

Proof. If $m(C)=C$, then the assertion follows from [2] Lemma 1.3. Suppose C is a torsion free archimedean class and $m(C)=m_{ \pm}(C)$. Let $x, y \in m_{ \pm}(C)$. Then $a_{1} \leqq x \leqq b_{1}$ and $a_{2} \leqq y \leqq b_{2}$ for some $a_{1}, a_{2} \in A$ and $b_{1}, b_{2} \in B$. Here $a_{1} a_{2} \in A$, $b_{1} b_{2} \in B$ and $a_{1} a_{2} \leqq x y \leqq b_{1} b_{2}$. Hence $x y \in m_{ \pm}(C)$ and so $m_{ \pm}(C)$ is a subsemigroup of S. If, in addition, $z \in S$ and $x \leqq z \leqq y$, then $a_{1} \leqq x \leqq z \leqq y \leqq b_{2}$ and so $z \in$ $\in M_{ \pm}(C)$. Hence $m_{ \pm}(C)$ is convex.

Suppose C is a periodic archimedean class with idempotent e. $m_{0}(C)$ is clearly a convex subsemigroup of S. Suppose $m(C)=C_{+}$. Since $e \in C_{+}$, it follows from [1] Lemma 1 that C_{+}is a subsemigroup of S. If $x, y \in C_{+}, z \in S$ and $x \leqq z \leqq y$, then $x^{n}=e$ for some natural number n and $z \leqq y \leqq e$ and so $e=x^{n} \leqq z^{n} \leqq e^{n}=e$. Hence $z \leqq e$ and $z^{n}=e$ and so $z \in C_{+}$. Hence C_{+}is convex. Similarly C_{-}is a convex subsemigroup of S. Let $m(C)=m_{+}(C)$. Then there exists an idempotent f of S such that $e<f, e \mathscr{D}_{E} f, e$ and f are consecutive in $e \mathscr{D}_{E}$ and $m_{+}(C)=[e, f]$. Let $x, y \in$ $\in m_{+}(C)$. Then $e \leqq x \leqq f$ and $e \leqq y \leqq f$ and so $e=e^{2} \leqq x y \leqq f^{2}=f$. Also $e \in m_{+}(C)$ and so $m_{+}(C)$ is a subsemigroup of S. If, in addition, $z \in S$ and $x \leqq z \leqq y$, then $e \leqq x \leqq z \leqq y \leqq f$ and so $z \in m_{+}(C)$. Hence $m_{+}(C)$ is convex. Similarly $m_{-}(C)$ is a convex subsemigroup of S.

Lemma 1.2. Let $C \in \mathscr{C}$, let $m(C)$ be a modified archimedean class of C, let $x \in m(C)$ and let X be the archimedean class containing x. Then $C \delta \preccurlyeq X \delta$.

Proof. If $m(C)=C$, then we have $X=C$ and so $C \delta=X \delta$. Suppose C is a torsion free archimedean class and $m(C)=m_{ \pm}(C)$. Thus there exist torsion free archimedean classes A and B in $C \delta$ such that $A<B$. Since $x \in m_{ \pm}(C)$, we have $A \leqq X \leqq B$. Hence by [2] Lemma 5.6, we have $C \delta=C \delta \wedge C \delta=A \delta \wedge B \delta \preccurlyeq X \delta$.

Suppose C is a periodic archimedean class with idempotent e. If $m(C) \in\left\{m_{0}(C)\right.$, $\left.C_{+}, C_{-}\right\}$, then $m(C) \subseteq C$ and so $X=C$. Hence $C \delta=X \delta$. Suppose $m(C)=m_{+}(C)$. Then there exists an idempotent f such that $e<f, e \mathscr{D}_{E} f, e$ and f are consecutive in $e \mathscr{D}_{E}$ and $m_{+}(C)=[e, f]$. We denote by F the archimedean class containing f. Since $x \in[e, f]$, we have $e \leqq x \leqq f$ and so $C \leqq X \leqq F$. Also by [2] Theorem 3.3, we have $C \delta F$ and so by [2] Lemma 5.6, we have $C \delta=C \delta \wedge F \delta \preccurlyeq X \delta$. In the case when $m(C)=m_{-}(C)$, we can prove $C \delta \preccurlyeq X \delta$ in a similar way.

Lemma 1.3. Let $C, D \in \mathscr{C}$ such that $C \delta \wedge D \delta$ is torsion free and let $m(C)$ and $m(D)$ be modified archimedean classes of C and D, respectively.
(1) If $C \delta D, m(C)=C, m(D)=D$ and $C=D$, then $m(C) m(D) \subseteq C=$ $=C * D$.
(2) If $C \delta D, m(C)=C, m(D)=D$ and $C \neq D$, then $m(C) m(D) \subseteq m_{ \pm}(C)=$ $=m_{ \pm}(D)=m_{ \pm}(C * D)$.
(3) If $C \delta D$ and either $m(C)=m_{ \pm}(C)$ or $m(D)=m_{ \pm}(D)$, then $m(C) m(D) \subseteq$ $\subseteq m_{ \pm}(C)=m_{ \pm}(D)=m_{ \pm}(C * D)$.
(4) If C non δD and $C \gamma D$, then $m(C) m(D) \subseteq m(C)=m(C * D)$.
(5) If C non δD and $D \gamma C$, then $m(C) m(D) \subseteq m(D)=m(C * D)$.

Proof. (1) By Lemma 1.1, C is a subsemigroup of S. Hence by [2] Lemma 5.8, $m(C) m(D)=C D=C^{2} \subseteq C=C * C=C * D$.
(2) Since $C \delta D$, we have $C \delta=D \delta=C \delta \wedge D \delta$ and so C and D are torsion free archimedean classes and $m_{ \pm}(C)=m_{ \pm}(D)$. Also we have $m(C)=C \subseteq m_{ \pm}(C)$ and $m(D)=D \subseteq m_{ \pm}(D)$. Hence by Lemma 1.1, we have $m(C) m(D) \subseteq m_{ \pm}(C) m_{ \pm}(D)=$ $=\left(m_{ \pm}(C)\right)^{2} \subseteq m_{ \pm}(C)=m_{ \pm}(D)$. Further if $C \delta=D \delta$ is of L-type, we have $C * D=$ $=C$ and if it is of R-type, we have $C * D=D$. Hence always we have $m_{ \pm}(C)=$ $=m_{ \pm}(D)=m_{ \pm}(C * D)$.

Similarly we can prove (3).
(4) Since $C \gamma D$, it follows from [2] Lemma 4.7 that $C \delta \leqslant D \delta$ and so $C \delta=$ $=C \delta \wedge D \delta$. Hence C is a torsion free archimedean class and so $m(C) \in\left\{C, m_{ \pm}(C)\right\}$. Also by [2] Theorem 6.1, we have $C=C * D$.
1° Case: $m(C)=C$ and $m(D)=D$. Then by [2] Theorem 6.1, we have $m(C) m(D)=C D \subseteq C=m(C)=m(C * D)$.
2° Case: $m(C)=m_{ \pm}(C)$ and $m(D)=D$. Thus there exist two torsion free archimedean classes A and B in $C \delta$ such that $A<B$ and so $A \delta=B \delta=C \delta \neq D \delta$. Also since $C \gamma D$, we have $A \gamma D$ and $B \gamma D$. Let $x \in m_{ \pm}(C)$ and let $y \in D$. Then $a \leqq x \leqq b$ for some $a \in A$ and $b \in B$ and so $a y \leqq x y \leqq b y$. But by [2] Theorem 6.1, we have $a y \in A D \subseteq A$ and by $\in B D \subseteq B$ and so $x y \in m_{ \pm}(C)$. Hence $m(C) m(D)=$ $=m_{ \pm}(C) D \subseteq m_{ \pm}(C)=m_{ \pm}(C * D)$.
3° Case: $m(C)=C$ and $m(D)$ arbitrary. Let $x \in C$ and $y \in m(D)$ and let Y be the archimedean class containing y. Then by Lemma 1.2, we have $C \delta<D \delta \preccurlyeq Y \delta$ and so C non δY and $C \gamma Y$. Hence by 1°, we have $x y \in C Y \subseteq C$ and so $m(C) m(D)=$ $=C m(D) \subseteq C=m(C)=m(C * D)$.
4° Case: $m(C)=m_{ \pm}(C)$ and $m(D)$ arbitrary. In a similar way we can prove $m(C) m(D)=m_{ \pm}(C) m(D) \subseteq m_{ \pm}(C)=m(C)=m(C * D)$.

We can prove (5) similarly.
Lemma 1.4. Let $C_{1}, \ldots, C_{n} \in \mathscr{C}$. Then

$$
\left(C_{1} * \ldots * C_{n}\right) \delta=C_{1} \delta \wedge \ldots \wedge C_{n} \delta .
$$

Proof. If $n=1$, then the assertion is evident. If $n=2$, then by the definition of the operation $*$, we have $\left(C_{1} * C_{2}\right) \delta=C_{1} \delta \wedge C_{2} \delta$. Hence by induction, the assertion holds for every natural number n.

Lemma 1.5. Let $C, D \in \mathscr{C}$ such that $C \delta \wedge D \delta$ is a periodic δ-class of L-type, $C \delta \wedge D \delta \prec C \delta$ and $C * D \neq D$. Let $m(C)$ and $m(D)$ be modified archimedean classes of C and D, respectively. Then $m(C) m(D)=m_{0}(C * D)$.

Proof. First suppose $C \leqq D$. Then $C \leqq C * D \leqq D$. But by Lemma 1.4 , we have $(C * D) \delta=C \delta \wedge D \delta \prec C \delta$ and by assumption, $C * D \neq D$. Hence $C<C * D<$ $<D$. Since $(C * D) \delta=C \delta \wedge D \delta$ is a periodic δ-class of L-type, $C * D$ is a periodic archimedean class with idempotent, say h and the \mathscr{D}_{E}-class $h \mathscr{D}_{E}$ is of L-type.
1° Case: $m(C)=C$ and $m(D)=D$. Let $x \in C$ and $y \in D$. Since $C<C * D<D$, we have $x<h<y$. Hence by [2] Lemma 6.3, we have $h=x h \leqq x y$. On the other hand, $(C * D) \delta=C \delta \wedge D \delta \preccurlyeq D \delta$ and so by [2] Lemma 4.7, we have $C * D \gamma D$. Hence by [2] Theorem 2.7, we have $x y \leqq h y=h$. Hence $x y=h$ and so $m(C) m(D)=C D=\{h\}=m_{0}(C * D)$.
2° Case: $m(C)=C$ and D is torsion free. Let $x \in C$ and $y \in m(D)$ and let Y be the archimedean class containing y. Since $D \delta$ is a torsion free δ-class, we have $C \delta \wedge D \delta \neq D \delta$ and by Lemma 1.2, $D \delta \preccurlyeq Y \delta$. Hence $(C * D) \delta=C \delta \wedge D \delta \prec$ $\prec D \delta=D \delta \wedge Y \delta$ and so by [2] Lemma 5.6, there is no $Z \in \mathscr{C}$ such that $Z \in C \delta \wedge D \delta$ and Z lies between D and Y. In particular $C * D$ does not lie between D and Y and, since $C * D<D$, we have $C * D<Y$. Hence $C<C * D<Y$ and by [2] Lemma 5.6, we have $C \delta \wedge Y \delta \preccurlyeq(C * D) \delta=C \delta \wedge D \delta \preccurlyeq C \delta \wedge Y \delta$. Hence $C \delta \wedge D \delta=C \delta \wedge$ $\wedge Y \delta$ and so

$$
\begin{aligned}
C * D & =\min \{Z \in \mathscr{C} ; C \leqq Z \leqq D \text { and } Z \in C \delta \wedge D \delta\} \\
& =\min \{Z \in \mathscr{C} ; C \leqq Z \leqq Y \text { and } Z \in C \delta \wedge Y \delta\}=C * Y .
\end{aligned}
$$

Hence $C * Y=C * D<Y$ and also $C \delta \wedge Y \delta=C \delta \wedge D \delta \prec C \delta$. Hence by 1°, $x y \in C Y=m_{0}(C * Y)=m_{0}(C * D)$. Hence $m(C) m(D)=C m(D)=m_{0}(C * D)$.
3° Case: $m(C)=C, D$ is periodic and $m(D) \in\left\{m_{0}(D), D_{+}, D_{-}\right\}$. We have $m(D) \subseteq D$ and by 1°, we have $m(C) m(D)=C m(D) \subseteq C D=m_{0}(C * D)$ and so $m(C) m(D)=m_{0}(C * D)$.
4° Case: $m(C)=C, D$ is periodic with idempotent e^{\prime} and $m(D)=m_{+}(D)$. Thus there exists an idempotent f^{\prime} of S such that $e^{\prime}<f^{\prime}, e^{\prime} \mathscr{D}_{E} f^{\prime}, e^{\prime}$ and f^{\prime} are consecutive in $e^{\prime} \mathscr{D}_{E}$ and $m_{+}(D)=\left[e^{\prime}, f^{\prime}\right]$. Let $x \in C$ and $y \in m_{+}(D)$ and let Y be the archimedean class containing y. Then $e^{\prime} \leqq y$ and so $C<C * D<D \leqq Y$. Hence in a similar way to 2°, we can show that $C \delta \wedge Y \delta=C \delta \wedge D \delta$ and so $C \delta \wedge Y \delta \prec C \delta$. Also

$$
\begin{aligned}
C * Y & =\min \{Z \in \mathscr{C} ; C \leqq Z \leqq Y \text { and } Z \in C \delta \wedge Y \delta\} \\
& =\min \{Z \in \mathscr{C} ; C \leqq Z \leqq Y \text { and } Z \in C \delta \wedge D \delta\} \leqq C * D \leqq C * Y
\end{aligned}
$$

by [2] Theorem 5.11. Hence $C * Y=C * D$ and so by 1°, we have $x y \in C Y=$ $=m_{0}(C * Y)=m_{0}(C * D)$. Hence $m(C) m(D)=C m_{+}(D)=m_{0}(C * D)$.
5° Case: $m(C)=C, D$ is periodic with idempotent e^{\prime} and $m(D)=m_{-}(D)$. Thus there exists an idempotent g^{\prime} of S such that $g^{\prime}<e^{\prime}, g^{\prime} \mathscr{D}_{E} e^{\prime}, g^{\prime}$ and e^{\prime} are consecutive in $e^{\prime} \mathscr{D}_{E}$ and $m_{-}(D)=\left[g^{\prime}, e^{\prime}\right]$. We denote by G the archimedean class containing g^{\prime}. Let $x \in C$ and $y \in m_{-}(D)$. Then $g^{\prime} \leqq y \leqq e^{\prime}$. Since $g^{\prime} \mathscr{D}_{E} e^{\prime}$, it follows from [2] Theorem 3.3 that $G \delta D$. By way of contradiction we assume $G<C * D$. Then, since $G<C * D<D$, it follows from [2] Lemma 5.6 that $D \delta=D \delta \wedge G \delta \preccurlyeq$
$\preccurlyeq(C * D) \delta=C \delta \wedge D \delta \preccurlyeq D \delta$ and so $(C * D) \delta=D \delta=G \delta$. Hence by [2] Theorem 3.3, we have $h \mathscr{D}_{E} g^{\prime} \mathscr{D}_{E} e^{\prime}$. But, since $G<C * D<D$, we have $g^{\prime}<h<e^{\prime}$, which contradicts that g^{\prime} and e^{\prime} are consecutive in $e^{\prime} \mathscr{D}_{E}$. Hence we have $C<C * D \leqq$ $\leqq G$ and so $x<h \leqq g^{\prime} \leqq y \leqq e^{\prime}$. By 1° we have $x e^{\prime} \in C D=m_{0}(C * D)=\{h\}$ and by [2] Lemma 6.3, we have $x h=h$. Hence $h=x h \leqq x y \leqq x e^{\prime}=h$ and so $x y=h$. Hence $m(C) m(D)=C m_{-}(D)=\{h\}=m_{0}(C * D)$.
6° Case: $m(C)$ and $m(D)$ are arbitrary. Let $x \in m(C)$ and $y \in m(D)$ and let X be the archimedean class containing x. Then by Lemma 1.2 , we have $C \delta \preccurlyeq X \delta$ and so $(C * D) \delta=C \delta \wedge D \delta \prec C \delta=C \delta \wedge X \delta$. Hence by [2] Lemma 5.6, there is no $Z \in C \delta \wedge D \delta$ which lies between C and X. In particular, $C * D$ does not lie between C and X. Since $C<C * D$, we have $X<C * D<D$. Hence by [2] Lemma 5.6, $X \delta \wedge D \delta \preccurlyeq(C * D) \delta=C \delta \wedge D \delta \preccurlyeq X \delta \wedge D \delta$ and so $X \delta \wedge D \delta=C \delta \wedge D \delta$. Hence

$$
\begin{aligned}
C * D & =\min \{Z \in \mathscr{C} ; C \leqq Z \leqq D \text { and } Z \in C \delta \wedge D \delta\} \\
& =\min \{Z \in \mathscr{C} ; X \leqq Z \leqq D \text { and } Z \in X \delta \wedge D \delta\}=X * D
\end{aligned}
$$

and so $X * D=C * D<D$. Also we have $X \delta \wedge D \delta=C \delta \wedge D \delta \prec C \delta \preccurlyeq X \delta$. Hence by $1^{\circ} \sim 5^{\circ}$, we have $x y \in X m(D)=m_{0}(X * D)=m_{0}(C * D)=\{h\}$ and so $x y=h$. Hence $m(C) m(D)=\{h\}=m_{0}(C * D)$.

The case when $D \leqq C$ can be treated similarly.
Lemma 1.6. Let $C, D \in \mathscr{C}$ such that $C \delta \wedge D \delta$ is a periodic δ-class of L-type, $C \delta \wedge D \delta \prec C \delta$ and $C * D=D$. Let $m(C)$ be a modified archimedean class of C. Then D is a periodic archimedean class. Also if $C \leqq D$, then
(1) $m(C) m_{0}(D)=m(C) D_{-}=m(C) m_{+}(D)=m_{0}(D)=m_{0}(C * D)$;
(2) $m(C) D_{+} \subseteq D_{+}=(C * D)_{+}, m(C) D \subseteq D_{+}=(C * D)_{+}$;
(3) $m(C) m_{-}(D) \subseteq m_{-}(D)=m_{-}(C * D)$,
and if $D \leqq C$, then
(4) $m(C) m_{0}(D)=m(C) D_{+}=m(C) m_{-}(D)=m_{0}(D)=m_{0}(C * D)$;
(5) $m(C) D_{-} \subseteq D_{-}=(C * D)_{-}, m(C) D \subseteq D_{-}=(C * D)_{-}$;
(6) $m(C) m_{+}(D) \subseteq m_{+}(D)=m_{+}(C * D)$.

Proof. Since $D \delta=(C * D) \delta=C \delta \wedge D \delta$ is a periodic δ-class of L-type, D is a periodic archimedean class with idempotent, say e^{\prime}, and also the $D_{E^{\prime}}$-class $e^{\prime} \mathscr{D}_{E}$ is of L-type. First suppose $C \leqq D$. Then since $D \delta=C \delta \wedge D \delta \prec C \delta$, we have $C<D$.
(1) 1° Case: $m(C)=C$. Let $x \in C$ and $y \in D_{-}$. Then $x<e^{\prime} \leqq y$ and by [2] Lemma 1.4, we have $x y \leqq e^{\prime} y=e^{\prime}$. On the other hand, it follows from [2] Lemma 6.3 that $e^{\prime}=x e^{\prime} \leqq x y$. Hence $x y=e^{\prime}$ and so $m(C) D_{-}=C D_{-}=\left\{e^{\prime}\right\}=m_{0}(D)=$ $=m_{0}(C * D)$. Since $m_{0}(D) \subseteq D_{-}$, we have $m(C) m_{0}(D)=C m_{0}(D)=m_{0}(D)=$ $=m_{0}(C * D)$. Finally let $x \in C$ and $y \in m_{+}(D)$. Thus there exists an idempotent f^{\prime} of S such that $e^{\prime}<f^{\prime}, e^{\prime} \mathscr{D}_{E} f^{\prime}, e^{\prime}$ and f^{\prime} are consecutive in $e^{\prime} \mathscr{D}_{E}$ and $m_{+}(D)=$ $=\left[e^{\prime}, f^{\prime}\right]$. Hence $e^{\prime} \leqq y \leqq f^{\prime}$ and $x e^{\prime} \in C m_{0}(D)=m_{0}(D)=\left\{e^{\prime}\right\}$. We denote by F the archimedean class containing f^{\prime}. Then by [2] Theorem 3.3, we have $D \delta F$ and
so $C \delta \wedge F \delta=C \delta \wedge D \delta \prec C \delta$. Also $C<D<F$ and by [2] Theorem 5.11,

$$
\begin{aligned}
C * F & =\min \{Z \in \mathscr{C} ; C \leqq Z \leqq F \text { and } Z \in C \delta \wedge F \delta\} \\
& =\min \{Z \in \mathscr{C} ; C \leqq Z \leqq F \text { and } Z \in C \delta \wedge D \delta\} \leqq C * D \leqq C * F .
\end{aligned}
$$

Hence $C * F=C * D=D<F$. Hence by Lemma 1.5, we have $x f^{\prime} \in C F=$ $=m_{0}(C * F)=m_{0}(D)=\left\{e^{\prime}\right\}$ and so $x f^{\prime}=e^{\prime}$. Hence $e^{\prime}=x e^{\prime} \leqq x y \leqq x f^{\prime}=e^{\prime}$ and so $x y=e^{\prime}$. Hence $m(C) m_{+}(D)=C m_{+}(D)=\left\{e^{\prime}\right\}=m_{0}(D)=m_{0}(C * D)$.
2° Case: $m(C)$ is arbitrary and $m(D) \in\left\{m_{0}(D), D_{-}, m_{+}(D)\right\}$. Let $x \in m(C)$ and $y \in m(D)$ and let X be the archimedean class containing x. Then by Lemma 1.2, we have $D \delta=(C * D) \delta=C \delta \wedge D \delta \prec C \delta=C \delta \wedge X \delta$ and by [2] Lemma 5.6, there is no $Z \in \mathscr{C}$ such that $Z \in D \delta$ and Z lies between C and X. In particular, D does not lie between C and X and, since $C<D$, we have $X<D$. Also $X \delta \wedge D \delta=D \delta=$ $=C \delta \wedge D \delta \prec C \delta \preccurlyeq X \delta$ and

$$
\begin{aligned}
D=C * D & =\min \{Z \in \mathscr{C} ; C \leqq Z \leqq D \text { and } Z \in C \delta \wedge D \delta\} \\
& =\min \{Z \in \mathscr{C} ; C \leqq Z \leqq D \text { and } Z \in D \delta\} \\
& =\min \{Z \in \mathscr{C} ; X \leqq Z \leqq D \text { and } Z \in D \delta\} \\
& =\min \{Z \in \mathscr{C} ; X \leqq Z \leqq D \text { and } Z \in X \delta \wedge D \delta\}=X * D .
\end{aligned}
$$

Hence by $1^{\circ}, x y \in X m(D)=m_{0}(D)$ and so $m(C) m(D)=m_{0}(D)=m_{0}(C * D)$.
(2) 1° Case: $m(C)=C$. Let $x \in C$ and $y \in D_{+}$. Then $x<y \leqq e^{\prime}$ and by (1) $x e^{\prime} \in C m_{0}(D)=m_{0}(D)=\left\{e^{\prime}\right\}$. Hence $x y \leqq x e^{\prime}=e^{\prime}$. Since D is a periodic archimedean class with idempotent e^{\prime}, we have $y^{n}=e^{\prime}$ for some natural number n. First suppose $x y \leqq y x$. Then $x^{n} e^{\prime}=x^{n} y^{n} \leqq(x y)^{n} \leqq e^{\prime n}=e^{\prime}$ and by $(1) x^{n} e^{\prime} \in C m_{0}(D)=$ $=m_{0}(D)=\left\{e^{\prime}\right\}$. Hence $(x y)^{n}=e^{\prime}$. Next suppose $y x \leqq x y$. Then $e^{\prime} x^{n}=y^{n} x^{n} \leqq$ $\leqq(x y)^{n} \leqq e^{\prime}$. But $D \delta=(C * D) \delta=C \delta \wedge D \delta \prec C \delta$ and by [2] Lemma 4.7, we have $D \gamma C$. Also since $D \delta=C \delta \wedge D \delta$ is of L-type, the $\mathscr{D}_{E^{-}}$-class $e^{\prime} \mathscr{D}_{E}$ is of L-type. Hence by [2] Theorem 2.7, we have $e^{\prime} x^{n}=e^{\prime}$ and so $(x y)^{n}=e^{\prime}$. Hence we always have $(x y)^{n}=e^{\prime}$ and so $x y \in D$. But since $x y \leqq e^{\prime}$, we have $x y \in D_{++}$. Hence $m(C) D_{+}=C D_{+} \subseteq D_{+}=(C * D)_{+}$. Also by (1)

$$
\begin{gathered}
m(C) D=C D=C\left(D_{+} \cup D_{-}\right)= \\
=C D_{+} \cup C D_{-} \subseteq D_{+} \cup m_{0}(D)=D_{+}=(C * D)_{+} .
\end{gathered}
$$

2° Case: $m(C)$ is arbitrary and $m(D) \in\left\{D_{+}, D\right\}$. In a similar way to (1) 2°, we can prove that $m(C) m(D) \subseteq D_{+}=(C * D)_{+}$.
(3) 1° Case: $m(C)=C$. Let $x \in C$ and $y \in m_{-}(D)$. Thus there exists an idempotent g^{\prime} of S such that $g^{\prime}<e^{\prime}, g^{\prime} \mathscr{D}_{E} e^{\prime}, g^{\prime}$ and e^{\prime} are consecutive in $e^{\prime} \mathscr{D}_{E}$ and $m_{-}(D)=$ $=\left[g^{\prime}, e^{\prime}\right]$. We denote by G the archimedean class containing g^{\prime}. Then $G<D$ and by [2] Theorem 3.3, we have $G \delta D$ and so $C \delta \wedge D \delta=(C * D) \delta=D \delta=G \delta$. But

$$
\begin{aligned}
D=C * D & =\min \{Z \in \mathscr{C} ; C \leqq Z \leqq D \text { and } Z \in C \delta \wedge D \delta\} \\
& =\min \{Z \in \mathscr{C} ; C \leqq Z \leqq D \text { and } Z \in D \delta\}
\end{aligned}
$$

and so there exists no $Z \in \mathscr{C}$ such that $C \leqq Z<D$ nad $Z \in D \delta$. Hence we have $G<C<C * D=D$ and so $x \in\left[g^{\prime}, e^{\prime}\right]=m_{-}(D)$. Hence by Lemma 1.1, $x y \in$ $\in m_{-}(D) m_{-}(D) \subseteq m_{-}(D)$ and so $m(C) m_{-}(D)=C m_{-}(D) \subseteq m_{-}(D)=m_{-}(C * D)$.
2° Case: $m(C)$ is arbitrary. In a similar way to $(1) 2^{\circ}$, we can prove $m(C) m_{-}(D) \subseteq$ $\subseteq m_{-}(D)=m_{-}(C * D)$.
In the case when $D \leqq C$, we can prove (4), (5) and (6) similarly.
Lemma 1.7. Let $C, D \in \mathscr{C}$ such that $C \delta \wedge D \delta$ is a periodic δ-class of L-type and $C \delta=C \delta \wedge D \delta$. Let $m(D)$ be a modified archimedean class of D. Then $C=C * D$, which is a periodic archimedean class. Also
(1) $m_{0}(C) m(D)=m_{0}(C)=m_{0}(C * D)$;
(2) $m_{+}(C) m(D) \subseteq m_{+}(C)=m_{+}(C * D)$;
(3) $m_{-}(C) m(D) \subseteq m_{-}(C)=m_{-}(C * D)$.

Proof. Since $C \delta=C \delta \wedge D \delta$ is a periodic δ-class of L-type, we have $C * D=C$. Also $C=C * D$ is a periodic archimedean class with idempotent, say e, and the \mathscr{D}_{E}-class $e \mathscr{D}_{E}$ is of L-type.
(1) We have $m_{0}(C)=\{e\}$. Let $y \in m(D)$ and let Y be the archimedean class containing y. Then by Lemma 1.2, we have $C \delta=C \delta \wedge D \delta \preccurlyeq D \delta \preccurlyeq Y \delta$ and so by [2] Lemma 4.7, we have $C \gamma Y$. Hence by [2] Theorem 2.7, we have $e y=e$ and so $m_{0}(C) m(D)=\{e\}=m_{0}(C)=m_{0}(C * D)$.
(2) There exists an idempotent f of S such that $e<f, e \mathscr{D}_{E} f, e$ and f are consecutive in $e \mathscr{D}_{E}$ and $m_{+}(C)=[e, f]$. We denote by F the archimedean class containing f. By [2] Theorem 3.3, we have $C \delta F$ and so $F \delta=C \delta=C \delta \wedge D \delta=$ $=F \delta \wedge D \delta$ which is a peripdic δ-class of L-type. Hence by (1) we have $m_{0}(C) m(D)=$ $=m_{0}(C)=\{e\}$ and $m_{0}(F) m(D)=m_{0}(F)=\{f\}$. Now let $x \in m_{+}(C)$ and $y \in m(D)$. Then $e \leqq x \leqq f$ and so $e y \leqq x y \leqq f y$. Since $e y \in m_{0}(C) m(D)=\{e\}$ and $f y \in$ $\in m_{0}(F) m(D)=\{f\}$, we have $e \leqq x y \leqq f$ and so $x y \in[e, f]=m_{+}(C)$. Hence $m_{+}(C) m(D) \subseteq m_{+}(C)=m_{+}(C * D)$.
(3) can be proved in a similar way.

Lemma 1.8. Let $C \in \mathscr{C}$ such that $C \delta$ is a periodic δ-class of L-type. Then
(1) if $m(C) \in\left\{m_{0}(C), m_{+}(C), m_{-}(C)\right\}$, then $C m(C)=m_{0}(C)=m_{0}(C * C)$;
(2) $C C \subseteq C=C * C, C C_{+} \subseteq C_{+}=(C * C)_{+}, C C_{-} \subseteq C_{-}=(C * C)_{-}$;
(3) if $m(C) \in\left\{m_{0}(C), m_{+}(C), m_{-}(C), C_{-}\right\}$, then $C_{+} m(C)=m_{0}(C)=m_{0}(C * C)$;
(4) if $m(C) \in\left\{C, C_{+}\right\}$, then $C_{+} m(C) \subseteq C_{+}=(C * C)_{+}$;
(5) if $m(C) \in\left\{m_{0}(C), m_{+}(C), m_{-}(C), C_{+}\right\}$, then $C_{-} m(C)=m_{0}(C)=m_{0}(C * C)$;
(6) if $m(C) \in\left\{C, C_{-}\right\}$, then $C_{-} m(C) \subseteq C_{-}=(C * C)_{-}$.

Proof. Since $C \delta$ is a periodic δ-class of L-type, C is a periodic archimedean class with idempotent, say e, and the $\mathscr{D}_{E^{-}}$-class $e \mathscr{D}_{E}$ is of L-type. By [2] Lemma 5.8, we have $C=C * C$.
(1) First suppose $m(C)=m_{0}(C)$. By [2] Lemma 1.4, e is the zero element of C and so $C m_{0}(C)=C\{e\}=\{e\}=m_{0}(C)=m_{0}(C * C)$. Next suppose $m(C)=m_{+}(C)$.

Thus there exists an idempotent f of S such that $e<f, e \mathscr{D}_{E} f, e$ and f are consecutive in $e \mathscr{D}_{E}$ and $m_{+}(C)=[e, f]$. We denote by F the archimedean class containing f. Then by [2] Theorem 3.3, we have $C \delta F$ and so $F * C=F$. Since e and f are consecutive in $e \mathscr{D}_{E}$, there is no idempotent h of S such that $e<h<f$ and $e \mathscr{D}_{E} h$. Hence by [2] Lemma 6.7, $C F$ is contained in a single archimedean class and so by [4] Theorem 2, $C F \subseteq C_{-} \subseteq C$. Now let $x \in C$ and $y \in m_{+}(C)=[e, f]$. Then $e \leqq y \leqq f$ and $x e \in C m_{0}(C)=m_{0}(C)=\{e\}$. Also by [2] Theorem 2.7, we have $f x=f$ and so $(x f)^{2}=x f x f=x f$. Moreover, since $x f \in C F \subseteq C, x f$ is an idempotent in C and so $x f=e$. Hence $e=x e \leqq x y \leqq x f=e$ and so $x y=e$. Hence $C m_{+}(C)=$ $=\{e\}=m_{0}(C)=m_{0}(C * C)$. Similarly we can prove that $C m_{-}(C)=m_{0}(C)=$ $=m_{0}(C * C)$.
(2) Since C is a subsemigroup of S, we have $C C \subseteq C=C * C$. Let $x \in C$ and $y \in C_{+}$. Then $y \leqq e$ and so $x y \leqq x e=e$. Also $x y \in C C \subseteq C$ and so $x y \in C_{+}$. Hence $C C_{+} \subseteq C_{+}=(C * C)_{+}$. Similarly we can prove that $C C_{-} \subseteq C_{-}=(C * C)_{-}$.
(3) $\mathrm{By}(1)$, we have $C_{+} m_{0}(C) \subseteq C m_{0}(C)=m_{0}(C), C_{+} m_{+}(C) \subseteq C m_{+}(C)=$. $=m_{0}(C)$ and $C_{+} m_{-}(C) \subseteq C m_{-}(C)=m_{0}(C)$ and so $C_{+} m_{0}(C)=C_{+} m_{+}(C)=$ $=C_{+} m_{-}(C)=m_{0}(C)=m_{0}(C * C)$.

Let $x \in C_{+}$and $y \in C_{-}$. Then $x, y \in C, x \leqq e$ and $e \leqq y$. Hence $e=x e \leqq x y \leqq$ $\leqq e y=e$ and so $x y=e$. Hence $C_{+} C_{-}=\{e\}=m_{0}(C)=m_{0}(C * C)$.
(4) By Lemma 1.1, C_{+}is a subsemigroup of S and so $C_{+} C_{+} \subseteq C_{+}=(C * C)_{+}$. Also by (3), $C_{+} C=C_{+}\left(C_{+} \cup C_{-}\right)=C_{+} C_{+} \cup C_{+} C_{-} \subseteq C_{+} \cup m_{0}(C)=C_{+}$and so $C_{+} C \subseteq C_{+}=(C * C)_{+}$.
(5) and (6) can be proved similarly.

Lemma 1.9. Let $C, D \in \mathscr{C}$ such that $C \delta \wedge D \delta$ is a periodic δ-class of L-type and $C \delta=C \delta \wedge D \delta$. Let $m(D)$ be a modified archimedean class of D.
(1) If $C<D$, then $C_{+} m(D)=m_{0}(C)=m_{0}(C * D)$.
(2) If $D<C$, then $C_{-} m(D)=m_{0}(C)=m_{0}(C * D)$.

Proof. Since $C \delta=C \delta \wedge D \delta$ is a periodic δ-class of L-type, C is a periodic archimedean class with idempotent, say e, and the \mathscr{D}_{E}-class $e \mathscr{D}_{E}$ is of L-type. Also by Lemma 1.7, we have $C=C * D$.
(1) Suppose $C<D$. Let $x \in C_{+}$and $y \in m(D)$ and let Y be the archimedean class containing y. Then by Lemma 1.2 , we have $C \delta=C \delta \wedge D \delta \preccurlyeq D \delta \preccurlyeq Y \delta$. By way of contradiction we assume $y<e$. Then we have $Y \leqq C<D$ and by [2] Lemma 5.6, we have $D \delta=D \delta \wedge Y \delta \preccurlyeq C \delta \preccurlyeq D \delta$. Hence $D \delta=C \delta$ and so D is a periodic archimedean class with idempotent, say e^{\prime}. Since $m(D)$ contains an element $y \in Y$ such that $Y<D$, we must have $m(D)=m_{-}(D)$. Hence there exists an idempotent g^{\prime} of S such that $g^{\prime}<e^{\prime}, g^{\prime} \mathscr{D}_{E} e^{\prime}, g^{\prime}$ and e^{\prime} are consecutive in $e^{\prime} \mathscr{D}_{E}$ and $m_{-}(D)=$ $=\left[g^{\prime}, e^{\prime}\right]$. Since $y \in m(D)=m_{-}(D)$, we have $g^{\prime} \leqq y<e<e^{\prime}$. Further since $D \delta C$, it follows from Theorem 3.3 that $e \mathscr{D}_{E} e^{\prime}$, which contradicts that g^{\prime} and e^{\prime} are consecutive in $e^{\prime} \mathscr{D}_{E}$. Hence we have $e \leqq y$. Also since $x \in C_{+}$, we have $x \leqq e$. Hence $e=x e \leqq x y \leqq e y$. But since $C \delta \preccurlyeq D \delta$, it follows from [2] Lemma 4.7 that
$C \gamma D$ and so by [2] Theorem 2.7, we have $e y=e$. Hence $x y=e$ and so $C_{+} m(D)=$ $=\{e\}=m_{0}(C)=m_{0}(C * D)$.
(2) can be proved similarly.

Lemma 1.10. Let $C, D \in \mathscr{C}$ such that $C \delta \wedge D \delta$ is a periodic δ-class of L-type and $C \delta=C \delta \wedge D \delta$. Let e and h be the idempotents of C and $D * C$, respectively.
(1) If $C<D$, then the following conditions are equivalent:
(i) $C D$ is contained in a single archimedean class;
(ii) $C D \subseteq C_{-}$;
(iii) $c h=e$ for every $c \in C_{-}$.
(2) If $D<C$, then the following conditions are equivalent:
(iv) $C D$ is contained in a single archimedean class;
(v) $C D \subseteq C_{+}$;
(vi) $c h=e$ for every $c \in C_{+}$.

Proof. Since $(D * C) \delta=D \delta \wedge C \delta=C \delta, C$ and $D * C$ are really periodic archimedean classes. Also by [2] Theorem 3.3, e $\mathscr{D}_{E} h$ and, since $C \delta=C \delta \wedge D \delta$ is of L-type, the \mathscr{D}_{E}-class $e \mathscr{D}_{L}$ is of L-type.
(1) Suppose $C<D$. First suppose $C D$ is contained in a single archimedean class. Then by [2] Theorem 6.6 and [4] Theorem 2, we have $C D \subseteq C_{-}$. Next suppose $C D \subseteq C_{-}$. Let $c \in C_{-}$. Since $C<D$, we have $C \leqq D * C \leqq D$ and so there exists $d \in D$ such that $h \leqq d$. Also since $c \in C_{-}$, we have $e \leqq c$. Hence $e=e h \leqq c h \leqq c d$. Since $c d \in C D \subseteq C_{-} \subseteq C$ and C is convex, we have $c h \in C$. But by [2] Theorem 2.7, $h c=h$ and so $(c h)^{2}=c h c h=c h$. Hence $c h$ is an idempotent of C and so $c h=e$. Finally suppose that $c h=e$ for every $c \in C_{-}$. Then by [2] Lemma 6.7, $C D$ is contained in a single archimedean class.
(2) can be proved similarly.

Lemma 1.11. Let $C, D \in \mathscr{C}$ such that $C \delta \wedge D \delta$ is a periodic δ-class of L-type, $C \delta=C \delta \wedge D \delta$ and $C D$ is contained in a single archimedean class and let $m(D)$ be a modified archimedean class of D.
(1) Suppose that $C<D$ and in the case when D is a periodic archimedean class and $m(D)=m_{+}(D)$ we have $C \delta \neq D \delta$. Then $C_{-} m(D) \subseteq C_{-}=(C * D)_{-}$and $C m(D) \subseteq C_{-}=(C * D)_{-}$.
(2) Suppose that $D<C$ and in the case when D is a periodic archimedean class and $m(D)=m_{-}(D)$ we have $C \delta \neq D \delta$. Then $C_{+} m(D) \subseteq C_{+}=(C * D)_{+}$ and $C m(D) \subseteq C_{+}=(C * D)_{+}$.

Proof. By Lemma 1.7, we have $C=C * D$. Also C is a periodic archimedean class with idempotent, say e. Since $C \delta=C \delta \wedge D \delta$ is of L-type, the \mathscr{D}_{E}-class $e \mathscr{D}_{E}$ is of L-type.
(1) 1° Case: $m(D)=D$. Then by Lemma 1.10, we have $C m(D)=C D \subseteq C_{-}=$ $=(C * D)_{-}$and $C_{-} m(D) \subseteq C m(D) \subseteq C_{-}=(C * D)_{-}$.
2° Case: D is a periodic archimedean class and $m(D) \in\left\{D_{+}, D_{-}, m_{0}(D)\right\}$. Since
$m(D) \subseteq D$, we have by $1^{\circ} C m(D) \subseteq C D \subseteq C_{-}=(C * D)_{-}$and $C_{-} m(D) \subseteq$ $\subseteq C_{-} D \subseteq C_{-}=(C * D)_{-}$.
3° Case: D is a periodic archimedean class with idempotent e^{\prime} and $m(D)=m_{-}(D)$. Thus there exists an idempotent g^{\prime} of S such that $g^{\prime}<e^{\prime}, g^{\prime} \mathscr{D}_{E} e^{\prime}, g^{\prime}$ and e^{\prime} are consecutive in $e^{\prime} \mathscr{D}_{E}$ and $m_{-}(D)=\left[g^{\prime}, e^{\prime}\right]$. We denote by G the archimedean class containing g^{\prime}. Then by [2] Theorem 3.3, we have $G \delta D$. By way of contradiction we assume $G<C$. Then since $G<C<D$, it follows from [2] Lemma 5.6 that we have $D \delta=G \delta \wedge D \delta \preccurlyeq C \delta=C \delta \wedge D \delta \preccurlyeq D \delta$ and so $C \delta=D \delta=G \delta$. Hence by [2] Theorem 3.3, $e, g^{\prime}, e^{\prime} \in e^{\prime} \mathscr{D}_{E}$ and since $G<C<D$, we have $g^{\prime}<e<e^{\prime}$, which contradicts that g^{\prime} and e^{\prime} are consecutive in $e^{\prime} \mathscr{D}_{E}$. Hence we have $C \leqq G<D$ and so $e \leqq g^{\prime}<e^{\prime}$. Now let $x \in C$ and $y \in m_{-}(D)$. Then $e \leqq g^{\prime} \leqq y \leqq e^{\prime}$ and so $e=x e \leqq x y \leqq x e^{\prime}$. Here $e \in C_{-}$and by $1^{\circ}, x e^{\prime} \in C D \subseteq C_{-}$. But by Lemma 1.1, C_{-}is convex and so $x y \in C_{-}$. Hence $C m(D)=C m_{-}(D) \subseteq C_{-}=(C * D)_{-}$and also $C_{-} m(D)=C_{-} m_{-}(D) \subseteq C m_{-}(D) \subseteq C_{-}=(C * D)_{-}$.
4° Case: D is a periodic archimedean class and $m(D)=m_{+}(D)$. By assumption, we have $C \delta \neq D \delta$ and, since $C \delta=C \delta \wedge D \delta \preccurlyeq D \delta$, we have $C \delta \prec D \delta$. Now let $x \in C$ and $y \in m_{+}(D)$. We denote by Y the archimedean class containing y. Then by Lemma 1.2, we have $D \delta \preccurlyeq Y \delta$ and so $(C * D) \delta=C \delta \wedge D \delta=C \delta<D \delta=$ $=D \delta \wedge Y \delta$. Hence by [2] Lemma 5.6, there exists no $Z \in \mathscr{C}$ such that $Z \in C \delta$ and Z lies between D and Y. In particular, C does not lie between D and Y and, since $C<D$, we have $C<Y$. Also

$$
\begin{aligned}
Y * C & =\max \{Z \in \mathscr{C} ; C \leqq Z \leqq Y \text { and } Z \in C \delta \wedge Y \delta\} \\
& =\max \{Z \in \mathscr{C} ; C \leqq Z \leqq Y \text { and } Z \in C \delta\} \\
& =\max \{Z \in \mathscr{C} ; C \leqq Z \leqq D \text { and } Z \in C \delta\} \\
& =\max \{Z \in \mathscr{C} ; C \leqq Z \leqq D \text { and } Z \in C \delta \wedge D \delta\}=D * C .
\end{aligned}
$$

Since $(D * C) \delta=C \delta \wedge D \delta, D * C=Y * C$ is a periodic archimedean class with idempotent, say h. Since $C D$ is contained in a single archimedean class, it follows from Lemma 1.10 that $c h=e$ for every $c \in C_{-}$and, applying Lemma 1.10 again, we have $x y \in C Y \subseteq C_{-}$. Hence $C m(D)=C m_{+}(D) \subseteq C_{-}=(C * D)_{-}$and also $C_{-} m(D)=C_{-} m_{+}(D) \subseteq C m_{+}(D) \subseteq C_{-}=(C * D)_{-}$.
5° Case: D is a torsion free archimedean class and $m(D)=m_{ \pm}(D)$. Since $C \delta=$ $=C \delta \wedge D \delta$ is a periodic δ-class and $D \delta$ is a torsion free δ-class, we have $C \delta \neq D \delta$. In a similar way to 4°, we can prove that $C m(D)=C m_{ \pm}(D) \subseteq C_{-}=(C * D)_{\text {- }}$ and $C_{-} m(D)=C_{-} m_{ \pm}(D) \subseteq C_{-}=(C * D)_{-}$.
(2) can be proved similarly.

Theorem 1.12. Let $C, D \in \mathscr{C}$ such that $C \delta=D \delta$ is a periodic δ-class of L-type.
(1) Suppose $C<D$. We denote $m_{+}(D)=\left[e^{\prime}, f^{\prime}\right]$. Thus e^{\prime} is the idempotent of D and f^{\prime} is the idempotent of S such that $e^{\prime}<f^{\prime}, e^{\prime} \mathscr{D}_{E} f^{\prime}$ and e^{\prime} and f^{\prime} are consecutive in $e^{\prime} \mathscr{D}_{E}$. We denote by F the archimedean class containing f^{\prime}.
(i) If CF is contained in a single archimedean class, then $C m_{+}(D)=m_{0}(C)=$ $=m_{0}(C * D)$ and $C_{-} m_{+}(D)=m_{0}(C)=m_{0}(C * D)$.
(ii) If $C F$ is not contained in a single archimedean class, then $C m_{+}(D) \subseteq$ $\subseteq m_{+}(C)=m_{+}(C * D)$ and $C_{-} m_{+}(D) \subseteq m_{+}(C)=m_{+}(C * D)$.
(2) Suppose $D<C$. We denote $m_{-}(D)=\left[g^{\prime}, e^{\prime}\right]$. Thus e^{\prime} is the idempotent of D and g^{\prime} is the idempotent of S such that $g^{\prime}<e^{\prime}, g^{\prime} \mathscr{D}_{E} e^{\prime}$ and g^{\prime} and e^{\prime} are consecutive in $e^{\prime} \mathscr{D}_{E}$. We denote by G the archimedean class containing g^{\prime}.
(i) If CG is contained in a single archimedean class, then $C m_{-}(D)=m_{0}(C)=$ $=m_{0}(C * D)$ and $C_{+} m_{-}(D)=m_{0}(C)=m_{0}(C * D)$.
(ii) If $C G$ is not contained in a single archimedean class, then $C m_{-}(D) \subseteq$ $\subseteq m_{-}(C)=m_{-}(C * D)$ and $C_{+} m_{-}(D) \subseteq m_{-}(C)=m_{-}(C * D)$.

Proof. We denote by e the idempotent of the periodic archimedean class C.
(1) Since $e^{\prime} \mathscr{D}_{E} f^{\prime}$, it follows from [2] Theorem 3.3 that $C \delta D \delta F$ and $C=C * D$. Now let $x \in C$ and $y \in m_{+}(D)$. Then since $C<D<F$, we have $e<e^{\prime} \leqq y \leqq f^{\prime}$ and so $e=x e \leqq x y \leqq x f^{\prime}$.
(i) Suppose $C F$ is contained in a single archimedean class. Then by Lemma 1.10, $x f^{\prime} \in C F \subseteq C_{-} \subseteq C$. But by [2] Theorem 2.7, we have $f^{\prime} x=f^{\prime}$ and so $\left(x f^{\prime}\right)^{2}=$ $=x f^{\prime} x f^{\prime}=x f^{\prime}$. Hence $x f^{\prime}$ is an idempotent of C and so $x f^{\prime}=e$. Hence $x y=e$. Hence $C m_{+}(D)=\{e\}=m_{0}(C)=m_{0}(C * D)$ and also, since $C_{-} m_{+}(D) \subseteq$ $\subseteq C m_{+}(D)$, we have $C_{-} m_{+}(D)=m_{0}(C)=m_{0}(C * D)$.
(ii) Next suppose that $C F$ is not contained in a single archimedean class. Then by [4] Theorems 3 and 4, there exists an idempotent f of S such that $e<f, e \mathscr{D}_{E} f$, e and f are consecutive in $e \mathscr{D}_{E}$ and $C F \subseteq[e, f]$. Hence $x f^{\prime} \in C F \subseteq[e, f]$ and so $e \leqq x y \leqq x f^{\prime} \leqq f$. Hence $x y \in[e, f]=m_{+}(C)$. Hence $C m_{+}(D) \subseteq m_{+}(C)=$ $=m_{+}(C * D)$ and also $C_{-} m_{+}(D) \subseteq C m_{+}(D) \subseteq m_{+}(C)=m_{+}(C * D)$.
(2) can be proved similarly.

Lemma 1.13. Let $C, D \in \mathscr{C}$ such that $C \delta \wedge D \delta$ is a periodic δ-class of L-type, $C \delta=C \delta \wedge D \delta$ and $C D$ is not contained in a single archimedean class and let $m(D)$ be a modified archimedean class of D.
(1) If $C<D$, then $C_{-} m(D) \subseteq m_{+}(C)=m_{+}(C * D)$ and $C m(D) \subseteq m_{+}(C)=$ $=m_{+}(C * D)$.
(2) If $D<C$, then $C_{+} m(D) \subseteq m_{-}(C)=m_{-}(C * D)$ and $C m(D) \subseteq m_{-}(C)=$ $=m_{-}(C * D)$.
Proof. By Lemma 1.7, we have $C=C * D$. We denote by e the idempotent of the periodic archimedean class C.
(1) 1° Case: $m(D)=D$. By [2] Theorem 6.8 and [4] Theorems 3 and 4, there exists an idempotent f of S such that $e<f, e \mathscr{D}_{E} f, e$ and f are consecutive in $e \mathscr{D}_{E}$ and $C D \subseteq[e, f]$. Hence $C m(D)=C D \subseteq[e, f]=m_{+}(C)=m_{+}(C * D)$ and also $C_{-} m(D)=C_{-} D \subseteq C D \subseteq m_{+}(C)=m_{+}(C * D)$.
2° Case: D is a periodic archimedean class and $m(D) \in\left\{D_{+}, D_{-}, m_{0}(D)\right\}$. We have $m(D) \subseteq D$ and by $1^{\circ}, C_{-} m(D) \subseteq C_{-} D \subseteq m_{+}(C)=m_{+}(C * D)$ and $C m(D) \subseteq C D \subseteq m_{+}(C)=m_{+}(C * D)$.
3° Case: D is a periodic archimedean class with idempotent e^{\prime} and $m(D)=m_{+}(D)$. Thus there exists an idempotent f^{\prime} of S such that $e^{\prime}<f^{\prime}, e^{\prime} \mathscr{D}_{E} f^{\prime}, e^{\prime}$ and f^{\prime} are consecutive in $e^{\prime} \mathscr{D}_{E}$ and $m_{+}(D)=\left[e^{\prime}, f^{\prime}\right]$. We denote by F the archimedean class containing f^{\prime}. Since $e^{\prime} \mathscr{D}_{E} f^{\prime}$, it follows from [2] Theorem 3.3 that $D \delta F$ and so $C \delta=C \delta \wedge D \delta=C \delta \wedge F \delta$ is of L-type. Also we have $C<D<F$. Since $(D * C) \delta=D \delta \wedge C \delta$ and $(F * C) \delta=F \delta \wedge C \delta=D \delta \wedge C \delta, D * C$ and $F * C$ are periodic archimedean classes. We denote by h and k the idempotents $D * C$ and $F * C$, respectively. Since $C D$ is not contained in a single archimedean class, it follows from [2] Lemma 6.7 that there exists an idempotent f of S such that $e<f$, $e \mathscr{D}_{E} f$ and e and f are consecutive in $e \mathscr{D}_{E}$ and also there exists $c \in C_{-} \backslash\{e\}$ such that $c h=f$. Since $D<F$, it follows from [2] Lemma 5.7 that $D * C \leqq F * C$. Heace $h \leqq k$ and so $e<c h \leqq c k$. Hence by Lemma 1.10, CF is not contained in a singie archimedean class and so by [2] Theorem 6.8 and [4] Theorems 3 and 4, $C F \subseteq$ $\subseteq[e, f]$. Now let $x \in C$ and $y \in m_{+}(C)=\left[e^{\prime}, f^{\prime}\right]$. Then $e<e^{\prime} \leqq y \leqq f^{\prime}$ and so $e=x e \leqq x y \leqq x f^{\prime}$ with $x f^{\prime} \in C F \subseteq[e, f]$. Hence $x y \in[e, f]=m_{+}(C)$ and so $C m(D)=C m_{+}(D) \subseteq m_{+}(C)=m_{+}(C * D)$ and also $C_{-} m(D)=C_{-} m_{+}(D) \subseteq$ $\subseteq C m_{+}(D) \subseteq m_{+}(C)=m_{+}(C * D)$.
4° Case: D is a periodic archimedean class with idempotent $e^{\prime} m(D)=m_{-}(D)$. Thus there exists an idempotent g^{\prime} of S such that $g^{\prime}<e^{\prime}, g^{\prime} \mathscr{D}_{E} e^{\prime}, g^{\prime}$ and e^{\prime} are consecutive in $e^{\prime} \mathscr{D}_{E}$ and $m_{-}(D)=\left[g^{\prime}, e^{\prime}\right]$. We denote by G the archimedean class containing g^{\prime}. Since $g^{\prime} \mathscr{D}_{E} e^{\prime}$, it follows from [2] Theorem 3.3 that $G \delta D$. By way of contradiction we assume $G<C$. Then since $G<C<D$, it follows from [2] Lemma 5.6 that $D \delta=D \delta \wedge G \delta \preccurlyeq C \delta=C \delta \wedge D \delta \preccurlyeq D \delta$ and so $C \delta=D \delta$. Hence by [2] Theorem 3.3, we have $g^{\prime}, e, e^{\prime} \in e^{\prime} \mathscr{D}_{E}$. But since $G<C<D$, we have $g^{\prime}<$ $<e<e^{\prime}$, which contradicts that g^{\prime} and e^{\prime} are consecutive in $e^{\prime} \mathscr{D}_{E}$. Hence we have $C \leqq G<D$. Since $C D$ is not contained in a single archimedean class, it follows from [2] Theorem 6.8 and [4] Theorems 3 and 4 that there exists an idempotent f of S such that $e<f, e \mathscr{D}_{E} f$ and e and f are consecutive in $e \mathscr{D}_{E}$ and $C D \subseteq[e, f]$. Now let $x \in C$ and $y \in m_{-}(D)=\left[g^{\prime}, e^{\prime}\right]$. Then we have $e \leqq g^{\prime} \leqq y \leqq e^{\prime}$ and so $e=x e \leqq x y \leqq x e^{\prime}$ with $x e^{\prime} \in C D \subseteq[e, f]$. Hence we have $x y \in[e, f]=m_{+}(C)$. Hence $C m(D)=C m_{-}(D) \subseteq m_{+}(C)=m_{+}(C * D)$ and also $C_{-} m(D)=$ $=C_{-} m_{-}(D) \subseteq C m_{-}(D) \subseteq m_{+}(C)=m_{+}(C * D)$.
5° Case: D is a torsion free archimedean class and $m(D)=m_{ \pm}(D)$. Since $D \delta$ is a torsion free δ-class, $C \delta=C \delta \wedge D \delta$ is a periodic δ-class and $C \delta=C \delta \wedge D \delta \preccurlyeq$ $\preccurlyeq D \delta$, we have $C \delta<D \delta$. Now let $x \in C$ and $y \in m_{ \pm}(D)$. We denote by Y the archimedean class containing y. Then by Lemma 1.2 , we have $D \delta \preccurlyeq Y \delta$ and so $(D * C) \delta=D \delta \wedge C \delta=C \delta \prec D \delta=D \delta \wedge Y \delta$. Hence by [2] Lemma 5.6, there is no $Z \in \mathscr{C}$ such that $Z \in C \delta$ and Z lies between D and Y. In particular, C does not lie between D and Y and, since $C<D$, we have $C<Y$. Also

$$
\begin{aligned}
Y * C & =\max \{Z \in \mathscr{C} ; C \leqq Z \leqq Y \text { and } Z \in Y \delta \wedge C \delta\} \\
& =\max \{Z \in \mathscr{C} ; C \leqq Z \leqq Y \text { and } Z \in C \delta\} \\
& =\max \{Z \in \mathscr{C} ; C \leqq Z \leqq D \text { and } Z \in C \delta\} \\
& =\max \{Z \in \mathscr{C} ; C \leqq Z \leqq D \text { and } Z \in D \delta \wedge C \delta\}=D * C .
\end{aligned}
$$

We denote by h the idempotent of the periodic archimedean class $D * C=Y * C$. Since $C D$ is not contained in a single archimedean class, it follows from Lemma 1.10 that there exists $c \in C_{-}$such that $c h \neq e$ and so by Lemma 1.10 again, $C Y$ is not contained in a single archimedean class. Hence by [2] Theorem 6.8 and [4] Theorems 3 and 4, there exists an idempotent f of S such that $e<f, e \mathscr{D}_{E} f$ and e and f are consecutive in $e \mathscr{D}_{E}$ and $C Y \subseteq[e, f]$. Hence $x y \in C Y \subseteq[e, f]=m_{+}(C)$ and so $C m(D)=C m_{ \pm}(D) \subseteq m_{+}(C)=m_{+}(C * D)$ and also $C_{-} m(D)=C_{-} m_{ \pm}(D) \subseteq$ $\subseteq C m_{ \pm}(D) \subseteq m_{+}(C)=m_{+}(C * D)$.
(2) can be proved similarly.

Theorem 1.14. Let $C, D \in \mathscr{C}$ and let $m(C)$ and $m(D)$ be modified archimedean classes of C and D, respectively. Then there exists a modified archimedean class $m(C * D)$ of $C * D$ such that $m(C) m(D) \subseteq m(C * D)$.

Proof. Case: $C \delta \wedge D \delta$ is torsion free. Then by [2] Theorem 6.1, if C non δD, then we have either $C \gamma D$ or $D \gamma C$. Hence by Lemma 1.3, we have the assertion.

Case: $C \delta \wedge D \delta$ is periodic of L-type and $C \delta \neq C \delta \wedge D \delta$. Then we have $C \delta \wedge$ $\wedge D \delta \prec C \delta$. If $C * D \neq D$, then the assertion holds by Lemma 1.5. If $C * D=D$, then the assertion holds by Lemma 1.6.

Case: $C \delta \wedge D \delta$ is periodic of L-type and $C \delta=C \delta \wedge D \delta$. Then C is a periodic archimedean class and so $m(C) \in\left\{C, C_{+}, C_{-}, m_{0}(C), m_{+}(C), m_{-}(C)\right\}$. If $m(C) \in$ $\in\left\{m_{0}(C), m_{+}(C), m_{-}(C)\right\}$, then the assertion holds by Lemma 1.7. If $m(C) \in$ $\in\left\{C, C_{+}, C_{-}\right\}$and $D=C$, then the assertion holds by Lemma 1.8. If either $m(C)=$ $=C_{+}$and $C<D$ or $m(C)=C_{-}$and $D<C$, then the assertion holds by Lemma 1.9. If either $m(C) \in\left\{C, C_{-}\right\}$and $C<D$ or $m(C) \in\left\{C, C_{+}\right\}$and $D<C$, then the assertion holds by Lemmas 1.11, 1.12 and 1.13.

Case: $C \delta \wedge D \delta$ is periodic of R-type. We have the assertion dually.
Corollary 1.15. Let $C_{1}, \ldots, C_{n} \in \mathscr{C}$ and, for each natural number $1 \leqq i \leqq n$, let $m\left(C_{i}\right)$ be a modified archimedean class of C_{i}. Then there exists a modified archimedean class $m\left(C_{1} * \ldots * C_{n}\right)$ of $C_{1} * \ldots * C_{n}$ such that $m\left(C_{1}\right) \ldots m\left(C_{n}\right) \subseteq$ $\subseteq m\left(C_{1} * \ldots * C_{n}\right)$.
In particular, for $C_{1}, \ldots, C_{n} \in \mathscr{C}$, there exists a modified archimedean class $\left.m_{(}^{\prime} C_{1} * \ldots * C_{n}\right)$ of $C_{1} * \ldots * C_{n}$ such that $C_{1} \ldots C_{n} \subseteq m\left(C_{1} * \ldots * C_{n}\right)$.

§ 2

Lemma 2.1. Let $C_{1}, \ldots, C_{n} \in \mathscr{C}$ such that $C_{1} \delta \wedge \ldots \wedge C_{n} \delta$ is a torsion free δ-class. Then there exists a natural number $1 \leqq i \leqq n$ such that $C_{i} \delta=C_{1} \delta \wedge \ldots \wedge C_{n} \delta$.

Proof. We put $C=C_{1} * \ldots * C_{n}, D_{1}=\max \left\{C_{1}, \ldots, C_{n}\right\}$ and $D_{2}=$ $=\min \left\{C_{1}, \ldots, C_{n}\right\}$. Then $D_{1}=C_{j}$ and $D_{2}=C_{k}$ for some natural numbers $1 \leqq$ $\leqq j \leqq n$ and $1 \leqq k \leqq n$. By Lemma $1.4, C \delta=\left(C_{1} * \ldots * C_{n}\right) \delta=C_{1} \delta \wedge \ldots$ $\ldots \wedge C_{n} \delta$ and so C is a torsion free archimedean class. Hence C is either positive torsion free or negative torsion free. First suppose C is positive torsion free. By [2] Theorem 5.11, we have $C=C_{1} * \ldots * C_{n} \leqq D_{1} * \ldots * D_{1}=D_{1}=C_{j}$. But $C \delta=$ $=C_{1} \delta \wedge \ldots \wedge C_{n} \delta \preccurlyeq C_{j} \delta$ and so by [2] Lemma 4.7, we have $C \gamma C_{j}$. Hence by [2] Lemma 5.1, we have $C=C_{j}$ and so $C_{j} \delta=C \delta=C_{1} \delta \wedge \ldots \wedge C_{n} \delta$. Next suppose C is negative torsion free. Then we obtain in a similar wat that $C=C_{k}$ and $C_{k} \delta=$ $=C_{1} \delta \wedge \ldots \wedge C_{n} \delta$.

Theorem 2.2. Suppose that $C_{1}, \ldots, C_{n} \in \mathscr{C}$ such that $C_{1} \delta \wedge \ldots \wedge C_{n} \delta$ is a torsion free δ-class and there exists an archimedean class A such that for every natural number $1 \leqq i \leqq n$ such that $C_{i} \delta=C_{1} \delta \wedge \ldots \wedge C_{n} \delta$, we have $C_{i}=A$. Then

$$
C_{1} \ldots C_{n} \subseteq A=C_{1} * \ldots * C_{n} .
$$

Proof. By Lemma 2.1, there really exists a natural number $1 \leqq i \leqq n$ such that $C_{i} \delta=C_{1} \delta \wedge \ldots \wedge C_{n} \delta$. Hence by assumption $A \delta=C_{i} \delta=C_{1} \delta \wedge \ldots \wedge C_{n} \delta$. In particular A is a torsion free archimedean class. Now we denote by j the least natural number $1 \leqq j \leqq n$ such that $C_{1} \delta \wedge \ldots \wedge C_{j} \delta=C_{1} \delta \wedge \ldots \wedge C_{n} \delta$. We show that

$$
\begin{equation*}
C_{1} \ldots C_{j} \subseteq A=C_{1} * \ldots * C_{j} \tag{*}
\end{equation*}
$$

If $j=1$, then $C_{1} \delta=C_{1} \delta \wedge \ldots \wedge C_{n} \delta$ and so, by assumption, we have $C_{1}=A$. Hence (*) holds. Next suppose $j>1$. Then for every natural number p such that $1 \leqq p \leqq j-1$, we have $A \delta=C_{1} \delta \wedge \ldots \wedge C_{n} \delta \prec C_{1} \delta \wedge \ldots \wedge C_{j-1} \delta \preccurlyeq C_{p} \delta$ by the minimality of j and so $A \neq C_{p}$. On the other hand $C_{1} \delta \wedge \ldots \wedge C_{j} \delta=C_{1} \delta \wedge \ldots \wedge C_{n} \delta$ is torsion free δ-class and so by Lemma 2.1, we have $C_{i} \delta=C_{1} \delta \wedge \ldots \wedge C_{j} \delta=$ $=C_{1} \delta \wedge \ldots \wedge C_{n} \delta$ for some $1 \leqq i \leqq j$ and then by assumption, $C_{i}=A$. Hence. we must have $i=j$ and so we have $C_{j}=A$. Also since $C_{j} \delta=A \delta=C_{1} \delta \wedge \ldots$ $\ldots \wedge C_{n} \delta \prec C_{1} \delta \wedge \ldots \wedge C_{j-1} \delta=\left(C_{1} * \ldots * C_{j-1}\right) \delta$, we have $C_{j} \operatorname{non} \delta C_{1} * \ldots$ $\ldots * C_{j-1}$ and also by [2] Lemma 4.7, $C_{j} \gamma C_{1} * \ldots * C_{j-1}$. By Corollary 1.15, there exists a modified archimedean class $m\left(C_{1} * \ldots * C_{j-1}\right)$ of $C_{1} * \ldots * C_{j-1}$ such that $C_{1} \ldots C_{j-1} \subseteq m\left(C_{1} * \ldots * C_{j-1}\right)$. Hence by Lemma 1.3, we have $C_{1} \ldots$ $\ldots C_{j} \subseteq m\left(C_{1} * \ldots * C_{j-1}\right) C_{j} \subseteq C_{j}=A$. Further by [2] Theorem 6.1, we have $A=C_{j}=\left(C_{1} * \ldots * C_{j-1}\right) * C_{j}$. Thus we obtain (*).

Now let k be a natural number such that $j \leqq k<n$ and $C_{1} \ldots C_{k} \subseteq A=$ $=C_{1} * \ldots * C_{k}$. Then $A \delta=C_{1} \delta \wedge \ldots \wedge C_{n} \delta \preccurlyeq C_{k+1} \delta$. First suppose $A \delta \prec C_{k+1} \delta$. Then A non δC_{k+1} and $A \gamma C_{k+1}$. Hence by [2] Theorem 6.1,

$$
C_{1} \ldots C_{k} C_{k+1} \subseteq A C_{k+1} \subseteq A=A * C_{k+1}=C_{1} * \ldots * C_{k} * C_{k+1}
$$

Next suppose $A \delta=C_{k+1} \delta$. Then $C_{k+1} \delta=A \delta=C_{1} \delta \wedge \ldots \wedge C_{n} \delta$ and so by assumption, $C_{k+1}=A$. Hence

$$
C_{1} \ldots C_{k} C_{k+1} \subseteq A C_{k+1}=A A \subseteq A=A * A=C_{1} * \ldots * C_{k} * C_{k+1}
$$

By induction, we obtain $C_{1} \ldots C_{n} \subseteq A=C_{1} * \ldots * C_{n}$.

Theorem 2.3. Suppose that $C_{1}, \ldots, C_{n} \in \mathscr{C}$ such that $C_{1} \delta \wedge \ldots \wedge C_{n} \delta$ is a torsion free δ-class and there exist two distinct archimedean classes A and B such that there exist natural numbers $1 \leqq i \leqq n$ and $1 \leqq j \leqq n$ such that $C_{i} \delta=C_{j} \delta=$ $=C_{1} \delta \wedge \ldots \wedge C_{n} \delta, C_{i}=A$ and $C_{j}=B$. Then $C_{1} \ldots C_{n}$ is not contained in a single archimedean class. Also in this case, we have

$$
C_{1} \ldots C_{n} \subseteq m_{ \pm}(A)=m_{ \pm}(B)=m_{ \pm}\left(C_{1} * \ldots * C_{n}\right)
$$

Proof. Since $A \delta=C_{i} \delta=C_{1} \delta \wedge \ldots \wedge C_{n} \delta=C_{j} \delta=B \delta, A$ and B are torsion free archimedean classes which lie in the same δ-class. Hence by [2] Theorem 3.5, the δ-class $A \delta=B \delta$ consists of exactly two elements A and B. Without loss of generality, we can assume $A<B$. Then A is negative torsion free and B is positive torsion free. We put $D_{1}=\min \left\{C_{1}, \ldots, C_{n}\right\}$ and $D_{2}=\max \left\{C_{1}, \ldots, C_{n}\right\}$. Then $D_{1}=C_{p}$ and $D_{2}=C_{q}$ for some natural numbers $1 \leqq p \leqq n$ and $1 \leqq q \leqq n$. Hence $A \delta=$ $=C_{1} \delta \wedge \ldots \wedge C_{n} \delta \preccurlyeq C_{p} \delta=D_{1} \delta$ and $B \delta=C_{1} \delta \wedge \ldots \wedge C_{n} \delta \preccurlyeq C_{\alpha} \delta=D_{2} \delta$ and so by [2] Lemma 4.7, we have $A \gamma D_{1}$ and $B \gamma D_{2}$. Also we have $D_{1} \leqq C_{i}=A<B=$ $=C_{j} \leqq D_{2}$ and so by [2] Lemma 5.1, we have $A=D_{1}$ and $B=D_{2}$. Hence for every nataral number $1 \leqq r \leqq n$, we have $A=D_{1} \leqq C_{r} \leqq D_{2}=B$. Now $m_{ \pm}(A)=$ $=m_{ \pm}(B)$ and this is the set of elements x of S such that the archimedean class containing the element x lies between A and B. Thus $C_{r} \subseteq m_{ \pm}(A)$ for every natural number $1 \leqq r \leqq n$. Also by [3] Theorem 9 , there exists an o-homomorphism v of $m_{ \pm}(A)$ into the additive ordered group of real numbers such that
if $x \in A$, then $v(x)<0$;
if $x \in m_{ \pm}(A) \backslash(A \cup B)$, then $v(x)=0$;
if $x \in B$, then $v_{1}^{\prime}(x)>0$.
Now we take arbitrarily $c_{r} \in C_{r}$ for each natural number $1 \leqq r \leqq n$. Since $C_{i}=A$ and $C_{j}=B$, we have $v\left(c_{i}\right)<0$ and $\left.v_{i}^{\prime} c_{j}\right)>0$. Now let $\left.v_{(}^{\prime} c_{1}\right)+\ldots+s v\left(c_{i}\right)+\ldots$ $\left.\ldots+v^{\prime} c_{n}\right)$ and $v\left(c_{1}\right)+\ldots+t v\left(c_{j}\right)+\ldots+v\left(c_{n}\right)$ be sums arising from $\left.v_{1}^{\prime} c_{1}\right)+\ldots$ $\left.\ldots+v_{(}^{\prime} c_{n}\right)$ by replacing $v_{(}^{\prime}\left(c_{i}\right)$ by $s v_{(}^{\prime}\left(c_{i}\right)$ and $v\left(c_{j}\right)$ by $t v\left(c_{j}\right)$, respectively, leaving other terms unchanged. Then since $v_{(}^{\prime}\left(c_{i}\right)<0$ and $\left.v_{(}^{\prime} c_{j}\right)>0$, we can consider, by taking s and t sufficiently large,

$$
\begin{aligned}
& \left.\left.\left.v\left(c_{1} \ldots c_{i}^{s} \ldots c_{n}\right)=v_{i}^{\prime} c_{1}\right)+\ldots+s v_{1}^{\prime} c_{i}\right)+\ldots+v_{1}^{(} c_{n}\right)<0 \\
& v\left(c_{1} \ldots c_{j}^{t} \ldots c_{n}\right)=v\left(c_{1}\right)+\ldots+t v\left(c_{j}\right)+\ldots+v\left(c_{n}\right)>0
\end{aligned}
$$

Hence $c_{1} \ldots c_{i}^{s} \ldots c_{n} \in A$ and $c_{1} \ldots c_{j}^{t} \ldots c_{n} \in B$. But since both $c_{1} \ldots c_{i}^{s} \ldots c_{n}$ and and $c_{1} \ldots c_{j}^{t} \ldots c_{n}$ are elements of $C_{1} \ldots C_{n}, C_{1} \ldots C_{n}$ is not contained in a single archimedean class.

Since $C_{r} \subseteq m_{ \pm}(A)$ for every natural number $1 \leqq r \leqq n$, it follows from Lemma 1.1 that $C_{1} \ldots C_{n} \subseteq m_{ \pm}(A)=m_{ \pm}(B)$. Also by Lemma 1.4 , we have $\left(C_{1} * \ldots * C_{n}\right) \delta=$ $=C_{1} \delta \wedge \ldots \wedge C_{n} \delta=A \delta$ and so $C_{1} * \ldots * C_{n} \in A \delta$. But since $A \delta$ consists of exactly two elements A and B, we have $C_{1} * \ldots * C_{n}=A$ or $C_{1} * \ldots * C_{n}=B$ and in both cases, we have $m_{ \pm}\left(C_{1} * \ldots * C_{n}\right)=m_{ \pm}(A)=m_{ \pm}(B)$.

Corollary 2.4. Let $C_{1}, \ldots, C_{n} \in \mathscr{C}$ such that $C_{1} \delta \wedge \ldots \wedge C_{n} \delta$ is a torsion free
δ-class. Then $C_{1} \ldots C_{i}$ is contained in a single archimedean class if and only if the set
$\left\{C_{i} ; i\right.$ is a natural number, $1 \leqq i \leqq n$ and $\left.C_{i} \delta=C_{1} \delta \wedge \ldots \wedge C_{n} \delta\right\}$
is a one-element subset of \mathscr{C}.
Lemma 2.5. Let $C_{1}, \ldots, C_{n} \in \mathscr{C}$ such that $C_{1} \delta \wedge \ldots \wedge C_{n} \delta$ is a periodic δ-class. Then $m_{0}\left(C_{1} * \ldots * C_{n}\right) \subseteq C_{1} \ldots C_{n}$.

Proof. For each natural number $1 \leqq i \leqq n$, we put
$m\left(C_{i}\right)=m_{0}\left(C_{i}\right)$ if C_{i} is a periodic archimedean class;
$m\left(C_{i}\right)=C_{i}$ if C_{i} is a torsion free archimedean class.
Then always we have $m\left(C_{i}\right) \subseteq C_{i}$. Here we only consider the case when the periodic δ-class $C_{1} \delta \wedge \ldots \wedge C_{n} \delta$ is of L-type. Let k be the least natural number $1 \leqq k \leqq n$ such that $C_{1} \delta \wedge \ldots \wedge C_{k} \delta=C_{1} \delta \wedge \ldots \wedge C_{n} \delta$.

Case: $k>1$. By the minimality of k, we have $\left(C_{1} * \ldots * C_{k-1}\right) \delta * C_{k} \delta=C_{1} \delta \wedge \ldots$ $\ldots \wedge C_{k} \delta=C_{1} \delta \wedge \ldots \wedge C_{n} \delta \prec C_{1} \delta \wedge \ldots \wedge C_{k-1} \delta=\left(C_{1} * \ldots * C_{k-1}\right) \delta$. Also by Corollary 1.15, there exists a modified archimedean class $m\left(C_{1} * \ldots * C_{k-1}\right)$ of $C_{1} * \ldots * C_{k-1}$ such that $m\left(C_{1}\right) \ldots m\left(C_{k-1}\right) \subseteq m\left(C_{1} * \ldots * C_{k-1}\right)$. First suppose that $\left(C_{1} * \ldots * C_{k-1}\right) * C_{k} \neq C_{k}$. Then by Lemma 1.5, we have $m\left(C_{1}\right) \ldots m\left(C_{k-1}\right)$. $. m\left(C_{k}\right) \subseteq m\left(C_{1} * \ldots * C_{k-1}\right) m\left(C_{k}\right)=m_{0}\left(C_{1} * \ldots * C_{k-1} * C_{k}\right)$ and so $m\left(C_{1}\right) \ldots$ $\ldots m\left(C_{k}\right)=m_{0}\left(C_{1} * \ldots * C_{k}\right)$. Next suppose that $\left(C_{1} * \ldots * C_{k-1}\right) * C_{k}=C_{k}$. Then $C_{k} \delta=\left(C_{1} * \ldots * C_{k}\right) \delta=C_{1} \delta \wedge \ldots \wedge C_{k} \delta=C_{1} \delta \wedge \ldots \wedge C_{n} \delta$ and so C_{k} is a periodic archimedean class. Hence by definition, we have $m\left(C_{k}\right)=m_{0}\left(C_{k}\right)$ and by Lemma 1.6 , we have $m\left(C_{1}\right) \ldots m\left(C_{k-1}\right) m\left(C_{k}\right) \subseteq m\left(C_{1} * \ldots * C_{k-1}\right) m_{0}\left(C_{k}\right)=$ $=m_{0}\left(C_{1} * \ldots * C_{k-1} * C_{k}\right)$ and so $m\left(C_{1}\right) \ldots m\left(C_{k}\right)=m_{0}\left(C_{1} * \ldots * C_{k}\right)$.

Case: $k=1$. Then $C_{1} \delta=C_{1} \delta \wedge \ldots \wedge C_{n} \delta$ and so C_{1} is a periodic archimedean class and so $m\left(C_{1}\right)=m_{0}\left(C_{1}\right)$.

Thus always we have $m\left(C_{1}\right) \ldots m\left(C_{k}\right)=m_{0}\left(C_{1} * \ldots * C_{k}\right)$. Now let p be a natural number such that $k \leqq p<n$ and $m\left(C_{1}\right) \ldots m\left(C_{p}\right)=m_{0}\left(C_{1} * \ldots * C_{p}\right)$. Then by Lemma 1.7, we have $m\left(C_{1}\right) \ldots m\left(C_{p}\right) m\left(C_{p+1}\right)=m_{0}\left(C_{1} * \ldots * C_{p}\right) m\left(C_{p+1}\right)=$ $=m_{0}\left(C_{1} * \ldots * C_{p} * C_{p+1}\right)$. Hence by induction, we obtain $m\left(C_{1}\right) \ldots m\left(C_{n}\right)=$ $=m_{0}\left(C_{1} * \ldots * C_{n}\right)$. Since $m\left(C_{i}\right) \subseteq C_{i}$ for every natural number $1 \leqq i \leqq n$, we have $m_{0}\left(C_{1} * \ldots * C_{n}\right)=m\left(C_{1}\right) \ldots m\left(C_{n}\right) \subseteq C_{1} \ldots C_{n}$.

Theorem 2.6. Let $C_{1}, \ldots, C_{n} \in \mathscr{C}$ such that $C_{1} \ldots C_{n}$ is contained in a single archimedean class. Then $C_{1} \ldots C_{n} \subseteq C_{1} * \ldots * C_{n}$.

Proof. First suppose that $C_{1} \delta \wedge \ldots \wedge C_{n} \delta$ is torsion free. Then by Corollary 2.4, there exists an archimedean class A such that for every natural number $1 \leqq i \leqq n$ such that $C_{i} \delta=C_{1} \delta \wedge \ldots \wedge C_{n} \delta$ we have $C_{i}=A$. Hence by Theorem 2.2, we have $C_{1} \ldots C_{n} \subseteq C_{1} * \ldots * C_{n}$.

Next suppose that $C_{1} \delta \wedge \ldots \wedge C_{n} \delta$ is periodic. Then by Lemma $2.5, C_{1} \ldots C_{n}$ contains the idempotent of the archimedean class $C_{1} * \ldots * C_{n}$ and since $C_{1} \ldots C_{n}$ is contained in a single archimedean class, we have $C_{1} \ldots C_{n} \subseteq C_{1} * \ldots * C_{n}$.

Lemma 2.7. Let a be an element of finite order n of S. If there exists an idempotent g of S such that $a^{n} \mathscr{D}_{E} g$ and a lies between a^{n} and g, then $n \leqq 2$.

Proof. Suppose $1<n$. We only consider the case when a is positive, that is, $a<a^{2}$. Then we have $g<a<a^{2} \leqq a^{n}$. By [2] Lemmas 1.6 and 1.7, we have $a^{n} \mathscr{L} g$ or $a^{n} \mathscr{R} g$. For the sake of definiteness, we assume $a^{n} \mathscr{R} g$. Then $a^{n} g=g$ and $g a^{n}=a^{n}$. Then $g=g^{2} \leqq a g \leqq a^{n} g=g$ and so $g=a g$. Hence gaga=ga, $g a^{2} g a^{2}=g a^{2}$ and so $g a$ and $g a^{2}$ are idempotents of S. We have $a<g a^{2}$, since $g a^{2} \leqq a$ would imply $a^{n}=g a^{n} \leqq \ldots \leqq g a^{2} \leqq a$, which is a contradiction. If $a \leqq g a$, then $a^{3} \leqq(g a)^{3}=g a \leqq a^{2} \leqq a^{3}$ and if $g a \leqq a$, then $a^{3} \leqq\left(g a^{2}\right)^{3}=g a^{2}=(g a) a \leqq$ $\leqq a^{2} \leqq a^{3}$. Hence always we have $a^{2}=a^{3}$.

Lemma 2.8. Let C be a periodic archimedean class in S.
(1) If there exists $D \in C$ such that $C<D$ and $C \delta D$, then $C^{2} \subseteq C_{+}$.
(2) If there exists $D \in C$ such that $D<C$ and $C \delta D$, then $C^{2} \subseteq C_{-}$.

Proof. (1) Since C is periodic and $C \delta D$, it follows from [2] Theorem 3.2 that D is also a periodic archimedean class. We denote by e and f the idempotents in C and D, respectively. Then by [2] Theorem 3.3, we have $e \mathscr{D}_{E} f$. Also since $C<D$, we have $e<f$. Now let $x, y \in C_{-}$. Then we have $e \leqq x^{2} \leqq x<f$ and $e \leqq y^{2} \leqq$ $\leqq y<f$ and so by Lemma 2.7, we have $x^{2}=y^{2}=e$. But we have either $x \leqq y$ or $y \leqq x$. If $x \leqq y$, then $e=x^{2} \leqq x y \leqq y^{2}=e$ and if $y \leqq x$, then $e=y^{2} \leqq x y \leqq$ $\leqq x^{2}=e$. Hence always we have $x y=e$ and so $C_{-}^{2}=m_{0}(C)$. Hence by Lemma 1.8, we have

$$
\begin{aligned}
C^{2}= & \left(C_{+} \cup C_{-}\right)^{2}=C_{+}^{2} \cup C_{+} C_{-} \cup C_{-} C_{+} \cup C_{-}^{2} \subseteq \\
& \subseteq C_{+} \cup m_{0}(C) \cup m_{0}(C) \cup m_{0}(C)=C_{+}
\end{aligned}
$$

(2) can be proved similarly.

Lemma 2.9. Let $C_{1}, \ldots, C_{n} \in \mathscr{C}$ such that $C_{1} \delta=C_{1} \delta \wedge \ldots \wedge C_{n} \delta$ is a δ-class of L-type.
(1) Suppose that $C_{1} \ldots C_{n}$ is not contained in a single archimedean class and $C_{1} \ldots C_{n} \subseteq m_{+}\left(C_{1}\right)$. Thus, denoting by e the idempotent of the periodic archimedean class C_{1}, there exists an idempotent f of S such that $e<f, e \mathscr{D}_{E} f$, e and f are consecutive in $e \mathscr{D}_{E}$ and $m_{+}\left(C_{1}\right)=[e, f]$. Let k be the least natural number such that $C_{1} \ldots C_{k}$ is not contained in a single archimedean class. Then
(i) $k>1$.
(ii) For every natural number $1 \leqq i \leqq k-1$, we have $C_{1} \ldots C_{i} \subseteq C_{1}$.
(iii) For every natural number $1 \leqq i \leqq k-1$, we have $C_{1}<C_{i+1}$. In particular $C_{1}<C_{k}$.
(iv) We denote by h the idempotent of the periodic archimedean class $C_{k} * C_{1}$.

Then $e<f<h$ and $h \mathscr{D}_{E}$ e.
(v) $C_{1} \ldots C_{k} \subseteq m_{+}\left(C_{1}\right)$.
(vi) If $x_{1} \in C_{1}, \ldots, x_{k-1} \in C_{k-1}, y_{k} \in C_{k}$ such that $x_{1} \ldots x_{k-1} y_{k} \notin C_{1}$, then $x_{1} \ldots$ $\ldots x_{k-1} h=f$. Also there exists $x_{k} \in C_{k}$ such that $x_{1} \ldots x_{k-1} x_{k}=f$.
(vii) There exist $x_{1} \in C_{1}, \ldots, x_{n} \in C_{n}$ such that $x_{1} \ldots x_{n}=f$.
(2) Suppose that $C_{1} \ldots C_{n}$ is not contained in a single archimedean class and $C_{1} \ldots C_{n} \subseteq m_{-}\left(C_{1}\right)$. Thus, denoting by e the idempotent of the periodic archimedean class C_{1}, there exists an idempotent g of S such that $g<e, g \mathscr{D}_{E} e$, g and e are consecutive in $e \mathscr{D}_{E}$ and $m_{-}\left(C_{1}\right)=[g, e]$. Let k be the least natural number such that $C_{1} \ldots C_{k}$ is not contained in a single archimedean class. Then
(i) $k>1$.
(ii) For every natural number $1 \leqq i \leqq k-1$, we have $C_{1} \ldots C_{i} \subseteq C_{1}$.
(iii) For every natural number $1 \leqq i \leqq k-1$, we have $C_{i+1}<C_{1}$. In particular $C_{k}<C_{1}$.
(iv) We denote by h the idempotent of the periodic archimedean class $C_{k} * C_{1}$. Then $h<g<e$ and $h \mathscr{D}_{E} e$.
(v) $C_{1} \ldots C_{k} \subseteq m_{-}\left(C_{1}\right)$.
(vi) If $x_{1} \in C_{1}, \ldots, x_{k-1} \in C_{k-1}, \quad y_{k} \in C_{k}$ such that $x_{1} \ldots x_{k-1} y_{k} \notin C_{1}$, then $x_{1} \ldots x_{k-1} h=g$. Also there exists $x_{k} \in C_{k}$ such that $x_{1} \ldots x_{k-1} x_{k}=g$.
(vii) There exist $x_{1} \in C_{1}, \ldots, x_{n} \in C_{n}$ such that $x_{1} \ldots x_{n}=g$.

Proof. (1) (i). Since $C_{1} \ldots C_{k}$ is not contained in a single archimedean class, it is clear that $k>1$.
(ii) Let $1 \leqq i \leqq k-1$. Then by the minimality of $k, C_{1} \ldots C_{i}$ is contained in a single archimedean class. Hence by Theorem 2.6, we have $C_{1} \ldots C_{i} \subseteq C_{1} * \ldots * C_{i}$. If $i=1$, then trivially we have $C_{1} \ldots C_{i} \subseteq C_{1}$. Suppose $i \geqq 2$. Then we have $C_{1} \delta=$ $=C_{1} \delta \wedge \ldots \wedge C_{n} \delta \preccurlyeq C_{2} \delta \wedge \ldots \wedge C_{i} \delta=\left(C_{2} * \ldots * C_{i}\right) \delta$ and $C_{1} \delta \wedge$ $\wedge\left(C_{2} * \ldots * C_{i}\right) \delta=C_{1} \delta$ is of L-type. Hence $C_{1} \ldots C_{i} \subseteq C_{1} * \ldots * C_{i}=C_{1} *$ $*\left(C_{2} * \ldots * C_{i}\right)=C_{1}$.
(iii) By way of contradiction we assume $C_{i+1} \leqq C_{1}$ for some natural number $1 \leqq i \leqq k-1$. Let $x_{1} \in C_{1}, \ldots, x_{n} \in C_{n}$. Then by (ii), we have $x_{1} \ldots x_{i} \in C_{1} \ldots$ $\ldots C_{i} \subseteq C_{1}$. First suppose $C_{i+1}<C_{1}$. Then we have $x_{i+1}<e$ and so $x_{1} \ldots$ $\ldots x_{i} x_{i+1} \leqq x_{1} \ldots x_{i} e=e$. Next suppose $C_{i+1}=C_{1}$. We denote by F the archimedean class containing the element f. Then $C_{1}<F$. Also since $e \mathscr{D}_{E} f$, it follows from [2] Theorem 3.3 that $C_{1} \delta F$. Hence by Lemma 2.8, we have $x_{1} \ldots x_{i} x_{i+1} \in$ $\in C_{1}^{2} \subseteq\left(C_{1}\right)_{+}$and so $x_{1} \ldots x_{i} x_{i+1} \leqq e$. Thus always we have $x_{1} \ldots x_{i+1} \leqq e$. If $i+1=n$, then we have $x_{1} \ldots x_{n} \leqq e$. Suppose $i+1<n$. Then for every natural number $1 \leqq j \leqq n$, we have $C_{1} \delta=C_{1} \delta \wedge \ldots \wedge C_{n} \delta \preccurlyeq C_{j} \delta$ and by [2] Lemma 4.7, we have $C_{1} \gamma C_{j}$. Also since $C_{1} \delta$ is a δ-class of L-type, the D_{E}-class $e \mathscr{D}_{E}$ is of L-type. Hence by [2] Lemma 2.7, we have $e x_{j}=e$ and so $x_{1} \ldots x_{n} \leqq e x_{i+2} \ldots$ $\ldots x_{n}=e$. Thus always we have $x_{1} \ldots x_{n} \leqq e$. On the other hand $x_{1} \ldots x_{n} \in C_{1} \ldots$ $\ldots C_{n} \subseteq m_{+}\left(C_{1}\right)=[e, f]$, we have $e \leqq x_{1} \ldots x_{n}$. Hence $x_{1} \ldots x_{n}=e$ and so
$C_{1} \ldots C_{n}=\{e\}=m n_{0}\left(C_{1}\right) \subseteq C_{1}$, wh. ch contradicts that $C_{1} \ldots C_{n}$ is not contained in a single archimedean class.
(iv) Since $C_{1} \delta \leqq C_{j} \delta$ for every $1 \leqq j \leqq n$, it follows from [2] Theorem 2.7 that $e y_{2} \ldots y_{k}=f$ or every $y_{2} \in C_{2}, \ldots, y_{k} \in C_{k}$ and so $e \in C_{1} \ldots C_{k}$. Since $C_{1} \ldots C_{k}$ is not contained in a single archimedean class, there exist $x_{1} \in C_{1}, \ldots, x_{k} \in C_{k}$ such that $x_{1} \ldots x_{k} \notin C_{1}$. Bui by (ii) $x_{1} \ldots x_{k}=\left(x_{1} \ldots x_{k-1}\right) x_{k} \in C_{1} C_{k}$ and so $C_{1} C_{k}$ contains an el.ment which does not belong to C_{1}. On the other hand, since $C_{1} \delta \preccurlyeq$ $\preccurlyeq C_{k} \delta$, we have $e=e y_{k} \in C_{1} \cap C_{1} C_{k}$. Hence $C_{1} C_{k}$ is not contained in a single archimedean class. Also by (iii) we have $C_{1}<C_{k}$ and, since $C_{1} \delta \preccurlyeq C_{k} \delta$, we have $C_{1} \delta=$ $=C_{1} \delta \wedge C_{k} \delta$. Hence by [2] Lemma 6.7, we have $e<f<h$. Moreover since $C_{1} \delta=C_{1} \delta \wedge C_{k} \delta=\left(C_{k} * C_{1}\right) \delta$, it follows from [2] Theorem 3.3 that $h \mathscr{D}_{E} e$.
(v) For every natural number $1 \leqq j \leqq n$, we have $C_{1} \delta \preccurlyeq C_{j} \delta$ and, since $C_{1} \delta$ is of L-type, we have $C_{1} * C_{j}=C_{1}$. Hence $C_{1} * \ldots * C_{k}=C_{1}$. Now by Corollary 1.15, there exists a modified archimedean class $m\left(C_{1} * \ldots * C_{k}\right)=m\left(C_{1}\right)$ such that $C_{1} \ldots C_{k} \subseteq m\left(C_{1}\right)$. But since $C_{1} \ldots C_{k}$ is not contained in a single archimedean class, we have either $m\left(C_{1}\right)=m_{+}\left(C_{1}\right)$ or $m\left(C_{1}\right)=m_{-}\left(C_{1}\right)$. By way of contradiction, we assume $m\left(C_{1}\right)=m_{-}\left(C_{1}\right)$. Let $z_{1} \in C_{1}, \ldots, z_{k} \in C_{k}$. Then $z_{1} \ldots z_{k} \in C_{1} \ldots C_{k} \subseteq$ $\subseteq m\left(C_{1}\right)=m_{-}\left(C_{1}\right)$ and so $z_{1} \ldots z_{k} \leqq e$. On the other hand, by (iii) we have $C_{1}<C_{2}$ and so $e<z_{2}$. Also by [2] Theorem 2.7 we have $e z_{3}=\ldots=e z_{k}=e$ and so $z_{1} z_{2} \ldots$ $\ldots z_{k} \geqq z_{1} e \ldots z_{k}=e \ldots z_{k}=e$. Hence $z_{1} \ldots z_{k}=e$ and so $C_{1} \ldots C_{k}=\{e\} \subseteq C_{1}$, which is a contradiction. Hence $C_{1} \ldots C_{k} \subseteq m\left(C_{1}\right)=m_{+}\left(C_{1}\right)$.
(vi) Suppose that $x_{1} \in C_{1}, \ldots, x_{k-1} \in C_{k-1}, y_{k} \in C_{k}$ such that $x_{1} \ldots x_{k-1} y_{k} \notin C_{1}$. Let F and X be archimedean classes which contain f and $x_{1} \ldots x_{k-1} y_{k}$, respectively. Then since $x_{1} \ldots x_{k-1} y_{k} \in C_{1} \ldots C_{k} \subseteq[e, f]$ and $x_{1} \ldots x_{k-1} y_{k} \notin C_{1}$, we have $C_{1}<X \leqq F$. We have $C_{1} \delta \preccurlyeq C_{k} \delta$. First suppose $C_{1} \delta=C_{k} \delta$. Then $C_{k} * C_{1}=C_{k}$ and so C_{k} is a periodic archimedean class with idempotent h and in particular $y_{k} h=h$. Next suppose $C_{1} \delta \prec C_{k} \delta$. Then $C_{k} \delta \wedge\left(C_{k} * C_{1}\right) \delta=C_{k} \delta \wedge C_{k} \delta \wedge C_{1} \delta=C_{1} \delta \prec$ $\prec C_{k} \delta$ and $C_{k} *\left(C_{k} * C_{1}\right)=C_{k} * C_{1}$ and so by Lemma 1.6, $y_{k} h \in C_{k} m_{0}\left(C_{k} * C_{1}\right)=$ $=m_{0}\left(C_{k} * C_{1}\right)=\{h\}$. Hence always we have $y_{k} h=h$. We have $e \mathscr{D}_{E} f$ and by (iv), $e \mathscr{D}_{E} h$ and since $C_{1} \delta$ is of L-type, we have $e \mathscr{L} f \mathscr{L} h$. Since $x_{1} \ldots x_{k-1} y_{k} \leqq f<h$, we have $\left(x_{1} \ldots x_{k-1} y_{k}\right)^{2} \leqq\left(x_{1} \ldots x_{k-1} y_{k}\right) h=x_{1} \ldots x_{k-1} h \leqq f h=f$. Also since $\left(x_{1} \ldots x_{k-1} y_{k}\right)^{2} \in X$, we have $e<\left(x_{1} \ldots x_{k-1} y_{k}\right)^{2} \leqq x_{1} \ldots x_{k-1} h$. Now $\left(C_{k} * C_{1}\right) \delta=$ $=C_{1} \delta$ and by [2] Theorem 2.7, we have $\left(x_{1} \ldots x_{k-1} h\right)^{2}=x_{1} \ldots x_{k-1}\left(h x_{1} \ldots\right.$ $\left.\ldots x_{k-1}\right) h=x_{1} \ldots x_{k-1} h$ and so $x_{1} \ldots x_{k-1} h$ is an idempotent of S. Further we have $\left(x_{1} \ldots x_{k-1} h\right) e=\left(x_{1} \ldots x_{k-1}\right)(h e)=x_{1} \ldots x_{k-1} h$ and $e\left(x_{1} \ldots x_{k-1} h\right)=$ $=\left(e x_{1} \ldots x_{k-1}\right) h=-e h=e$ and so $x_{1} \ldots x_{k-1} h \mathscr{D}_{E} e$. Since e and f are consecutive in $e \mathscr{D}_{E}$, we have $x_{1} \ldots x_{k-1} h=f$.

If $C_{1} \delta=C_{k} \delta$, then since $C_{k} * C_{1}=C_{k}$, we can put $x_{k}=h$ and then $x_{1} \ldots x_{k-1} x_{k}=$ $=x_{1} \ldots x_{k-1} h=f$. Next suppose $C_{1} \delta \prec C_{k} \delta$. By (iii), we have $C_{1}<C_{k}$ and so $C_{3} \leqq C_{k} * C_{1} \leqq C_{k}$. But since $\left(C_{k} * C_{1}\right) \delta=C_{k} \delta \wedge C_{1} \delta=C_{1} \delta \prec C_{k} \delta$, we have $C_{k} * C_{1} \neq C_{k}$ and so $C_{k} * C_{1}<C_{k}$. We take $x_{k} \in C_{k}$ arbitrarily. Then $h<x_{k}$ and so $f=x_{1} \ldots x_{k-1} h \leqq x_{1} \ldots x_{k-1} x_{k}$. On the other hand, by (v) we have $x_{1} \ldots$
$\ldots x_{k-1} x_{k} \in C_{1} \ldots C_{k} \subseteq m_{+}\left(C_{1}\right)=[e, f]$ and so $x_{1} \ldots x_{k-1} x_{k} \leqq f$. Hence $x_{1} \ldots$... $x_{k-1} x_{k}=f$.
(vii) We have $e \in C_{1}$ and for every natural number $1 \leqq j \leqq n$, we have $C_{1} \delta=$ $=C_{1} \delta \wedge \ldots \wedge C_{n} \delta$. Hence for every $z_{2} \in C_{2}, \ldots, z_{k} \in C_{k}$ we have $e=e z_{2} \ldots z_{k} \in$ $\in C_{1} \ldots C_{k}$. But since $C_{1} \ldots C_{k}$ is not contained in a single archimedean class, there exist $x_{1} \in C_{1}, \ldots, x_{k-1} \in C_{k-1}, y_{k} \in C_{k}$ such that $x_{1} \ldots x_{k-1} y_{k} \notin C_{1}$. Hence by (vi) there exists $x_{k} \in C_{k}$ such that $x_{1} \ldots x_{k-1} x_{k}=f$. Since $e \mathscr{D}_{E} f$, it follows from [2] Theorem 3.3 that $F \delta=C_{1} \delta=C_{1} \delta \wedge \ldots \wedge C_{n} \delta \preccurlyeq C_{j} \delta$ for every natural number $1 \leqq j \leqq n$. We take $x_{k+1} \in C_{k+1}, \ldots, x_{n} \in C_{n}$ arbitrarily. Then by [2] Theorem 2.7, we have $x_{1} \ldots x_{n}=\left(x_{1} \ldots x_{k}\right) x_{k+1} \ldots x_{n}=f x_{k+1} \ldots x_{n}=f$.
(2) can be proved similarly.

Lemma 2.10. Let $C_{1}, \ldots, C_{n} \in \mathscr{C}$ such that $C_{1} \delta \wedge \ldots \wedge C_{n} \delta$ is a periodic δ-class of L-type. We denote by e the idempotent of the periodic archimedean class $C_{1} * \ldots * C_{n}$. Also let h be the least natural number such that $C_{1} \delta \wedge \ldots \wedge C_{h} \delta=$ $=C_{1} \delta \wedge \ldots \wedge C_{n} \delta$.
(1) For the following three conditions (i), (ii) and (iii), (i) implies (ii) and (ii) implies (iii).
(i) $C_{1} \ldots C_{n}$ is not contained in a single archimedean class and $C_{1} \ldots C_{n} \subseteq$ $\subseteq m_{+}\left(C_{1} * \ldots * C_{n}\right)$.
(ii) $C_{1} * \ldots * C_{h}=C_{h}=C_{h} * \ldots * C_{n}, C_{h} \ldots C_{n}$ is not contained in a single archimedean class, $C_{h} \ldots C_{h} \subseteq m_{+}\left(C_{h}\right)=m_{+}\left(C_{h} * \ldots * C_{n}\right)$ and if $h>1$, then $C_{h}<C_{1} * \ldots * C_{h-1}$.
(iii) There exists an idempotent f of S such that $e<f, e \mathscr{D}_{E} f$ and e and f are consecutive in $e \mathscr{D}_{E}$ and also there exist $x_{1} \in C_{1}, \ldots, x_{n} \in C_{n}$ such that $x_{1} \ldots x_{n}=f$.
(2) For the following three conditions (iv), (v) and (vi), (iv) implies (v) and (v) implies (vi).
(iv) $C_{1} \ldots C_{n}$ is not contained in a single archimedean class and $C_{1} \ldots C_{n} \subseteq$ $\subseteq m_{-}\left(C_{1} * \ldots * C_{n}\right)$.
(v) $C_{1} * \ldots * C_{h}=C_{h}=C_{h} * \ldots * C_{n}, C_{h} \ldots C_{n}$ is not contained in a single archimedean class, $C_{h} \ldots C_{n} \subseteq m_{-}\left(C_{h}\right)=m_{-}\left(C_{h} * \ldots * C_{n}\right)$ and if $h>1$, then $C_{1} * \ldots * C_{h-1}<C_{1}$.
(vi) There exists an idempotent g of S such that $g<e, g \mathscr{D}_{E} e$ and g and e are consecutive in $e \mathscr{D}_{E}$ and also there exist $x_{1} \in C_{1}, \ldots, x_{n} \in C_{n}$ such thaı $x_{1} \ldots x_{n}=g$.

Proof. By Lemma 1.4, $\left(C_{1} * \ldots * C_{n}\right) \delta=C_{1} \delta \wedge \ldots \wedge C_{n} \delta$ and so $C_{1} * \ldots * C_{n}$ is really a periodic archimedean class.
(1) First suppose (i) holds. If $h=1$, then for every natural number $1 \leqq j \leqq n$, we have $C_{1} \delta=C_{1} \delta \wedge \ldots \wedge C_{n} \delta \preccurlyeq C_{j} \delta$ and so $C_{1} * C_{j}=C_{1}$. Hence $C_{1}=$ $=C_{1} * \ldots * C_{n}$. The remaining conditions of (ii) are evident. Suppose $h>1$. Then by the definition of h, we have $\left(C_{1} * \ldots * C_{h-1}\right) \delta \wedge C_{h} \delta=C_{1} \delta \wedge \ldots \wedge C_{h-1} \delta \wedge$ $\wedge C_{h} \delta=C_{1} \delta \wedge \ldots \wedge C_{n} \delta \prec C_{1} \delta \wedge \ldots \wedge C_{h-1} \delta=\left(C_{1} * \ldots * C_{h-1}\right) \delta$. Also by

Corollary 1.15, there exists a modified archimedean class $m\left(C_{1} * \ldots * C_{h-1}\right)$ of $C_{1} * \ldots * C_{h-1}$ such that $C_{1} \ldots C_{h-1} \subseteq m\left(C_{1} * \ldots * C_{h-1}\right)$. Now by way of contradiction, we assume $C_{1} * \ldots * C_{h-1} * C_{h} \neq C_{h}$. Then by Lemma 1.5, we have $C_{1} \ldots$ $\ldots C_{h-1} C_{h} \subseteq m\left(C_{1} * \ldots * C_{h-1}\right) C_{h}=m_{0}\left(C_{1} * \ldots * C_{h-1} * C_{h}\right)$. Also for every natural number $1 \leqq j \leqq n$, we have $\left(C_{1} * \ldots * C_{h}\right) \delta=C_{1} \delta \wedge \ldots \wedge C_{h} \delta=$ $=C_{1} \delta \wedge \ldots \wedge C_{n} \delta \preccurlyeq C_{j} \delta$ and so $\left(C_{1} * \ldots * C_{h}\right) \delta \wedge C_{j} \delta=\left(C_{1} * \ldots * C_{h}\right) \delta$. Hence by Lemma 1.7, we have $m_{0}\left(C_{1} * \ldots * C_{h}\right) C_{j}=m_{0}\left(C_{1} * \ldots * C_{h}\right)$ and so $C_{1} \ldots$ $\ldots C_{h} C_{h+1} \ldots C_{n} \subseteq m_{0}\left(C_{1} * \ldots * C_{h}\right) C_{h+1} \ldots C_{n}=m_{0}\left(C_{1} * \ldots * C_{h}\right) \subseteq C_{1} * \ldots$ $\ldots * C_{h}$, which contradicts that $C_{1} \ldots C_{n}$ is not contained in a single archimedean class. Hence we have $C_{1} * \ldots * C_{h}=C_{h}$. Also for every natural number $1 \leqq j \leqq n$, we have $C_{h} \delta=\left(C_{1} * \ldots * C_{h}\right) \delta=C_{1} \delta \wedge \ldots \wedge C_{h} \delta=C_{1} \delta \wedge \ldots \wedge C_{n} \delta \preccurlyeq C_{j} \delta$ and so $C_{h} * C_{j}=C_{h}$. Hence $C_{h} * \ldots * C_{n}=C_{h}$. We have $C_{h}=C_{1} * \ldots * C_{h}=\left(C_{1} * \ldots\right.$ $\left.\ldots * C_{h-1}\right) *\left(C_{h} * \ldots * C_{n}\right)=C_{1} * \ldots * C_{n}$ and so e is the idempotent of C_{h}. By way of contradiction, we assume $C_{1} * \ldots * C_{h-1} \leqq C_{h}$. Let $x_{1} \in C_{1}, \ldots, x_{n} \in C_{n}$. Then by Lemma 1.6 , we have $x_{1} \ldots x_{h-1} x_{h} \in m\left(C_{1} * \ldots * C_{h-1}\right) C_{h} \subseteq\left(C_{h}\right)_{+}$and so $x_{1} \ldots x_{h-1} x_{h} \leqq e$. Hence by [2] Theorem 2.7, we have $x_{1} \ldots x_{n}=x_{1} \ldots x_{h} \ldots x_{n} \leqq$ $\leqq e \ldots x_{n}=e$. On the other hand, since $C_{1} \ldots C_{n} \subseteq m_{+}\left(C_{1} * \ldots * C_{n}\right)$, there exists an idempotent f of S such that $e<f, e \mathscr{D}_{E} f$ and e and f are consecutive in $e \mathscr{D}_{E}$ and also $C_{1} \ldots C_{n} \subseteq[e, f]$. Hence $x_{1} \ldots x_{n} \in C_{1} \ldots C_{n} \subseteq[e, f]$ and so $e \leqq x_{1} \ldots x_{n}$. Hence $x_{1} \ldots x_{n}=e$ and so $C_{1} \ldots C_{n}=\{e\} \subseteq C_{h}$. which contradicts that $C_{1} \ldots C_{n}$ is not contained in a single archimedean class. Hence we have $C_{h}<C_{1} * \ldots * C_{h-1}$. By way of contradiction we assume $C_{h} \ldots C_{n}$ is contained in a single archimedean class. Then by Lemma 2.6, we have $C_{h} \ldots C_{n} \subseteq C_{h} * \ldots * C_{n}=C_{h}$. Hence by Lemma $1.6, C_{1} \ldots C_{n}=\left(C_{1} \ldots C_{h-1}\right)\left(C_{h} \ldots C_{n}\right) \subseteq m\left(C_{1} * \ldots * C_{h-1}\right) C_{h} \subseteq\left(C_{h}\right)_{-} \subseteq C_{h}$, which contradicts that $C_{1} \ldots C_{n}$ is not contained in a single archimedean class. Hence $C_{h} \ldots C_{n}$ is not contained in a single archimedean class. Finally, by way of contradiction, we assume that $C_{h} \ldots C_{n}$ is not contained in $m_{+}\left(C_{h} * \ldots * C_{n}\right)$. Then, since $C_{h} \ldots C_{n}$ is not contained in a single archimedean class, we must have $C_{h} \ldots C_{n} \subseteq$ $\subseteq m_{-}\left(C_{h} * \ldots * C_{n}\right)=m_{-}\left(C_{h}\right)$. Hence by Lemma 1.6 again, we have $C_{1} \ldots C_{n} \subseteq$ $\subseteq m\left(C_{1} * \ldots * C_{h-1}\right) m_{-}\left(C_{h}\right)=m_{0}\left(C_{h}\right) \subseteq C_{h}$, which contradicts that $C_{1} \ldots C_{n}$ is not contained in a single archimedean class. Hence $C_{h} \ldots C_{n} \subseteq m_{+}\left(C_{h} * \ldots * C_{n}\right)=$ $=m_{+}\left(C_{h}\right)$.

Next suppose (ii) holds. Since $C_{h} * \ldots * C_{n}=C_{h}=C_{1} * \ldots * C_{h}=C_{1} * \ldots$ $\ldots{ }^{*} C_{h}{ }^{*} \ldots{ }^{*} C_{n}$, e is the idempotent of C_{h}. Since $C_{h} \ldots C_{n} \subseteq m_{+}\left(C_{h}\right)=$ $=m_{+}\left(C_{h} * \ldots * C_{n}\right)$, there exists an idempotent f of S such that $e<f, e \mathscr{D}_{E} f, e$ and f are consecutive in $e \mathscr{D}_{E}$ and $C_{h} \ldots C_{n} \subseteq[e, f]$. If $h=1$, then $C_{1} \delta=C_{1} \delta \wedge \ldots$ $\ldots \wedge C_{n} \delta, C_{1} \ldots C_{n}$ is not contained in a single archimedean class and $C_{1} \ldots C_{n} \subseteq$ $\subseteq m_{+}\left(C_{1}\right)$. Hence by Lemma 2.9, there exist $y_{1} \in C_{1}, \ldots, y_{n} \in C_{n}$ such that $y_{1} \ldots y_{n}=$ $=f$. Next suppose $h>1$. Then $C_{h} \delta=\left(C_{h} * \ldots * C_{n}\right) \delta=C_{h} \delta \wedge \ldots \wedge C_{n} \delta$ and so by Lemma 2.9, there exist $y_{h} \in C_{h}, \ldots, y_{n} \in C_{n}$ such that $y_{h} \ldots y_{n}=f$. Now by the definition of h, we have $C_{h} \delta=C_{1} \delta \wedge \ldots \wedge C_{h} \delta=C_{1} \delta \wedge \ldots \wedge C_{n} \delta \prec C_{1} \delta \wedge \ldots$ $\ldots \wedge C_{h-1} \delta$. Since $C_{h}<C_{1} * \ldots * C_{h-1}$, we have

$$
\begin{aligned}
& C_{h}=\left(C_{1} * \ldots * C_{h-1}\right) * C_{h}= \\
& =\max \left\{Z \in \mathscr{C} ; C_{h} \leqq Z \leqq C_{1} * \ldots * C_{h-1} \text { and } Z \in\left(C_{1} * \ldots * C_{h-1}\right) \delta \wedge C_{h} \delta\right\} \\
& =\max \left\{Z \in \mathscr{C} ; C_{h} \leqq Z \leqq C_{1} * \ldots * C_{h-1} \text { and } Z \in C_{h} \delta\right\}
\end{aligned}
$$

and so there exists no $Z \in \mathscr{C}$ such that $C_{h}<Z \leqq C_{1} * \ldots * C_{h-1}$ and $Z \in C_{h} \delta$. We denote by F the archimedean class containing f. Then since $e<f$, we have $C_{h}<F$ and, since $e \mathscr{D}_{E} f$, it follows from [2] Theorem 3.3 that $C_{h} \delta F$. Hence we have $C_{1} * \ldots * C_{h-1}<F$. Further since e and f are consecutive in $e \mathscr{D}_{E}$, there exists no $Z \in \mathscr{C}$ such that $C_{h}<Z<F$ and $Z \in C_{h} \delta$. Also we have $\left(C_{1} * \ldots * C_{h-1}\right) \delta \wedge$ $\wedge F \delta=\left(C_{1} * \ldots * C_{h-1}\right) \delta \wedge C_{h} \delta=C_{h} \delta$. Hence

$$
\begin{gathered}
\left(C_{1} * \ldots * C_{h-1}\right) * F \\
=\min \left\{Z \in \mathscr{C} ; C_{1} * \ldots * C_{h-1} \leqq Z \leqq F \text { and } Z \in\left(C_{1} * \ldots * C_{h-1}\right) \delta \wedge F \delta\right\} \\
=\min \left\{Z \in \mathscr{C} ; C_{1} * \ldots * C_{h-1} \leqq Z \leqq F \text { and } Z \in C_{h} \delta\right\}=F .
\end{gathered}
$$

We take $y_{1} \in C_{1}, \ldots, y_{h-1} \in C_{h-1}$ arbitrarily. Then, by Corollary 1.15 , there exists a modified archimedean class $m\left(C_{1} * \ldots * C_{h-1}\right)$ of $C_{1} * \ldots * C_{h-1}$ such that $C_{1} \ldots C_{h-1} \subseteq m\left(C_{1} * \ldots * C_{h-1}\right)$. Hence by Lemma 1.6, $y_{1} \ldots y_{n}=y_{1} \ldots y_{h-1} f \in$ $\in C_{1} \ldots C_{h-1} m_{0}(F) \subseteq m\left(C_{1} * \ldots * C_{h-1}\right) m_{0}(F)=m_{0}(F)=\{f)$ and so $y_{1} \ldots y_{n}=$ $=f$.
(2) can be proved similarly.

Theorem 2.11. Let $C_{1}, \ldots, C_{n} \in \mathscr{C}$ such that $C_{1} \delta \wedge \ldots \wedge C_{n} \delta$ is a periodic δ-class of L-type. We denote by e_{1} the idempotent of the periodic archimedean class $C_{1} * \ldots * C_{n}$. Also let h be the least natural number such that $C_{1} \delta \wedge \ldots \wedge C_{h} \delta=$ $=C_{1} \delta \wedge \ldots \wedge C_{n} \delta$.
(1) $C_{1} \ldots C_{n}$ is not contained in a single archimedean class and $C_{1} \ldots C_{n} \subseteq$ $\subseteq m_{+}\left(C_{1} * \ldots * C_{n}\right)$ if and only if there exists an idempotent f_{1} of S such that $e_{1}<f_{1}$, $e_{1} \mathscr{D}_{E} f_{1}$ and e_{1} and f_{1} are consecutive in $e_{1} \mathscr{D}_{E}$ and satisfies either
(i) $h>1, C_{1} * \ldots * C_{h}=C_{h}=C_{h} * \ldots * C_{n}, C_{h}<C_{1} * \ldots * C_{h-1}, C_{h} \ldots C_{n}$ is not contained in a single archimedean class and $C_{h} \ldots C_{n} \subseteq m_{+}\left(C_{h}\right)=m_{+}\left(C_{h} * \ldots\right.$ $\ldots * C_{n}$), or
(ii) $h=1, C_{1} \delta=C_{1} \delta \wedge \ldots \wedge C_{n} \delta, C_{1}<C_{2}$ and satisfies either
(a) $C_{1} C_{2}$ is not contained in a single archimedean class and $C_{1} C_{2} \subseteq$ $\subseteq m_{+}\left(C_{1} * C_{2}\right)=m_{+}\left(C_{1}\right)=m_{+}\left(C_{1} * \ldots * C_{n}\right)$, or
(b) $C_{1} C_{2}$ is contained in a single archimedean class and $C_{2} \delta \wedge \ldots \wedge C_{n} \delta=$ $=C_{1} \delta \wedge \ldots \wedge C_{n} \delta$. Also, denoting by e_{2} the idempotent of the periodic archimedean class $C_{2} * C_{1}$, there exists an idempotent f_{2} of S such that $e_{2}<f_{2}, e_{2} \mathscr{D}_{E} f_{2}, e_{2}$ and f_{2} are consecutive in $e_{2} \mathscr{D}_{E}$ and $x f_{2}=f_{1}$ for some $x \in\left(C_{1}\right)_{-}$and satisfies either
$\left(\mathrm{b}_{1}\right) C_{2} * \ldots * C_{n} \neq C_{2} * C_{1}$ and f_{2} is the idempotent of the periodic archimedean class $C_{2} * \ldots * C_{n}$, or
$\left(\mathrm{b}_{2}\right) C_{2} * \ldots * C_{n}=C_{2} * C_{1}, C_{2} \ldots C_{n}$ is not contained in a single archimedean. class and $C_{2} \ldots C_{n} \subseteq m_{+}\left(C_{2} * \ldots * C_{n}\right)=m_{+}\left(C_{2} * C_{1}\right)$.
(2) $C_{1} \ldots C_{n}$ is not contained in a single archimedean class and $C_{1} \ldots C_{n} \subseteq$ $\subseteq m_{-}\left(C_{1} * \ldots * C_{n}\right)$ if and only if there exists an idempotent g_{1} of S such that $g_{1}<e_{1}$, $g_{1} \mathscr{D}_{E} e_{1}$ and g_{1} and e_{1} are consecutive in $e_{1} \mathscr{D}_{E}$ and satisfies either
(i) $h>1, C_{1} * \ldots * C_{h}=C_{h}=C_{h} * \ldots * C_{n}, C_{1} * \ldots * C_{h-1}<C_{h}, C_{h} \ldots C_{n}$ is not contained in a single archimedean class and $C_{h} \ldots C_{n} \subseteq m_{-}\left(C_{h}\right)=m_{-}\left(C_{h} * \ldots\right.$ $\ldots * C_{n}$), or
(ii) $h=1, C_{1} \delta=C_{1} \delta \wedge \ldots \wedge C_{n} \delta, C_{2}<C_{1}$ and satisfies either
(a) $C_{1} C_{2}$ is not contained in a single archimedean class and $C_{1} C_{2} \subseteq$ $\subseteq m_{-}\left(C_{1} * C_{2}\right)=m_{-}\left(C_{1}\right)=m_{-}\left(C_{h} * \ldots * C_{n}\right)$, or
(b) $C_{1} C_{2}$ is contained in a single archimedean class and $C_{2} \delta \wedge \ldots \wedge C_{n} \delta=$ $=C_{1} \delta \wedge \ldots \wedge C_{n} \delta$. Also, denoting by e_{2} the idempotent of the periodic archimedean class $C_{2} * C_{1}$, there exists an idempotent g_{2} of S such that $g_{2}<e_{2}$, $g_{2} \mathscr{D}_{E} e_{2}, g_{2}$ and e_{2} are consecutive in $e_{2} \mathscr{D}_{E}$ and $x g_{2}=g_{1}$ for some $x \in\left(C_{1}\right)_{+}$and satisfies either
$\left(\mathrm{b}_{1}\right) C_{2} * \ldots * C_{n} \neq C_{2} * C_{1}$ and g_{2} is the idempotent of the periodic archimedean class $C_{2} * \ldots * C_{n}$, or
$\left(\mathrm{b}_{2}\right) C_{2} * \ldots * C_{n}=C_{2} * C_{1}, C_{2} \ldots C_{n}$ is not contained in a single archimedean class and $C_{2} \ldots C_{n} \subseteq m_{-}\left(C_{2} * \ldots * C_{n}\right)=m_{-}\left(C_{2} * C_{1}\right)$.

Proof. By Lemma 1.4, $\left(C_{1} * \ldots * C_{n}\right) \delta=C_{1} \delta \wedge \ldots \wedge C_{n} \delta$ and so $C_{1} * \ldots * C_{n}$ is really a periodic archimedean class.
(1) First suppose that $C_{1} \ldots C_{n}$ is not contained in a single archimedean class and $C_{1} \ldots C_{n} \subseteq m_{+}\left(C_{1} * \ldots * C_{n}\right)$. Then there exists an idempotent f_{1} of S such that $e_{1}<f_{1}, e_{1} \mathscr{D}_{E} f_{1}, e_{1}$ and f_{1} are consecutive in $e_{1} \mathscr{D}_{E}$ and $m_{+}\left(C_{1} * \ldots * C_{n}\right)=$ $=\left[e_{1}, f_{1}\right]$.
(i) Suppose $h>1$. Then by Lemma 2.10, $C_{1} * \ldots * C_{h}=C_{h}=C_{h} * \ldots * C_{n}$, $C_{h}<C_{1} * \ldots * C_{h-1}, C_{h} \ldots C_{n}$ is not contained in a single archimedean class and $C_{h} \ldots C_{n} \subseteq m_{+}\left(C_{h}\right)=m_{+}\left(C_{h} * \ldots * C_{n}\right)$.
(ii) Suppose $h=1$. Then we have $C_{1} \delta=C_{1} \delta \wedge \ldots \wedge C_{n} \delta$. Also for every natural number $1 \leqq j \leqq n$, we have $C_{1} \delta=C_{1} \delta \wedge \ldots \wedge C_{n} \delta \preccurlyeq C_{j} \delta$ and so $C_{1} * C_{j}=C_{1}$. Hence $C_{1} * \ldots * C_{n}=C_{1}$ and e_{1} is the idempotent of C_{1}. Hence by Lemma 2.9, we have $C_{1}<C_{2}$.
(a) Suppose $C_{1} C_{2}$ is not contained in a single archimedean class. Then denoting by k the least natural number such that $C_{1} \ldots C_{k}$ is not contained in a single archimedean class, we have $k=2$. Hence by Lemma 2.9, we have $C_{1} C_{2} \subseteq m_{+}\left(C_{1}\right)=$ $=m_{+}\left(C_{1} * C_{2}\right)=m_{+}\left(C_{1} * \ldots * C_{n}\right)$.
(b) Suppose $C_{1} C_{2}$ is contained in a single archimedean class. Since $\left(C_{2} * C_{1}\right) \delta=$ $=C_{2} \delta \wedge C_{1} \delta=C_{1} \delta, C_{2} * C_{1}$ is really a periodic archimedean class. Now by way of contradiction, we assume $C_{1} \delta \wedge \ldots \wedge C_{n} \delta \neq C_{2} \delta \wedge \ldots \wedge C_{n} \delta$. Then $C_{1} \delta=$ $=C_{1} \delta \wedge \ldots \wedge C_{n} \delta \prec C_{2} \delta \wedge \ldots \wedge C_{n} \delta$. Let $x_{1} \in C_{1}, x_{2} \in C_{2}, \ldots, x_{n} \in C_{n}$. We denote by X the archimedean class which contains $x_{2} \ldots x_{n}$. By Corollary 1.15, there exists a modified archimedean class $m\left(C_{2} * \ldots * C_{n}\right)$ of $C_{2} * \ldots * C_{n}$ such that
$C_{2} \ldots C_{n} \subseteq m\left(C_{2} * \ldots * C_{n}\right)$ and so $x_{2} \ldots x_{n} \in m\left(C_{2} * \ldots * C_{n}\right)$. Hence by Lemma $1.2, C_{2} \delta \wedge \ldots \wedge C_{n} \delta=\left(C_{2} * \ldots * C_{n}\right) \delta \preccurlyeq X \delta$ and so $C_{1} \delta \prec C_{2} \delta \wedge \ldots \wedge C_{n} \delta=$ $=C_{2} \delta \wedge\left(C_{2} \delta \wedge \ldots \wedge C_{n} \delta\right) \preccurlyeq C_{2} \delta \wedge X \delta$. Hence by [2] Lemma 5.6, there exists no $Z \in \mathscr{C}$ such that $Z \in C_{1} \delta$ and Z lies between C_{2} and X. In particular, C_{1} does not lie between C_{2} and X and, since $C_{1}<C_{2}$, we have $C_{1}<X$. Also since $C_{1} \delta \prec C_{2} \delta$ and $C_{1} \delta \prec X \delta$, we have

$$
\begin{aligned}
X * C_{1} & =\max \left\{Z \in \mathscr{C} ; C_{1} \leqq Z \leqq X \text { and } Z \in C_{1} \delta \wedge X \delta\right\} \\
& =\max \left\{Z \in \mathscr{C} ; C_{1} \leqq Z \leqq X \text { and } Z \in C_{1} \delta\right\} \\
& =\max \left\{Z \in \mathscr{C} ; C_{1} \leqq Z \leqq C_{2} \text { and } Z \in C_{1} \delta\right\} \\
& =\max \left\{Z \in \mathscr{C} ; C_{1} \leqq Z \leqq C_{2} \text { and } Z \in C_{1} \delta \wedge C_{2} \delta\right\}=C_{2} * C_{1} .
\end{aligned}
$$

Since e_{2} is the idempotent of $C_{2} * C_{1}, e_{2}$ is the idempotent of $X * C_{1}$. Since $C_{1} C_{2}$ is contained in a single archimedean class, it follows from Lemma 1.10 that $x e_{2}=e_{1}$ for every $x \in\left(C_{1}\right)_{-}$and so by Lemma 1.10 again, $C_{1} X \subseteq\left(C_{1}\right)_{-} \subseteq C_{1}$. Hence $x_{1} x_{2} \ldots x_{n} \in C_{1} X \subseteq C_{1}$ and so $C_{1} C_{2} \ldots C_{n} \subseteq C_{1}$, which contradicts that $C_{1} \ldots C_{n}$ is not contained in a single archimedean class. Hence we have $C_{2} \delta \wedge \ldots \wedge C_{n} \delta=$ $=C_{1} \delta \wedge \ldots \wedge C_{n} \delta=C_{1} \delta$.
$\left(\mathrm{b}_{1}\right)$ Suppose $C_{2} * \ldots * C_{n} \neq C_{2} * C_{1}$. By way of contradiction, we assume $C_{1} \delta=$ $=C_{2} \delta$. Then for every $1 \leqq j \leqq n$, we have $C_{2} \delta=C_{1} \delta=C_{1} \delta \wedge \ldots \wedge C_{n} \delta \preccurlyeq C_{j} \delta$ and so $C_{2} * C_{1}=C_{2}=C_{2} * \ldots * C_{n}$ which is a contradiction. Hence $C_{1} \delta \prec C_{2} \delta$. Since $C_{1}<C_{2}$, we have $C_{1} \leqq C_{2} * C_{1} \leqq C_{2}$ but, since $\left(C_{2} * C_{1}\right) \delta=C_{2} \delta \wedge C_{1} \delta=$ $=C_{1} \delta \prec C_{2} \delta$, we have $C_{2} * C_{1}<C_{2}$. Also

$$
\begin{aligned}
C_{2} * C_{1} & =\max \left\{Z \in \mathscr{C} ; C_{1} \leqq Z \leqq C_{2} \text { and } Z \in C_{2} \delta \wedge C_{1} \delta\right\} \\
& =\max \left\{Z \in \mathscr{C} ; C_{1} \leqq Z \leqq C_{2} \text { and } Z \in C_{1} \delta\right\}
\end{aligned}
$$

and so there exists no $Z \in \mathscr{C}$ such that $C_{2} * C_{1}<Z \leqq C_{2}$ and $Z \in C_{1} \delta$. By way of contradiction we assume $C_{2} * \ldots * C_{n} \leqq C_{2}$. Then, since $\left(C_{2} * \ldots * C_{n}\right) \delta=$ $=C_{2} \delta \wedge \ldots \wedge C_{n} \delta=C_{1} \delta \prec C_{2} \delta$, we have $C_{2} * \ldots * C_{n}<C_{2}$. Also

$$
C_{2} * \ldots * C_{n}=C_{2} *\left(C_{2} * \ldots * C_{n}\right)
$$

$=\max \left\{Z \in \mathscr{C} ; C_{2} * \ldots * C_{n} \leqq Z \leqq C_{2}\right.$ and $\left.Z \in\left(C_{2} * \ldots * C_{n}\right) \delta \wedge C_{2} \delta\right\}$

$$
=\max \left\{Z \in \mathscr{C} ; C_{2} * \ldots * C_{n} \leqq Z \leqq C_{2} \text { and } Z \in C_{1} \delta\right\}
$$

and so there exists no $Z \in \mathscr{C}$ such that $C_{2} * \ldots * C_{n}<Z \leqq C_{2}$ and $Z \in C_{1} \delta$. Hence

$$
C_{2} * C_{1}=\max \left\{Z \in \mathscr{C} ; Z \leqq C_{2} \text { and } Z \in C_{1} \delta\right\}=C_{2} * \ldots * C_{n},
$$

which is a contradiction. Hence $C_{2} * C_{1}<C_{2}<C_{2} * \ldots * C_{n}$. Also since $\left(C_{2} * \ldots * C_{n}\right) \delta=C_{1} \delta, C_{2} * \ldots * C_{n}$ is a periodic archimedean class. We denote by f_{2} the idempotent of $C_{2} * \ldots * C_{n}$. Then since $C_{2} * C_{1}<C_{2} * \ldots * C_{n}$, we have $e_{2}<f_{2}$. Also since $\left(C_{2} * C_{1}\right) \delta=C_{1} \delta=\left(C_{2} * \ldots * C_{n}\right) \delta$, it follows from [2] Theorem 3.3 that $e_{2} \mathscr{D}_{E} f_{2}$.

$$
\begin{gathered}
C_{2} * \ldots * C_{n}=C_{2} *\left(C_{2} * \ldots * C_{n}\right) \\
=\min \left\{Z \in \mathscr{C} ; C_{2} \leqq Z \leqq C_{2} * \ldots * C_{n} \text { and } Z \in C_{2} \delta \wedge\left(C_{2} * \ldots * C_{n}\right) \delta\right\} \\
=\min \left\{Z \in \mathscr{C} ; C_{2} \leqq Z \leqq C_{2} * \ldots * C_{n} \text { and } Z \in C_{1} \delta\right\}
\end{gathered}
$$

and so there exists no $Z \in \mathscr{C}$ such that $C_{2} \leqq Z<C_{2} * \ldots * C_{n}$ and $Z \in C_{1} \delta$. Since there exists no $Z \in C$ such that $C_{2} * C_{1}<Z \leqq C_{2}$ and $Z \in C_{1} \delta$, there exists no $Z \in C$ such that $C_{2} * C_{1}<Z<C_{2} * \ldots * C_{n}$ and $Z \in C_{1} \delta=\left(C_{2} * C_{1}\right) \delta$ and so by [2] Theorem 3.3, e_{2} and f_{2} are consecutive in $e_{2} \mathscr{D}_{E}$. Moreover by Lemma 2.9, there exist $x_{1} \in C_{1}, x_{2} \in C_{2}, \ldots, x_{n} \in C_{n}$ such that $x_{1} x_{2} \ldots x_{n}=f_{1}$. But since $C_{2}<$ $<C_{2} * \ldots * C_{n}$, we have $x_{2}<f_{2}$. Also since $\left(C_{2} * \ldots * C_{n}\right) \delta=C_{1} \delta=C_{1} \delta \wedge \ldots$ $\ldots \wedge C_{n} \delta \preccurlyeq C_{j} \delta$ for every $1 \leqq j \leqq n$, it follows from [2] Theorem 2.7 that $f_{2} x_{3} \ldots$ $\ldots x_{n}=f_{2}$. Hence $f_{1}=x_{1} x_{2} \ldots x_{n} \leqq x_{1} f_{2} \ldots x_{n}=x_{1} f_{2}$. On the other hand by Lemma 2.5, $\left\{f_{2}\right\}=m_{0}\left(C_{2} * \ldots * C_{n}\right) \subseteq C_{2} \ldots C_{n}$ and so there exist $y_{2} \in C_{2}, \ldots$ $\ldots, y_{n} \in C_{n}$ such that $f_{2}=y_{2} \ldots y_{n}$. Hence $x_{1} f_{2}=x_{1} y_{2} \ldots y_{n} \in C_{1} C_{2} \ldots C_{n} \subseteq$ $\subseteq m_{+}\left(C_{1} * C_{2} * \ldots * C_{n}\right)=\left[e_{1}, f_{1}\right]$ and so we have $x_{1} f_{2} \leqq f_{1}$. Hence we have $x_{1} f_{2}=f_{1}$. Further by [2] Theorem 2.7, $e_{1} f_{2}=e_{1} y_{2} \ldots y_{n}=e_{1}<f_{1}=x_{1} f_{2}$ and so we have $e_{1}<x_{1}$. Hence $x_{1} \in\left(C_{1}\right)_{-}$.
$\left(\mathrm{b}_{2}\right)$ Suppose $C_{2} * \ldots * C_{n}=C_{2} * C_{1}$. Since e_{2} is the idempotent of $C_{2} * C_{1}$, $C_{1}<C_{2}$ and $C_{1} C_{2}$ is contained in a single archimedean class, it follows from Lemma 1.10 that $x e_{2}=e_{1}$ for every $x \in\left(C_{1}\right)_{-}$. Also we have $C_{1} \leqq C_{2} * C_{1}=$ $=C_{2} * \ldots * C_{n}$. By way of contradiction, we assume $C_{1}=C_{2} * \ldots * C_{n}$. Then by Corollary 1.15, there exists a modified archimedean class $m\left(C_{2} * \ldots * C_{n}\right)$ of $C_{2} * \ldots$ $\ldots * C_{n}$ such that $C_{2} \ldots C_{n} \subseteq m\left(C_{2} * \ldots * C_{n}\right)$. Hence by Lemma 1.8 , we see that $C_{1} C_{2} \ldots C_{n} \subseteq C_{1} m\left(C_{2} * \ldots * C_{n}\right)=C_{1} m\left(C_{1}\right) \subseteq C_{1}$, which contradicts that $C_{1} \ldots C_{n}$ is not contained in a single archimedean class. Hence we have $C_{1}<C_{2} * \ldots * C_{n}=$ $=C_{2} * C_{1}$. We have $\left(C_{2} * \ldots * C_{n}\right) \delta=C_{2} \delta \wedge \ldots \wedge C_{n} \delta=C_{1} \delta \wedge \ldots \wedge C_{n} \delta \preccurlyeq$ $\preccurlyeq C_{1} \delta$ and so $\left(C_{2} * \ldots * C_{n}\right) * C_{1}=C_{2} * \ldots * C_{n}$. Since e_{2} is also the idempotent of $C_{2} * \ldots * C_{n}$, it follows from Lemma 1.10 that $C_{1}\left(C_{2} * \ldots * C_{n}\right)$ is contained in a single archimedean class. By way of contradiction we assume that $C_{2} \ldots C_{n}$ is contained in a single archimedean class. Then by Theorem 2.6, we have $C_{2} \ldots C_{n} \subseteq$ $\subseteq C_{2} * \ldots * C_{n}$ and so $C_{1} C_{2} \ldots C_{n} \subseteq C_{1}\left(C_{2} * \ldots * C_{n}\right)$. But since $C_{1}\left(C_{2} * \ldots * C_{n}\right)$ is contained in a single archimedean class, this is a contradiction. Hence $C_{2} \ldots C_{n}$ is not contained in a single archimedean class. But by Corollary 1.15, there exists a modified archimedean class $m\left(C_{2} * \ldots * C_{n}\right)$ of $C_{2} * \ldots * C_{n}$ such that $C_{2} \ldots C_{n} \subseteq$ $\subseteq m\left(C_{2} * \ldots * C_{n}\right)$. Since $C_{2} \ldots C_{n}$ is not contained in a single archimedean class, we must have either $m\left(C_{2} * \ldots * C_{n}\right)=m_{+}\left(C_{2} * \ldots * C_{n}\right)$ or $m\left(C_{2} * \ldots * C_{n}\right)=$ $=m_{-}\left(C_{2} * \ldots * C_{n}\right)$. Now by Lemma 2.9, there exist $x_{1} \in C_{1}, x_{2} \in C_{2}, \ldots, x_{n} \in C_{n}$ such that $x_{1} x_{2} \ldots x_{n}=f_{1}$. But by [2] Theorem 2.7, we have $e_{1} x_{2} \ldots x_{n}=e_{1}<f_{1}=$ $=x_{1} x_{2} \ldots x_{n}$ and so $e_{1}<x_{1}$, whence $x_{1} \in\left(C_{1}\right)_{-}$. Hence we have $e_{1}=x_{1} e_{2}<f_{1}=$ $=x_{1} x_{2} \ldots x_{n}$ and so $e_{2}<x_{2} \ldots x_{n}$. Hence $C_{2} \ldots C_{n}$ contains $x_{2} \ldots x_{n}$ such that $e_{2}<x_{2} \ldots x_{n}$ and so $m\left(C_{2} * \ldots * C_{n}\right) \neq m_{-}\left(C_{2} * \ldots * C_{n}\right)$. Hence we have $C_{2} \ldots C_{n} \subseteq m_{+}\left(C_{2} * \ldots * C_{n}\right)=m_{+}\left(C_{2} * C_{1}\right)$. In particular, there exists an idempotent f_{2} of S such that $e_{2}<f_{2}, e_{2} \mathscr{D}_{E} f_{2}$ and e_{2} and f_{2} are consecutive in $e_{2} \mathscr{D}_{E}$ and $m_{+}\left(C_{2} * \ldots * C_{n}\right)=\left[e_{2}, f_{2}\right]$. Again we consider $x_{1} \in C_{1}, x_{2} \in C_{2}, \ldots, x_{n} \in C_{n}$ such that $x_{1} x_{2} \ldots x_{n}=f_{1}$. We have shown that $x_{1} \in\left(C_{1}\right)_{-}$. We have $x_{2} \ldots x_{n} \in C_{2} \ldots C_{n} \subseteq$ $\subseteq m_{+}\left(C_{2} * \ldots * C_{n}\right)=\left[e_{2}, f_{2}\right]$ and so $x_{2} \ldots x_{n} \leqq f_{2}$. Hence $f_{1}=x_{1} x_{2} \ldots x_{n} \leqq$
$\leqq x_{1} f_{2}$. On the other hand, it follows from Lemma 2.5 that $\left\{f_{2}\right\}=m_{0}\left(C_{2} * \ldots\right.$ $\left.\ldots * C_{n}\right) \subseteq C_{2} \ldots C_{n}$ and so there exist $y_{2} \in C_{2}, \ldots, y_{n} \in C_{n}$ such that $f_{2}=y_{2} \ldots y_{n}$. Hence $x_{1} f_{2}=x_{1} y_{2} \ldots y_{n} \in C_{1} \ldots C_{n} \subseteq m_{+}\left(C_{1} * \ldots * C_{n}\right)=\left[e_{1}, f_{1}\right]$ and so $x_{1} f_{2} \leqq$ $\leqq f_{1}$. Hence $x_{1} f_{2}=f_{1}$.
Conversely suppose that there exists an idempotent f_{1} of S such that $e_{1}<f_{1}$, $e_{1} \mathscr{D}_{E} f_{1}$ and e_{1} and f_{1} are consecutive in $e_{1} \mathscr{D}_{E}$ and satisfies either the condition (i) or the condition (ii).
Case: the condition (i) is satisfied. By Lemma 2.5, we have $\left\{e_{1}\right\}=m_{0}\left(C_{1} * \ldots\right.$ $\left.\ldots * C_{n}\right) \subseteq C_{1} \ldots C_{n}$ and so $e_{1} \in C_{1} \ldots C_{n}$. Also by Lemma 2.10 , there exist $y_{1} \in$ $\in C_{1}, \ldots, y_{n} \in C_{n}$ such that $f_{1}=y_{1} \ldots y_{n} \in C_{1} \ldots C_{n}$. Hence $C_{1} \ldots C_{n}$ is not contained in a single archimedean class. Also by Corollary 1.15, there exists a modified archimedean class $m\left(C_{1} * \ldots * C_{n}\right)$ of $C_{1} * \ldots * C_{n}$ such that $C_{1} \ldots C_{n} \subseteq m\left(C_{1} * \ldots * C_{n}\right)$. Since $e_{1}, f_{1} \in C_{1} \ldots C_{n} \subseteq m\left(C_{1} * \ldots * C_{n}\right), e_{1}$ is the idempotent of $C_{1} * \ldots * C_{n}$ and $e_{1}<f_{1}$, we must have $m\left(C_{1} * \ldots * C_{n}\right)=m_{+}\left(C_{1} * \ldots * C_{n}\right)$ and so $C_{1} \ldots C_{n} \subseteq$ $\subseteq m_{+}\left(C_{1} * \ldots * C_{n}\right)$.

Case: the conditions (ii) and (a) are satisfied. Since $C_{1} \delta=C_{1} \delta \wedge \ldots \wedge C_{n} \delta \preccurlyeq$ $\preccurlyeq C_{j} \delta$ for every natural number $1 \leqq j \leqq n$, we have $C_{1} * \ldots * C_{n}=C_{1}$ and so e_{1} is the idempotent of C_{1}. Also $C_{1} C_{2}$ is not contained in a single archimedean class and $C_{1} C_{2} \subseteq m_{+}\left(C_{1}\right)=\left[e_{1}, f_{1}\right]$. Hence by Lemma 2.9, there exist $y_{1} \in C_{1}$ and $y_{2} \in C_{2}$ such that $y_{1} y_{2}=f_{1}$. We denote by F the archimedean class containing f_{1}. Then by [2] Theorem 3.3, we have $F \delta C_{1}$ and so $F \delta=C_{1} \delta=C_{1} \delta \wedge \ldots \wedge C_{n} \delta \preccurlyeq$ $\preccurlyeq C_{j} \delta$ for every natural number $1 \leqq j \leqq n$. We take $x_{3} \in C_{3}, \ldots, x_{n} \in C_{n}$ arbitrarily. Then by [2] Theorem 2.7, we have $e_{1}=e_{1} y_{2} x_{3} \ldots x_{n} \in C_{1} \ldots C_{n}$ and $f_{1}=f_{1} x_{3} \ldots$ $\ldots x_{n}=y_{1} y_{2} x_{3} \ldots x_{n} \in C_{1} \ldots C_{n}$. Hence $C_{1} \ldots C_{n}$ is not contained in a single archimedean class and $C_{1} \ldots C_{n} \subseteq m_{+}\left(C_{1}\right)=m_{+}\left(C_{1} * \ldots * C_{n}\right)$.

Case: the conditions (ii), (b) and (b_{1}) are satisfied. We have $C_{1}=C_{1} * \ldots * C_{n}$ and e_{1} is the idempotent of C_{1}. Also there exists $x_{1} \in C_{1}$ such that $x_{1} f_{2}=f_{1}$. Further since f_{2} is the idempotent of $C_{2} * \ldots * C_{n}$, it follows from Theorem 2.5 that $\left\{f_{2}\right\}=$ $=m_{0}\left(C_{2} * \ldots * C_{n}\right) \subseteq C_{2} \ldots C_{n}$ and so there exist $x_{2} \in C_{2}, \ldots, x_{n} \in C_{n}$ such that $f_{2}=x_{2} \ldots x_{n}$. Hence $f_{1}=x_{1} f_{2}=x_{1} x_{2} \ldots x_{n} \in C_{1} \ldots C_{n}$. On the other hand, since $C_{1} \delta=C_{1} \delta \wedge \ldots \wedge C_{n} \delta \preccurlyeq C_{j} \delta$ for every natural number $1 \leqq j \leqq n$, it follows from [2] Theorem 2.7 that $e_{1}=e_{1} x_{2} \ldots x_{n} \in C_{1} \ldots C_{n}$. Hence $C_{1} \ldots C_{n}$ is not contained in a single archimedean class and $C_{1} \ldots C_{n} \subseteq m_{+}\left(C_{1}\right)=m_{+}\left(C_{1} * \ldots * C_{n}\right)$.

Case: the conditions (ii), (b) and (b_{2}) are satisfied. We have $C_{1}=C_{1} * \ldots * C_{n}$ and e_{1} is the idempotent of C_{1}. Since $C_{2} * \ldots * C_{n}=C_{2} * C_{1}, e_{2}$ is the idempotent of $C_{2} * \ldots * C_{n}$. Since $C_{2} \ldots C_{n}$ is not contained in a single archimedean class and $C_{2} \ldots C_{n} \subseteq m_{+}\left(C_{2} * \ldots * C_{n}\right)=\left[e_{2}, f_{2}\right]$, it follows from Lemma 2.10 that there exist $x_{2} \in C_{2}, \ldots, x_{n} \in C_{n}$ such that $x_{2} \ldots x_{n}=f_{2}$. Also by assumption, there exists $x_{1} \in C_{1}$ such that $x_{1} f_{2}=f_{1}$. Hence $f_{1}=x_{1} f_{2}=x_{1} x_{2} \ldots x_{n} \in C_{1} \ldots C_{n}$. Also we have $e_{1}=e_{1} x_{2} \ldots x_{n} \in C_{1} \ldots C_{n}$. Hence $C_{1} \ldots C_{n}$ is not contained in a single archimedean class and $C_{1} \ldots C_{n} \subseteq m_{+}\left(C_{1}\right)=m_{+}\left(C_{1} * \ldots * C_{n}\right)$.
(2) can be proved similarly.

Here we give some examples which show that the cases given in (1) of Theorem 2.11 really exist.

Example 1. Let S_{1} be the ordered semigroup with the multiplication given by the following table and with the order $b<x<a<u<c$.

	b	x	a	u	c
b	b	b	b	b	b
x	b	b	b	b	u
a	b	x	a	u	u
u	u	u	u	u	u
c	c	c	c	c	c

In S_{1}, we put $C_{1}=\{a\}, C_{2}=\{b, x\}$ and $C_{3}=\{c\}$. Then we can show that the condition (i) is satisfied.

Example 2. Let S_{2} be the ordered semigroup with the multiplication given by the following table and with the order $a<x<u<b$.

	a	x	u	b
a	a	a	a	a
x	a	a	a	u
u	u	u	u	u
b	b	b	b	b

In S_{2}, we put $C_{1}=\{a, x\}$ and $C_{2}=\{b\}$. Then we can show that the conditions (ii) and (a) are satisfied.

Example 3. Let S_{3} be the ordered semigroup with the multiplication given by the following table and with the order $a<x<u<b<c$.

	a	x	u	b	c
a	a	a	a	a	a
x	a	a	a	x	u
u	u	u	u	u	u
b	u	u	u	b	c
c	c	c	c	c	c

In S_{3}, we put $C_{1}=\{a, x\}, C_{2}=\{b\}$ and $C_{3}=\{c\}$. Then we can show that the conditions (ii), (b) and (b) are satisfied.

Example 4. Let S_{4} be the ordered semigroup with the multiplication given by the
following table and with the order $a<x<y<b<z<u<c$.

	a	x	y	b	z	u	c
a							
x	a	a	a	a	a	a	b
y	a	a	a	a	x	b	b
b							
z	b	b	b	b	b	b	u
u							
c							

In S_{4}, we put $C_{1}=\{a, x, y\}, C_{2}=\{b, z\}$ and $C_{3}=\{c\}$. Then we can show that the conditions (ii), (b) and (b_{2}) are satisfied.

Lemma 2.12. (1) Let $B, C \in \mathscr{C}$ such that $C \delta$ is a periodic δ-class of L-type, $C \delta \prec B \delta$ and $C<B$. Let e be the idempotent of the periodic archimedean class $B * C$ and let f be an idempotent of S such that $e<f, e \mathscr{D}_{E} f$ and e and f are consecutive in $e \mathscr{D}_{E}$. Then we have $x e=e$ and $x f=$ ffor every $x \in B$.
(2) Let $B, C \in \mathscr{C}$ such that $C \delta$ is a periodic δ-class of L-type, $C \delta \prec B \delta$ and$B<C$. Let e be the idempotent of the periodic archimedean class $B * C$ and let g be an idempotent of S such that $g<e, g \mathscr{D}_{E} e$ and g and e are consecutive in $e \mathscr{D}_{E}$ Then we have $x g=g$ and $x e=e$ for every $x \in B$.

Proof. (1) Since $(B * C) \delta=B \delta \wedge C \delta=C \delta, B * C$ is really a periodic archimedean class. Since $C<B$, we have $C \leqq B * C \leqq B$, but since $(B * C) \delta=C \delta \prec$ $\prec B \delta$, we have $B * C<B$. Now

$$
\begin{aligned}
B * C & =\max \{Z \in \mathscr{C} ; C \leqq Z \leqq B \text { and } Z \in B \delta \wedge C \delta\} \\
& =\max \{Z \in \mathscr{C} ; C \leqq Z \leqq B \text { and } Z \in C \delta\}
\end{aligned}
$$

and so there exists no $Z \in \mathscr{C}$ such that $B * C<Z \leqq B$ and $Z \in C \delta$. We denote by F the archimedean class containing f. Then, since $e \mathscr{D}_{E} f$, it follows from [2] Theorem 3.3 that $F \delta=C \delta=(B * C) \delta$. Also, since $e<f$, we have $B * C<F$. Hence we have $B<F$. Now let $x \in B$. Then $e<x<f$ and so $e=e^{2} \leqq x e \leqq x^{2} \leqq x f \leqq f^{2}=f$. But since $C \delta$ is of L-type, $e \mathscr{D}_{E}=f \mathscr{D}_{E}$ is also of L-type and so by [2] Theorem 2.7, we have $e x=e$ and $f x=f$. Hence $(x e)^{2}=x e x e=x e$ and $(x f)^{2}=x f x f=x f$ and so $x e$ and $x f$ are idempotents of S. Also $(x e) e=x e, e(x e)=(e x) e=e,(x f) f=$ $=x f$ and $f(x f)=(f x) f=f$. Hence $x e \mathscr{D}_{E} e \mathscr{D}_{E} f \mathscr{D}_{E} x f$. But, since $e \leqq x e \leqq$ $\leqq x^{2} \leqq x f \leqq f, x^{2} \in B$ and e and f are consecutive in $e \mathscr{D}_{E}$, we have $x e=e$ and $x f=f$.
(2) can be proved similarly.

Theorem 2.13. (1) Let $C_{1}, \ldots, C_{n} \in \mathscr{C}$ such that $C_{1} \delta \wedge \ldots \wedge C_{n} \delta$ is a periodic δ-class of L-type. Then $C_{1} \ldots C_{n}$ is not contained in a single archimedean class and $C_{1} \ldots C_{n} \subseteq m_{+}\left(C_{1} * \ldots * C_{n}\right)$ if and only if there exist a natural number
$m \geqq 2$, $m-1$ natural numbers h_{1}, \ldots, h_{m-1} such that $h_{1}<\ldots<h_{m-1}<n$ and $2 m-1$ elements e_{1}, \ldots, e_{m} and f_{1}, \ldots, f_{m-1} of S which satisfy
(I) for every natural number $1 \leqq j \leqq m-1, C_{h_{j}} \delta=C_{1} \delta \wedge \ldots \wedge C_{n} \delta$;
(II) for every natural number $1 \leqq j \leqq m-1, C_{h_{j}}<C_{h_{j}+1}$;
(III) if $h_{1} \geqq 2$, then

$$
C_{1} \delta \wedge \ldots \wedge C_{n} \delta \prec C_{1} \delta \wedge \ldots \wedge C_{h_{1}-1} \delta
$$

(IV) for every natural number $1 \leqq j \leqq m-2$ such that $h_{j}+1<h_{j+1}$

$$
C_{1} \delta \wedge \ldots \wedge C_{n} \delta \prec C_{h_{j+1}} \delta \wedge \ldots \wedge C_{h_{j+1}-1} \delta ;
$$

(V) if $h_{1} \geqq 2$, then $C_{h_{1}}<C_{1} * \ldots * C_{h_{1}-1}$;
(VI) e_{1} is the idempotent of $C_{1} * \ldots * C_{n}$ and for every natural number $1 \leqq$ $\leqq j \leqq m-1, e_{j+1}$ is the idempotent of $C_{h_{j}+1} * C_{h_{j}}$;
(VII) for each natural number $1 \leqq j \leqq m-1, f_{j}$ is an idempotent of S such that $e_{j}<f_{j}, e_{j} \mathscr{D}_{E} f_{j}$ and e_{j} and f_{j} are consecutive in $e_{j} \mathscr{D}_{E}$;
(VIII) for each natural number $2 \leqq j \leqq m-1$, there exists $y_{j-1} \in C_{h_{j-1}}$ such that $y_{j-1} f_{j}=f_{j-1}$;
(IX) $C_{1} * \ldots * C_{h_{1}}=C_{h_{1}}$;
(X) either $f_{m-1} \in C_{h_{m-1}} C_{h_{m-1}+1}$ or there exist an idempotent f_{m} of S and $y_{m-1} \in C_{h_{m-1}}$ such that $e_{m}<f_{m}, e_{m} \mathscr{D}_{E} f_{m}, e_{m}$ and f_{m} are consecutive in $e_{m} \mathscr{D}_{E}$, $y_{m-1} f_{m}=f_{m-1}$ and $f_{m} \in C_{h_{m-1}+1} * \ldots * C_{n}$.
(2) Let $C_{1}, \ldots, C_{n} \in \mathscr{C}$ such that $C_{1} \delta \wedge \ldots \wedge C_{n} \delta$ is a periodic δ-class of L-type. Then $C_{1} \ldots C_{n}$ is not contained in a single archimedean class and $C_{1} \ldots C_{n} \subseteq$ $\subseteq m_{-}\left(C_{1} * \ldots * C_{n}\right)$ if and only if there exist a natural number $m \geqq 2, m-1$ natural numbers h_{1}, \ldots, h_{m-1} such that $h_{1}<\ldots<h_{m-1}<n$ and $2 m-1$ elements e_{1}, \ldots, e_{m} and g_{1}, \ldots, g_{m-1} of S which satisfy
(I) for every natural number $1 \leqq j \leqq m-1 C_{h_{j}} \delta=C_{1} \delta \wedge \ldots \wedge C_{n} \delta$;
(II) for every natural number $1 \leqq j \leqq m-1, C_{h_{j}+1}<C_{h_{j}}$;
(III) if $h_{1} \geqq 2$, then

$$
C_{1} \delta \wedge \ldots \wedge C_{n} \delta \prec C_{1} \delta \wedge \ldots \wedge C_{h_{1}-1} \delta ;
$$

(IV) for every natural number $1 \leqq j \leqq m-2$ such that $h_{j}+1<h_{j+1}$

$$
C_{1} \delta \wedge \ldots \wedge C_{n} \delta \prec C_{h_{j}+1} \delta \wedge \ldots \wedge C_{h_{j+1}-1} \delta ;
$$

(V) if $h_{1} \geqq 2$, then $C_{1} * \ldots * C_{h_{1}-1}<C_{h_{1}}$;
(VI) e_{1} is the idempotent of $C_{1} * \ldots * C_{n}$ and for every natural number $1 \leqq j \leqq$ $\leqq m-1, e_{j+1}$ is the idempotent of $C_{h_{j}+1} * C_{h_{j}}$;
(VII) for each natural number $1 \leqq j \leqq m-1, g_{j}$ is an idempotent of S such that $g_{j}<e_{j}, g_{j} \mathscr{D}_{E} e_{j}$ and g_{j} and e_{j} are consecutive in $e_{j} \mathscr{D}_{E}$;
(VIII) for each natural number $2 \leqq j \leqq m-1$, there exists $y_{j-1} \in C_{h_{j-1}}$ such that $y_{j-1} g_{j}=g_{j-1}$;
(IX) $C_{1} * \ldots * C_{h_{1}}=C_{h_{1}}$;
(X) either $g_{m-1} \in C_{h_{m-1}} C_{h_{m-1}+1}$ or these exist an idempotent g_{m} of S and $y_{m-1} \in C_{h_{m-1}}$ such that $g_{m}<e_{m}, g_{m} \mathscr{D}_{E} e_{m}, g_{m}$ and e_{m} are consecutive in $e_{m} \mathscr{D}_{E}$, $y_{m-1} g_{m}=g_{m-1}$ and $g_{m} \in C_{h_{m-1}+1} * \ldots * C_{n}$.

Proof. First we prove the direct part of the theorem by induction on n. If $n=1$, then the assertion holds tirivially. Now suppose $n \geqq 2$ and suppose that $C_{1} \ldots C_{n}$ is not contained in a single archimedean class and $C_{1} \ldots C_{n} \subseteq m_{+}\left(C_{1} * \ldots * C_{n}\right)$. Then by Theorem 2.11, there exist the idempotent e_{1} of S in $C_{1} * \ldots * C_{n}$ and an idempotent f_{1} of S such that $e_{1}<f_{1}, e_{1} \mathscr{D}_{E} f_{1}$ and e_{1} and f_{1} are consecutive in $e_{1} \mathscr{D}_{E}$. Also either one of the conditions (i) and (ii) in Theorem 2.11 is satisfied.
Case: the condition (i) is satisfied. We put the least natural number h such that $C_{1} \delta \wedge \ldots \wedge C_{h} \delta=C_{1} \delta \wedge \ldots \wedge C_{n} \delta$ by h_{1}. Then by (i), we have $C_{h_{1}} * \ldots * C_{n}=$ $=\left(C_{1} * \ldots * C_{h_{1}}\right) * \ldots * C_{n}=C_{1} * \ldots * C_{n}$ and so $C_{h_{1}} \delta \wedge \ldots \wedge C_{n} \delta=C_{1} \delta \wedge \ldots$ $\ldots \wedge C_{n} \delta$ is a periodic δ-class of L-type. Also $C_{h_{1}} \ldots C_{n}$ is not contained in a single archimedean class and $C_{h_{1}} \ldots C_{n} \subseteq m_{+}\left(C_{h_{1}} * \ldots * C_{n}\right)$ and so by induction hypothesis, there exist natural numbers $h_{1}^{\prime}, h_{2}, \ldots, h_{m-1}$ and elements $e_{1}, \ldots, e_{m}, f_{1}, \ldots, f_{m-1}$ of S which satisfy the conditions (I) - (X) on $C_{h_{1}}, \ldots, C_{n}$. By way of contradiction we assume $h_{1} \neq h_{1}^{\prime}$. Then we have $h_{1}<h_{1}^{\prime}$ and by (III) on $C_{h_{1}}, \ldots, C_{n}$ we have $C_{h_{1}} \delta \wedge \ldots \wedge C_{n} \delta \prec C_{h_{1}} \delta \wedge \ldots \wedge C_{h_{1^{\prime}-1}} \delta$. But this is a contradiction, since $C_{h_{1}} \delta \wedge \ldots \wedge C_{h_{1_{1}^{\prime}}-1} \delta \preccurlyeq C_{h_{1}} \delta=\left(C_{h_{1}} * \ldots * C_{n}\right) \delta=C_{h_{1}} \delta \wedge \ldots \wedge C_{n} \delta$ by (i). Hence we have $h_{1}=h_{1}^{\prime}$. By (i), $C_{h_{1}} \delta=C_{h_{1}} \delta \wedge \ldots \wedge C_{n} \delta=C_{1} \delta \wedge \ldots \wedge C_{n} \delta$ and by (I) on $C_{h_{1}}, \ldots, C_{n}$, for every $2 \leqq j \leqq m-1$, we have $C_{h_{j}} \delta=C_{h_{1}} \delta \wedge \ldots \wedge C_{n} \delta=$ $=C_{1} \delta \wedge \ldots \wedge C_{n} \delta$. Hence (I) on C_{1}, \ldots, C_{n} is satisfied. It is clear that (II) on C_{1}, \ldots, C_{n} is satisfied. By the definition of h_{1} we have (III) on C_{1}, \ldots, C_{n}. Suppose $1 \leqq j \leqq m-2$ and $h_{j}+1<h_{j+1}$. Then $C_{1} \delta \wedge \ldots \wedge C_{n} \delta=C_{h_{1}} \delta \wedge \ldots \wedge C_{n} \delta \prec$ $\prec C_{h_{j}+1} \delta \wedge \ldots \wedge C_{h_{j+1}-1} \delta$ and so we have (IV) on C_{1}, \ldots, C_{n}. By (i), we have (V) on C_{1}, \ldots, C_{n}. Since $C_{h_{1}} * \ldots * C_{n}=C_{1} * \ldots * C_{n}$ by (i), the idempotent of $C_{h_{1}} * \ldots * C_{n}$ is the idempotent e_{1} of $C_{1} * \ldots * C_{n}$. Thus (VI) on C_{1}, \ldots, C_{n} follows from (VI) on $C_{h_{1}}, \ldots, C_{n}$. (VII) and (VIII) on C_{1}, \ldots, C_{n} are clear. (IX) on C_{1}, \ldots, C_{n} holds by (i). Finally (X) on C_{1}, \ldots, C_{n} is clear.

Case: the conditions (ii) and (a) are satisfied. We put $m=2$ and $h_{1}=1$. Then we obtain (I) $-(\mathrm{V})$ clearly. By assumption e_{1} is the idempotent of $C_{1} * \ldots * C_{n}$ and f_{1} is an idempotent of S such that $e_{1}<f_{1}, e_{1} \mathscr{D}_{E} f_{1}$ and e_{1} and f_{1} are consecutive in $e_{1} \mathscr{D}_{E}$. Now let e_{2} be the idempotent of the periodic archimedean class $C_{2} * C_{1}$. Then we have (VI)-(IX). Let k be the least natural number such that $C_{1} \ldots C_{k}$ is not contained in a single archimedean class. By (a), $C_{1} C_{2}$ is not contained in a single archimedean class and so $k=2$. Hence by Lemma 2.9, there exist $x_{1} \in C_{1}$ and $x_{2} \in C_{2}$ such that $x_{1} x_{2}=f_{1}$ and so $f_{1} \in C_{1} C_{2}$. Hence we have (X).

Case: the conditions (ii), (b) and (b_{1}) are satisfied. We put $m=2$ and $h_{1}=1$. Then we have (I)-(V) clearly. By assumption, e_{1} is the idempotent of $C_{1} * \ldots * C_{n}$, e_{2} is the idempotent of the periodic archimedean class $C_{2} * C_{1}$ and f_{1} is an idempotent of S such that $e_{1}<f_{1}, e_{1} \mathscr{D}_{E} f_{1}$ and e_{1} and f_{1} are consecutive in $e_{1} \mathscr{D}_{E}$. Hence we have (VI)-(IX). Since $C_{1}<C_{2}$, we have $C_{1} \leqq C_{2} * C_{1} \leqq C_{2}$ but since $C_{2} * C_{1} \neq C_{2} * \ldots * C_{n}$, we have $C_{2} \delta \neq C_{1} \delta \wedge \ldots \wedge C_{n} \delta=C_{1} \delta=C_{1} \delta \wedge C_{2} \delta=$ $=\left(C_{2} * C_{1}\right) \delta$ and so $C_{2} * C_{1} \neq C_{2}$. Hence $C_{2} * C_{1}<C_{2}$. Since $\left(C_{2} * \ldots * C_{n}\right) \delta=$ $=C_{2} \delta \wedge \ldots \wedge C_{n} \delta=C_{1} \delta \wedge \ldots * C_{n} \delta, C_{2} * \ldots * C_{n}$ is a periodic archimedean class,
whose idempotent we denote by f. We have

$$
\begin{aligned}
C_{2} * C_{1} & =\max \left\{Z \in \mathscr{C} ; C_{1} \leqq Z \leqq C_{2} \text { and } Z \in C_{2} \delta \wedge C_{1} \delta\right\} \\
& =\max \left\{Z \in \mathscr{C} ; C_{1} \leqq Z \leqq C_{2} \text { and } Z \in C_{1} \delta\right\} \\
& =\max \left\{Z \in \mathscr{C} ; Z \leqq C_{2} \text { and } Z \in C_{1} \delta\right\} .
\end{aligned}
$$

But if $C_{2} * \ldots * C_{n} \leqq C_{2}$ were true, then we have

$$
\begin{aligned}
C_{2} * \ldots * C_{n}= & C_{2} *\left(C_{2} * \ldots * C_{n}\right) \\
= & \max \left\{Z \in \mathscr{C} ; C_{2} * \ldots * C_{n} \leqq Z \leqq C_{2}\right. \text { and } \\
& \left.Z \in\left(C_{2} * \ldots * C_{n}\right) \delta \wedge C_{2} \delta\right\} \\
= & \max \left\{Z \in \mathscr{C} ; C_{2} * \ldots * C_{n} \leqq Z \leqq C_{2} \text { and } Z \in C_{1} \delta\right\} \\
= & \max \left\{Z \in \mathscr{C} ; Z \leqq C_{2} \text { and } Z \in C_{1} \delta\right\}=C_{2} * C_{1}
\end{aligned}
$$

which is a contradiction. Hence $C_{2} * C_{1}<C_{2}<C_{2} * \ldots * C_{n}$ and so $e_{2}<f$. Also since $\left(C_{2} * C_{1}\right) \delta=C_{1} \delta=C_{1} \delta \wedge \ldots \wedge C_{n} \delta=\left(C_{2} * \ldots * C_{n}\right) \delta$, it follows from [2] Theorem 3.3 that $e_{2} \mathscr{D}_{E} f$. Moreover

$$
\begin{aligned}
C_{2} * \ldots * C_{n}= & C_{2} *\left(C_{2} * \ldots * C_{n}\right) \\
= & \min \left\{Z \in \mathscr{C} ; C_{2} \leqq Z \leqq C_{2} * \ldots * C_{n}\right. \text { and } \\
& \left.Z \in\left(C_{2} * \ldots * C_{n}\right) \delta \wedge C_{2} \delta\right\} \\
= & \min \left\{Z \in \mathscr{C} ; C_{2} \leqq Z \leqq C_{2} * \ldots * C_{n} \text { and } Z \in C_{1} \delta\right\} .
\end{aligned}
$$

Hence there is no $Z \in \mathscr{C}$ such that $C_{2} * C_{1}<Z<C_{2} * \ldots * C_{n}$ and $Z \in C_{1} \delta$. Hence by [2] Theorem 3.3, e_{2} and f are consecutive in $e_{1} \mathscr{D}_{E}$. Further by (b), we have $y_{1} f=f_{1}$ for some $y_{1} \in\left(C_{1}\right)_{-} \subseteq C_{1}$. Hence we put $f=f_{2}$ and we obtain (X).

Case: the conditions (ii), (b) and (b_{2}) are satisfied. By (b), $C_{2} \delta \wedge \ldots \wedge C_{n} \delta=$ $=C_{1} \delta \wedge \ldots \wedge C_{n} \delta$ is a δ-class of L-type. Also by $\left(\mathrm{b}_{2}\right), C_{2} \ldots C_{n}$ is not contained in a single archimedean class and $C_{2} \ldots C_{n} \subseteq m_{+}\left(C_{2} * \ldots * C_{n}\right)$ and so by induction hypothesis, there exist a natural number m^{\prime} such that $m^{\prime} \geqq 2, m^{\prime}-1$ natural numbers $h_{1}^{\prime}, \ldots, h_{m^{\prime}-1}^{\prime}$ such that $h_{1}^{\prime}<\ldots<h_{m^{\prime}-1}^{\prime}<n$ and $2 m^{\prime}-1$ elements $e_{1}^{\prime}, \ldots, e_{m^{\prime}}^{\prime}, f_{1}^{\prime}, \ldots, f_{m^{\prime}-1}^{\prime}$ satisfying the conditions (I) $-(\mathrm{X})$ on C_{2}, \ldots, C_{n}. We put $m=m^{\prime}+1, h_{1}=1, h_{2}=h_{1}^{\prime}, \ldots, h_{m}=h_{m^{\prime}}^{\prime}$. By assumption e_{1} is the idempotent of $C_{1} * \ldots * C_{n}$ and f_{1} is an idempotent of S such that $e_{1}<f_{1}, e_{1} \mathscr{D}_{E} f_{1}$ and e_{1} and f_{1} are consecutive in $e_{1} \mathscr{D}_{E}$. Also we put $e_{2}=e_{1}^{\prime}, \ldots, e_{m}=e_{m^{\prime}}^{\prime}, f_{2}=f_{1}^{\prime}, \ldots, f_{m-1}=$ $=f_{m^{\prime}-1}^{\prime}$. Now we have $C_{h_{1}} \delta=C_{1} \delta=C_{1} \delta \wedge \ldots \wedge C_{n} \delta$ and for every $2 \leqq j \leqq$ $\leqq m-1$, we have $C_{h_{j}} \delta=C_{h^{\prime} j-1} \delta=C_{2} \delta \wedge \ldots \wedge C_{n} \delta=C_{1} \delta \wedge \ldots \wedge C_{n} \delta$ by (b). Hence we obtain (I) on C_{1}, \ldots, C_{n}. We have $C_{h_{1}}=C_{1}<C_{2}=C_{h_{1}+1}$ by (ii). Let $2 \leqq j \leqq m-1$. Then $C_{h_{j}}=C_{h^{\prime} j-1}<C_{h_{j-1}+1}=C_{h_{j}+1}$ and so we obtain (II) on C_{1}, \ldots, C_{n}. (III) and (V) on C_{1}, \ldots, C_{n} hold trivially. Let $1 \leqq j \leqq m-2$ such that $h_{j}+1<h_{j+1}$. If $j=1$, then $2=h_{1}+1<h_{2}=h_{2}^{\prime}$ and by (III) on C_{2}, \ldots, C_{n}, we have $C_{1} \delta \wedge \ldots \wedge C_{n} \delta=C_{2} \delta \wedge \ldots \wedge C_{n} \delta \prec C_{2} \delta \wedge \ldots \wedge C_{h_{1}-1} \delta=$ $=C_{h_{1}+1} \delta \wedge \ldots \wedge C_{h_{2}-1} \delta$. Also if $j \geqq 2$, then by (IV) on C_{2}, \ldots, C_{n}, we have $C_{1} \delta \wedge \ldots \wedge C_{n} \delta=C_{2} \delta \wedge \ldots \wedge C_{n} \delta \prec C_{h^{\prime} j-1+1} \delta \wedge \ldots \wedge C_{h_{j^{\prime}-1}} \delta=$ $=C_{h_{j}+1} \delta \wedge \ldots \wedge C_{h_{j+1}-1} \delta$, and so we obtain (IV) on C_{1}, \ldots, C_{n}. By assumption,
e_{1} is the idempotent of $C_{1} * \ldots * C_{n}$. By (b_{2}) we have $C_{2} * \ldots * C_{n}=C_{2} * C_{1}$ and so $e_{2}=e_{1}^{\prime}$ is the idempotent of $C_{2} * \ldots * C_{n}=C_{2} * C_{1}$. If $2 \leqq j \leqq m-1$, then $e_{j+1}=e_{j}^{\prime}$ is the idempotent of $C_{h^{\prime} j-1+1} * C_{h^{\prime} j-1}=C_{h_{j}+1} * C_{h_{j}}$. Hence we obtain (VI) on C_{1}, \ldots, C_{n}. By assumption, f_{1} is an idempotent of S such that $e_{1}<f_{1}$, $e_{1} \mathscr{D}_{E} f_{1}$ and e_{1} and f_{1} are consecutive in $e_{1} \mathscr{D}_{E}$. Let $2 \leqq j \leqq m-1$. Then $f_{j}=f_{j-1}^{\prime}$ is an idempotent of S such that $e_{j}=e_{j-1}^{\prime}<f_{j-1}^{\prime}=f_{j}, e_{j}=e_{j-1}^{\prime} \mathscr{D}_{E} f_{j-1}^{\prime}=f_{j}$ and $e_{j}=e_{j-1}^{\prime}$ and $f_{j}=f_{j-1}^{\prime}$ are consecutive in $e_{j} \mathscr{D}_{E}=e_{j-1}^{\prime} \mathscr{D}_{E}$. Hence (VII) on C_{1}, \ldots, C_{n} is satisfied. By (b), we have $y_{1} f_{2}=f_{1}$ for some $y_{1} \in C_{1}=C_{h_{1}}$. Let $3 \leqq j \leqq m-1$. Then $2 \leqq j-1 \leqq m-2=m^{\prime}-1$ and there exists $y_{j-1} \in$ $\in C_{h^{\prime} j-2}=C_{h_{j-1}}$ such that $y_{j-1} f_{j}=y_{j-1} f_{j-1}^{\prime}=f_{j-2}^{\prime}=f_{j-1}$. Hence we have (VIII) on C_{1}, \ldots, C_{n}. Since $h_{1}=1$, (IX) on C_{1}, \ldots, C_{n} holds clearly. By (X) on C_{2}, \ldots, C_{n}, either $f_{m-1}=f_{m^{\prime}-1}^{\prime} \in C_{h^{\prime} m^{\prime}-1} C_{h^{\prime} m^{\prime}-1+1}=C_{h_{m-1}} C_{h_{m-1}+1}$ or there exist an idempotent $f_{m}=f_{m^{\prime}}^{\prime}$ of S and $y_{m-1} \in C_{h^{\prime} m^{\prime}-1}=C_{h_{m-1}}$ such that $e_{m}=e_{m^{\prime}}^{\prime}<f_{m^{\prime}}^{\prime}=$ $=f_{m}, e_{m}=e_{m^{\prime}}^{\prime} \mathscr{D}_{E} f_{m^{\prime}}^{\prime}=f_{m}, e_{m}=e_{m^{\prime}}^{\prime}$ and $f_{m}=f_{m^{\prime}}^{\prime}$ are consecutive in $e_{m^{\prime}}^{\prime} \mathscr{D}_{E}=$ $=e_{m} \mathscr{V}_{E}, y_{m-1} f_{m}=y_{m-1} f_{m^{\prime}}^{\prime}=f_{m^{\prime}-1}^{\prime}=f_{m-1}$ and $f_{m}=f_{m^{\prime}}^{\prime} \in C_{h^{\prime} m^{\prime}-1+1} * \ldots * C_{n}=$ $=C_{h_{m-1}+1} * \ldots * C_{n}$. Thus we obtain (X) on C_{1}, \ldots, C_{n}.

Conversely suppose that the conditions (I) $-(\mathrm{X})$ are satisfied. Preliminarily we show that
(*) If $s<h_{1}$, then $x_{s} e_{1}=e_{1}$ and $x_{s} f_{1}=f_{1}$ for every $x_{s} \in C_{s}$;
$(* *)$ If $2 \leqq j \leqq m-1$ and $h_{j-1}<s<h_{j}$, then $x_{s} e_{j}=e_{j}$ and $x_{s} f_{j}=f_{j}$ for every $x_{s} \in C_{s}$.

Suppose $s<h_{1}$. Then $2 \leqq h_{1}$ and by (I) and (III), we have $C_{h_{1}} \delta=C_{1} \delta \wedge \ldots$ $\ldots \wedge C_{n} \delta \prec C_{1} \delta \wedge \ldots \wedge C_{h_{1}-1} \delta=C_{s} \delta \wedge\left(C_{1} * \ldots * C_{h_{1}-1}\right) \delta$, and by [2] Lemma 5.6, there exists no $Z \in \mathscr{C}$ such that Z lies between C_{s} and $C_{1} * \ldots * C_{h_{1}-1}$ and $Z \in C_{1} \delta \wedge \ldots \wedge C_{n} \delta$. In particular, $C_{h_{1}}$ does not lie between C_{s} and $C_{1} * \ldots * C_{h_{1}-1}$ and since $C_{h_{1}}<C_{1} * \ldots * C_{h_{1}-1}$ by (V), we have $C_{h_{1}}<C_{s}$. Also by (IX),

$$
\begin{aligned}
C_{h_{1}}= & \left(C_{1} * \ldots * C_{h_{1}-1}\right) * C_{h_{1}} \\
= & \max \left\{Z \in \mathscr{C} ; C_{h_{1}} \leqq Z \leqq C_{1} * \ldots * C_{h_{1}-1}\right. \text { and } \\
& \left.Z \in\left(C_{1} * \ldots * C_{h_{1}-1}\right) \delta \wedge C_{h_{1}} \delta\right\} \\
= & \max \left\{Z \in \mathscr{C} ; C_{h_{1}} \leqq Z \leqq C_{1} * \ldots * C_{h_{1}-1}\right. \text { and } \\
& \left.Z \in C_{1} \delta \wedge \ldots \wedge C_{n} \delta\right\} \\
= & \max \left\{Z \in \mathscr{C} ; C_{h_{1}} \leqq Z \leqq C_{s} \text { and } Z \in C_{s} \delta \wedge C_{h_{1}} \delta\right\}=C_{s} * C_{h_{1}} .
\end{aligned}
$$

Also since $C_{h_{1}} \delta=C_{1} \delta \wedge \ldots \wedge C_{n} \delta$, we have $C_{1} * \ldots * C_{n}=\left(C_{1} * \ldots * C_{h_{1}}\right) * \ldots$ $\ldots * C_{n}=C_{h_{1}} * \ldots * C_{n}=C_{h_{1}}$ and so by (VI) e_{1} is the idempotent of $C_{h_{1}}=C_{s} * C_{h_{1}}$. Moreover $C_{h_{1}} \delta=C_{1} \delta \wedge \ldots \wedge C_{n} \delta \prec C_{1} \delta \wedge \ldots \wedge C_{h_{1}-1} \delta \preccurlyeq C_{s} \delta$. Further by (VII) f_{1} is an idempotent of S such that $e_{1}<f_{1}, e_{1} \mathscr{D}_{E} f_{1}$ and e_{1} and f_{1} are consecutive in $e_{1} \mathscr{D}_{E}$. Hence by Lemma 2.12, we have $x_{s} e_{1}=e_{1}$ and $x_{s} f_{1}=f_{1}$ for every $x_{s} \in C_{s}$. This proves (*).

Now let $2 \leqq j \leqq m-1$ and $h_{j-1}<s<h_{j}$. Then $1 \leqq j-1 \leqq m-2$ and by (I) and (IV), we have $C_{h_{j-1}} \delta=C_{1} \delta \wedge \ldots \wedge C_{n} \delta \prec C_{h_{j-1}+1} \delta \wedge \ldots \wedge C_{h_{j-1}} \delta \preccurlyeq$
$\preccurlyeq C_{h_{j-1}+1} \delta \wedge C_{s} \delta$ and so by [2] Lemma 5.6, there exists no $Z \in C$ such that Z lies between $C_{h_{j-1}+1}$ and C_{s} and $Z \in C_{1} \delta \wedge \ldots \wedge C_{n} \delta$. In particular $C_{h_{j-1}}$ does not lie between $C_{h_{j-1}+1}$ and C_{s} and since $C_{h_{j-1}}<C_{h_{j-1}+1}$ by (II), we have $C_{h_{j-1}}<C_{s}$. Also since $C_{h_{j-1}} \delta=C_{1} \delta \wedge \ldots \wedge C_{n} \delta$ by (I), we have

$$
\begin{aligned}
C_{s} * C_{h_{j-1}} & =\max \left\{Z \in \mathscr{C} ; C_{h_{j-1}} \leqq Z \leqq C_{s} \text { and } Z \in C_{h_{j-1}} \delta \wedge C_{s} \delta\right\} \\
& =\max \left\{Z \in \mathscr{C} ; C_{h_{j-1}} \leqq Z \leqq C_{s} \text { and } Z \in C_{1} \delta \wedge \ldots \wedge C_{n} \delta\right\} \\
& =\max \left\{Z \in \mathscr{C} ; C_{h_{j-1}} \leqq Z \leqq C_{h_{j-1}+1} \text { and } Z \in C_{h_{j-1}} \delta \wedge C_{h_{j-1}+1} \delta\right\} \\
& =C_{h_{j-1}+1} * C_{h_{j-1}} .
\end{aligned}
$$

Hence by (VI) e_{j} is the idempotent of $C_{s} * C_{h_{j-1}}$. Moreover $C_{h_{j-1}} \delta=C_{1} \delta \wedge \ldots$ $\ldots \wedge C_{n} \delta \prec C_{h_{j-1}+1} \delta \wedge \ldots \wedge C_{h_{j}-1} \delta \preccurlyeq C_{s} \delta$. Further by (VII), f_{j} is an idempotent of S such that $e_{j}<f_{j}, e_{j} \mathscr{D}_{E} f_{j}$ and e_{j} and f_{j} are consecutive in $e_{j} \mathscr{D}_{E}$. Hence by Lemma 2.12, we have $x_{s} e_{j}=e_{j}$ and $x_{s} f_{j}=f_{j}$ for every $x_{s} \in C_{s}$. This proves ($* *$).

Now by (VIII) for each natural number $2 \leqq j \leqq m-1$, there exists $y_{j-1} \in C_{h_{j-1}}$ such that $y_{j-1} f_{j}=f_{j-1}$. For each $1 \leqq i \leqq h_{m-1}$ such that $i \neq h_{j}$ for all $1 \leqq j \leqq$ $\leqq m-1$, we take $x_{i} \in C_{i}$ arbitrarily. Then by $(*)$, if $2 \leqq h_{1}$, then $x_{1} \ldots x_{h_{1}-1} f_{1}=f_{1}$. In the case when $h_{1}=1$, we assume $x_{1} \ldots x_{h_{1}-1}$ is the void symbol and then we have always this relation. Also for each natural number $2 \leqq j \leqq m-1$, it follows from $(* *)$ that if $h_{j-1}+1 \leqq h_{j}-1$, then $x_{h_{j-1}+1} \ldots x_{h_{j-1}} f_{j}=f_{j}$ and so $y_{j-1} x_{h_{j-1}+1} \ldots$ $\ldots x_{h_{j}-1} f_{j}=y_{j-1} f_{j}=f_{j-1}$. In the case when $h_{j-1}+1=h_{j}$, we assume $x_{h_{j-1}+1} \ldots$ $\ldots x_{h_{j}-1}$ is the void symbol and then we have always this relation. Thus $f_{1}=$ $=x_{1} \ldots x_{h_{1}-1} \ldots y_{j-1} x_{h_{j-1}+1} \ldots x_{h_{j}-1} \ldots y_{m-2} x_{h_{m-2}+1} \ldots x_{h_{m-1}-1} f_{m-1}$. By (X) the following two cases are possible:

Case 1: $f_{m-1} \in C_{h_{m-1}} C_{h_{m-1}+1}$;
Case 2: there exist an idempotent f_{m} of S and $y_{m-1} \in C_{h_{m-1}}$ such that $e_{m}<f_{m}$, $e_{m} \mathscr{D}_{E} f_{m}, e_{m}$ and f_{m} are consecutive in $e_{m} \mathscr{D}_{E}, y_{m-1} f_{m}=f_{m-1}$ and $f_{m} \in C_{h_{m-1}+1} * \ldots$ $\ldots * C_{n}$.

Case 1: We have $f_{m-1}=z_{h_{m-1}} z_{h_{m-1}+1}$ for some $z_{h_{m-1}} \in C_{h_{m-1}}$ and $z_{h_{m-1}+1} \in$ $\in C_{h_{m-1}+1}$. We take $x_{h_{m-1}+2} \in C_{h_{m-1}+2}, \ldots, x_{n} \in C_{n}$ arbitrarily. We denote by E_{m-1} and F_{m-1} the archimedean classes containing e_{m-1} and f_{m-1}, respectively. Then since $e_{m-1} \mathscr{D}_{E} f_{m-1}$, it follows from [2] Theorem 3.3 that $E_{m-1} \delta F_{m-1}$. On the other hand, if $m=2$, then by (VI), $E_{m-1} \delta=\left(C_{1} * \ldots * C_{n}\right) \delta=C_{1} \delta \wedge \ldots \wedge C_{n} \delta$ and if $m>2$, then by (I$), E_{m-1} \delta=\left(C_{h_{j-1}+1} * C_{h_{j-1}}\right) \delta=C_{h_{j-1}+1} \delta \wedge C_{h_{j-1}} \delta=C_{1} \delta \wedge \ldots$ $\ldots \wedge C_{n} \delta$. Thus always we have $F_{m-1} \delta=E_{m-1} \delta=C_{1} \delta \wedge \ldots \wedge C_{n} \delta$. Hence by [2] Theorem 2.7, we have $z_{h_{m-1}} z_{h_{m-1}+1} x_{h_{m-1}+2} \ldots x_{n}=f_{m-1} x_{h_{m-1}+2} \ldots x_{n}=f_{m-1}$ and so $f_{1}=x_{1} \ldots x_{h_{1}-1} \ldots y_{m-2} x_{h_{m-2}+1} \ldots x_{h_{m-1}-1} z_{h_{m-1}} z_{h_{m-1}+1} \ldots x_{n} \in C_{1} \ldots C_{n}$.

Case 2. By Lemma 2.5, we have $\left\{f_{m}\right\}=m_{0}\left(C_{h_{m-1}+1} * \ldots * C_{n}\right) \subseteq C_{h_{m-1}+1} \ldots C_{n}$ and so there exist $z_{h_{m-1}+1} \in C_{h_{m-1}+1}, \ldots, z_{n} \in C_{n}$ such that $f_{m}=z_{h_{m-1}+1} \ldots z_{n}$. Hence $f_{m-1}=y_{m-1} f_{m}=y_{m-1} z_{h_{m-1}+1} \ldots z_{n}$ and so $f_{1}=x_{1} \ldots x_{h_{1}-1} \ldots$ $\ldots y_{m-2} x_{h_{m-2}+1} \ldots x_{h_{m-1}-1} y_{m-1} z_{h_{m-1}+1} \ldots z_{n} \in C_{1} \ldots C_{n}$.

Thus in both cases we have $f_{1} \in C_{1} \ldots C_{n}$. On the other hand, by Lemma 2.5,
we have $\left\{e_{1}\right\}=m_{0}\left(C_{1} * \ldots * C_{n}\right) \subseteq C_{1} \ldots C_{n}$. Hence $e_{1}, f_{1} \in C_{1} \ldots C_{n}$. Hence $C_{1} \ldots C_{n}$ is not contained in a single archimedean class. Also by Corollary 1.16, there exists a modified archimedean class $m\left(C_{1} * \ldots * C_{n}\right)$ such that $C_{1} \ldots C_{n} \subseteq$ $\subseteq m\left(C_{1} * \ldots * C_{n}\right)$. Since e_{1} is the idempotent of $C_{1} * \ldots * C_{n}$ and $e_{1}<f_{1}$, we must have $C_{1} \ldots C_{n} \subseteq m_{+}\left(C_{1} * \ldots * C_{n}\right)$.
(2) can be proved similarly.

References

[1] T. Saitô: Regular elements in an ordered semigroup, Pacific J. Math. 13 (1963), 263-295.
[2] T. Saitô: Archimedean classes in an ordered semigroup I, Czechoslovak Math. J. 26 (101) (1976) 218-238.
[3] T. Saitô: Archimedean classes in an ordered semigroup II, Czechoslovak Math. J. 26 (101) (1976), 239-247.
[4] T. Saitô: Archimedean classes in an ordered semigroup III, Czechoslovak Math. J. 26 (101) (1976), 248-251.

Author's address: Nippon Institute of Technology, Miyashiro, Saitama, Japan, from March 1987: 256-138 Higashi-Terayama, Chiba City, Japan.

