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INTRODUCTION

S. Belohorec proved in [2] the following theorem (as a generalization of results
of N. Aronszajn, see [1]; for other generalizations, see e.g. [4], [6]):

Let (X, d) be a Fréchet space, M a non-empty closed convex subset of X, S a con-
tinuous mapping such that S(M) = M and cl (S(M)) s a compact set. Let the following
conditions be satisfied:

1. for each n € N there exists a continuous mapping S, such that the set cl (S,(M))
is compact and

Vx € M: d(S,x, Sx) < 1/n;

2. the mapping T, :=1 — S, (I is the identity mapping) is an injection and,
moreover, there exists a 6 > 0 (independent of n) such that T, (M) > {xeX;
d(x, 0) < 8} holds for each neN.

Then the set F of fixed points of the mapping S is nonempty, compact and con-
nected.

The aim of this paper is a generalization of that assertion. Under the assumptions
mentioned the non-emptiness of the set F is a consequence of the fact that the map-
ping I — S is O-closed; this property follows from the compactness of the map-
ping S (see 2.4) (0-closed mappings are used by Szufla in [5]). Therefore the assertions
in this paper are formulated for 0-closed mappings; on the basis of 1.7, 2.4 and 3.6
they can be formulated for compact mappings. The --connectedness is introduced
as a generalization of the connectedness in order to get a more objective view of
some proofs; by 1.6 and 1.7, the corresponding assertions can be stated for con-
nected sets.

I. .-CONNECTEDNESS

For comparison, before introducing the notion of --connectedness, let us repeat
the known definition of connectedness.
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1.1. Definition. Let (X, 7) be a topological space, 4, B non-empty subsets of X.
A and B are called separated iff

(1) JReJ 3ISeT:AcRABcSARNSN(AUB)=0.
((1) is equivalent to the condition An B = An B = 0.)

1.2. Definition. Let (X, 77) be a topological space. A set C < X is called connected
iff it cannot be decomposed into two non-empty separated subsets.

1.3. Definition. Let (X , T ) be a topological space, 4, B, D non-empty subsets of X.
The sets 4 and B are called D-separated iff they both are subsets of D and

(2 JReJ 3ISeT:AcRABcSARNSND=0.

A and B are called disconnected iff they are X-separated.

1.4. Note. Comparing (1) and (2) we have: If A and B are D-separated and
AU B c E c D, then A and B are E-separated. A and B are separated iff they are
(A4 U B)-separated.

1.5. Definition. Let (X, ) be a topological space, C = D = X. The set C is
called D-connected iff it cannot be decomposed into two non-empty D-separated
subsets.

1.6. Note. 1.4 implies that the set C is connected iff it is C-connected. If C is E-
connected and E < D, then C is D-connected.

1.7. Lemma. Let (X, J) be a Hausdorff topological space and C a compact
subset of X. Then the following implication holds: If C is X-connected, then C
is connected.

Proof. Indirectly. Let C be compact and not connected. The compact set C is
closed as (X, 7) is a Hausdorff space. C can be written as a union of two closed
non-empty disjoint sets A and B as C is closed and not connected. As A and B are
closed subsets of the compact set C, they are compact. 4 and B are compact disjoint
sets in a Hausdorff topological space, thus they are disconnected (= X-separated).
As C = A u B, C is not X-connected.

1.8. Note. The following assertions can be proved analogously as Lemma 1.7:
Each open X-connected set in a topological space (X, ) is connected. Each closed
X-connected set in a normal topological space (X, ) is connected. Each X-con-
nected set in a completely normal topological space (X, ) is connected.

1.9. Lemma. Let (X, 7) and (Y, ¥) be topological spaces, G:X — Y a con-
tinwous mapping, C = D = X and C a D-connected set. Then the set G(C) is
G(D)-connected.

Proof. This assertion can be proved by contradiction. If the set G(C) is not G(D)-

416




connected, then there exist non-empty open sets U € &, Ve & such that
UnG(C)+0, VnG(C) 0, UnVnGD)=0, GC)=UuLV.

As the mapping G is continuous, the sets G~ *(U), G™*(V) are open (in the topology
T). Moreover, CnG ' ({U)+0, CAG '(V)*0, G'({U)nG (V)n D=0,
C = G"}(U)u G™(V), i.e., C is not D-connected, which is a contradiction.

1.10. Note. According to Note 1.6 the set C is connected iff it is C-connected.
If the set C in Lemma 1.9 is connected, then the set G(C) is G(C)-connected, i.e.,
G(C) is connected.

II. 0-CLOSED MAPPINGS

2.1. Definition. Let (X, 77) be a topological space, M a non-empty subset of X.
A mapping S from M into X is called compact iff it is continuous and the set cl (S(M))
is compact.

2.2. Definition. Let (X, 77) be a topological space, M a non-empty closed subset
of X, and a € X. A mapping S from M into X is called a-closed iff a e cl (S(V)) =
= a € S(V) for each closed subset ¥V of M.

2.3. Definition. An ordered triad (X, +, ) such that (X, +) is a group, (X, )
a topological space and the mappings +:X x X > X ((a,b)—>a + b) and —:
X - X (a > —a) are continuous, is called a topological group.

2.4. Lemma. Let (X, +,7) be a topological group, M a non-empty closed
subset of X, S: M — X a compact mapping. Then the mapping T:=1—S (I is
the identity mapping) is O-closed.

Proof. Let ¥ be a closed subset of M, 0 ¢ cl(T(V)). Then there exists a net
{ya; nel} such that lim y, = 0 and y,e T(V) for each nel. As T=1— S, by
virtue of the axiom of choice there exists a net {x,,; n eI} such that x,eV and y, =
= x, — Sx, for each nel. The set cl (S(V)) is compact as a closed subset of the com-
pact set cl (S(M)) (cl (S(M)) is compact because S is a compact mapping). As {Sx,;
n eI} is a net of points of the compact set cl (S(V)), there exists a subnet { Sx,,;m € J}
which converges to a point z e cl(S(V)). As {y,; me J} (where y, = x,, — Sx,,)
is a subnet of the convergent net {y,; n €I}, we have lim y,, = 0. As the operation +
is continuous, we get

lim x,, = lim (y,, + SX,) = lim y,, + lim Sx,, =0 + z = z.
As lim x,, = z and {x,,; m € J} is a net of points of ¥, we have z € V. As the set Vis
closed, z € V. The mapping T:=1I — S is continuous (because I and S are con-
tinuous mappings and (X, +, ) is a topological group), thus

Tz < T(lim x,,) = lim Tx,, = lim (x,, — Sx,) = limy,, = 0,
ie. 0eT(V).
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III. CONNECTEDNESS AND .-CONNECTEDNESS
OF SETS OF FIXED POINTS

3.1. Lemma. Let (X, 7) be a topological space, M a nonempty closed subset
of X,aeX, T:M — X an a-closed mapping, let # denote a neighbourhood base
of the point a. Let the system of sets {F; ie€l} satisfy the following conditions:
(1) Viel: F; + 0;

(2) VieI: F, = M;
(3) YUe® Jiel VxeF;: TxeU.
Then the set F := {x e M; Tx = a} is non-empty and
(*) VGeJ:Fc G 3iel: F,<G.
Proof. It follows from (1), (2) and (3) that
YUe# 3IxyeM: TxyeU.

Thus a e cl(T(M)). As the mapping T is a-closed, we have a € T(M), and con-
sequently, the set F is non-empty.

The statement (*) can be proved by contradiction. Let
(+#) 1GeJ:Fc G Viel 3Ix;eF;:x;¢G

and S := {x;; i eI}. It follows from (++) and (3) that a € ¢l (T(S)). As the mapping T
is a-closed, we have a € T(S). Thus

(+) SAF+90.

On the other hand, S €« M — G. As M is a closed and G an open set, S =« M — G.
By the assumption F < G, thus S n F = 0, which is a contradiction with (+).

3.2. Theorem. Let (X, 7) be a topological space, a € X, M a non-empty closed
subset of X, T: M — X an a-closed mapping, let # denote a neighbourhood base
of the point a, F := {x€ M; Tx = a}. Let there exist a system of sets {Fy; i eI}
satisfying the following conditions:

(i) Yiel: F; + 0;
(i) Viel: F; =« M;
(i) VUe # Jiel Vxe F;: Txe U;
(iv) for each i€l the set F; is M-connected,;
(v)Viel: F = F,.
Then the set F is non-empty and M-connected.

Proof. By Lemma 3.1 the set F is non-empty. Next we shall proceed by contradic-
tion. Let the set F be not M-connected. Then there exist non-empty open sets G, H
such that

FcGuH, FnG+0, FnH*+0, GnHAM=90.
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Let E := Gu H. By Lemma 3.1 there exists i € I such that F; < E. Then
F,cE=GuUH, FFnGoFnG+0, FFnHoFnH=%*9,
GNnHAM=290,

i.e., F; is not M-connected, which is a contradiction with (iv).

3.3. Note. Before formulating Theorem 3.4 let us mention the following facts:

Let (X, +, 7) be a topological group. Then
(1) there exists a neighbourhood base of the point 0 consisting of symmetric sets;
(2) if # denotes a neighbourhood base of the point 0, then

YVUe# WVeB.V+VceU.

Proof. The first statement is a consequence of the continuity of the mapping —.
(If Wis a neighbourhood of 0, then — W and consequently W (— W) are neighbour-
hoods of 0 as well. The set W (—W) is symmetric.) The second follows from the
continuity of the mapping + at the point (0, 0).

3.4. Theorem. Let (X, +,7) be a topological group, M a non-empty closed
subset of X, S: M — X a mapping such that the mapping T:=1— S (I is the
identity mapping) is 0-closed.

Let there exist a neighbourhood base # of the point 0 consisting of symmetric
sets and possessing the following property: for each set U € & there exists a map-
ping Ty: M — X such that
(1) Vxe M: Tx — Tyx e U;

(2) the set Ey := {x € M; Tyx € U} is non-empty and M-connected.

Then the set F of fixed points of S is non-empty and M-connected.

Proof. We shall demonstrate that the system {Ey; U € %} satisfies the conditions
of Theorem 3.2. Let U € &, x € F (i.e. Tx = 0), then by (1)

Tyx = Tyx — 0 =Tyx — Tx = —(Tx — Tyx)e —U.
As the base £ consists of symmetric sets, U = —U; thus

YWUe# VYxeF:TyxelU,
i.e.
VUe%: F c Ey.

This means that the system {Ey; U € 8} satisfies condition (v) from Theorem 3.2.
Condition (ii) is satisfied evidently; the validity of conditions (i) and (iv) follows
from (2). Let x € Ey, then '

(*) Tx = (Tx — Tyx) + TyxeV+ V.
As (X s+, T ) is a topological group, with respect to Note 3.3
(%*) YVUe# IVe#B: V+ VcU.
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Taking into account (*) and (xx) we get
VUe# 3IVePB VxeEy,: TxeU,

i.e., the system {E,; Ve %} satisfies condition (iii) from Theorem 3.2. Now Theorem
3.2 yields that F is a non-empty M-connected set.

3.5. Note. If the base # in Theorem 3.4 (and in Theorems 3.7, 3.8 and 3.15, too)
does not consist of symmetric sets, it is necessary instead of (1) to suppose

(1) VxeM: Tx — Tyxe U,
VxeM: Tyx — TxeU.

3.6. Note. Before formulating Theorem 3.7 it is necessary to realize the following:
Let (X, ) be a topological space, M a non-empty closed subset of X, S:M — X
a compact mapping. Then the set F of fixed points of S is compact.

Proof. The set F is closed in the topology & /M. As M is a closed set, F is closed.
As F = S(M) = cI(S(M)), F is a closed subset of the compact set cl(S(M)),
consequently, F is a compact set.

3.7. Theorem. Let (X, +, J) be a Hausdorff topological group, M a non-empty
closed subset of X, S: M — X a compact mapping. Let there exist a neighbourhood
base B of the point 0 consisting of symmetric sets possessing the following property:
for each set U € & there exists a mapping Ty: M — X such that
(1) VxeM: Tx — Tyxe U;

(2) the set Ey := {x€ M; Tyx € U} is non-empty and M-connected.
Then the set F of fixed points of S is non-empty, compact and connected.

Proof. As S is a compact mapping, the mapping T:= I — S is. O-closed in ac-
cordance with Lemma 2.4. By Theorem 3.4 the set F is non-empty and M-connected.
The set F is compact by Note 3.6. As (X, 7) is a Hausdorff topological space and F
is a compact M-connected set, by Lemma 1.7 F is connected. Consequently, F is
a non-empty compact connected set.

3.8. Theorem. Let (X, +,7) be a topological group, M a non-empty closed
subset of X, S: M — Xa mapping such that the mapping T:=1 — S is O-closed.
Let there exist a neighbourhood base # of the point O consisting of symmetric
sets possessing the following property: for each U e % there exists a mapping
Ty: M - X such that
(1) Vxe M: Tx — Tyx e U;

(2) there exists a set Zy = X such that U = Zy, U is Zy-connected, the equation
Tyy = x has a unique solution ye M for a given xe€ Zy and the mapping
Vy: Zy > M assigning the point y such that Tyy = x to the point x is con-
tinuous. Then the set F of fixed points of the mapping S is non-empty and
M-connected.

Proof. As U is Zy-connected by (2), the set V(U) is Vy(Zy)-connected in virtue of
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Lemma 1.9. As Vy(Z,) = M, the set V(U) is M-connected by Note 1.6. Consequently,
the system of sets { V,(U); U € #} satisfies condition (iv) from Theorem 3.2. Further,
let Ue %, xeF (i.e. Tx = 0), then (taking into account the symmetry of the set U;
see Note 3.5, too)
Tyx = —~(Tx — TUx)e -U=U.
On the set U the mapping Vy is defined; as Tyx € U, the point Vy(Tyx) exists. In
accordance with the definition of the mapping Vy we have x = Vy(Tyx), thus
x € Vy(U). In this way it is proved that
YU e B: F < V,(U),

ie., the system {Vy(U); Ue B} satisfies condition (v) from Theorem 3.2. With
respect to (2), condition (i) is satisfied, the validity of (ii) is evident. The proof that
condition (iii) is satisfied is analogous as in Theorem 3.4.

3.9. Lemma. Let (X, +, 7) be a Hausdorff topological group, M a non-empty
subset of X, S:M — X a compact mapping. Let T:=1 — S. Then the image
T(N) of a closed set N = M is a closed set.

Proof. See [3, p. 100]; it is necessary to note that in that proof it suffices to
consider a set ¥ such that ¥ + V < U instead of the set (1/2) U; the local convexity
(it is an assumption in the quoted theorem) is not used in the proof. Consequently,
it suffices to assume that X is a Hausdorff topological group.

3.10. Lemma. Let (X, +, ) be a Hausdorff topological group, M a non-empty
closed subset of X, S: M — X a compact mapping, U a non-empty subset of X,
P:=1 — S. Let there exist a unique solution y € M of the equation Py = x for
each x € U. Then the mapping V: U — M assigning the point y such that Py = x
to the point x is continuous.

Proof. It is necessary to demonstrate that for each set 4 = M closed in the
topology /M the set ¥ ~'(A4) is closed in the topology 7. Let A = M be a set
closed in the topology 7 [M. As M is a closed set the set A is closed, too. Further,
V~1(4) = P(A). By Lemma 3.9 the set P(A4) is closed.

3.11. Definition. A topological space (X, 7)) is said to be locally connected if
every point has a neighbourhood base consisting of connected sets.

3.12. Note. Evidently, in a topological group the existence of a neighbourhood
base of the point 0 consisting of connected sets is sufficient for the local connectedness.

3.13. Note. As in a topological vector space there exists a neighbourhood base of
the point 0 consisting of balanced sets and every balanced set is connected, every
topological vector space is locally connected.

3.14. Note. It is not difficult to prove the following assertion: Let (X, +, ) be
a locally connected topological group. Then there exists a neighbourhood base of
the point 0 consisting of symmetric connected sets.
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3.15. Theorem. Let (X, +,7) be a Hausdorff locally connected topological
group, M a non-empty closed subset of X, S: M — X a compact mapping, and let B
denote the neighbourhood base of the point O consisting of symmetric connected
sets. Let the following conditions be satisfied:

(1) for each set U € & there exists a compact mapping Sy: M — X such that

VxeM:Sx — SyxeU
(see also Note 3.5);
(2) the equation Tyy = x has a unique solution ye M for each xeU (where
Ty:=1— Sy).
Then the set F of fixed points of the mapping S is non-empty, connected and
compact.

Proof. The mapping T:=1 — S is O-closed by Lemma 2.4. The mappings
Vy: U - M assigning the point y such that Ty = x to the point x are continuous
for each U € # by Lemma 3.10. The set U is connected, i.e., it is U-connected by
Note 1.6. It suffices to define Z, := U to satisfy all the conditions of Theorem 3.8,
by which the set F is non-empty and M-connected. The set F is compact by Note 3.6.
As F is a X-connected compact set in a Hausdorff topological space, the set F is
connected by Lemma 1.7. Consequently, F is a non-empty compact connected set.

3.16. Note. As in every topological vector space there exists a neighbourhood
base of the point O consisting of balanced sets and every balanced set is connected
and symmetric, the following consequence of Theorem 3.16 is true:

Let (X, +, *, ) be a Hausdor{f topological vector space, M a non-empty closed
subset of X, S: M — X a compact mapping, T a mapping defined as T:=1 — S,
let # denote the neighbourhood base of the point O consisting of balanced sets.
Let the following conditions be satisfied:

(1) for each set U € B there exists a compact mapping Sy: M — X such that
VxeM:Sx — Syxe U ;

(2) the equation Tyy = x (where Ty := I — Sy) has a unique solution y e M for
each xeU.

Then the set F of fixed points of the mapping S is non-empty, compact and con-

nected.
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