Bohdan Zelinka Small directed graphs as neighbourhood graphs

Czechoslovak Mathematical Journal, Vol. 38 (1988), No. 2, 269-273

Persistent URL: http://dml.cz/dmlcz/102221

Terms of use:

© Institute of Mathematics AS CR, 1988

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://dml.cz

SMALL DIRECTED GRAPHS AS NEIGHBOURHOOD GRAPHS

BOHDAN ZELINKA, Liberec

(Received March 18, 1986)

Local properties of graphs were studied by many authors. The first hint to their study was given by a problem of A. A. Zykov and B. A. Trahtenbrot at the Symposium on Graph Theory in Smolenice [1] in 1963. Survey papers on these properties were written by J. Sedláček [2], [3].

Most results on local properties of graphs concern undirected graphs. Local properties of directed graphs were studied in [4] and [5]; this paper continues this study.

Let G be a directed graph, let v be its vertex. By $N_G(v)$ we denote the subgraph of G induced by the set of all terminal vertices of edges of G whose initial vertex is v. The graph $N_G(v)$ will be called the neighbourhood graph of v in G.

Let \mathscr{H} be the class of all digraphs H with the property that there exists a digraph G such that $N_G(v) \cong H$ for each vertex v of G. The problem to determine \mathscr{H} is the digraph variant of the mentioned problem from Smolenice. We shall study digraphs which belong to \mathscr{H} and have at most three vertices.

Before formulating a theorem we introduce an auxiliary concept. Let m, n be positive integers. By V(m, n) we denote the set of all *n*-dimensional vectors $(v_1, ..., v_n)$ where $v_i \in \{0, 1, ..., m - 1\}$ for i = 1, ..., n. If we perform additions or subtractions with coordinates of these vectors, we consider them modulo m.

Theorem. Let H be a directed graph with at most three vertices. Then $H \in \mathcal{H}$ if and only if the number of double edges of H is not 2.

Remark. By a double we mean a pair of edges which join the same pair of vertices and are directed oppositely to each other.

Proof. In Fig. 1 we see all possible directed graphs with at most three vertices

Fig. 1.

and with exactly two double edges. Suppose that $H' \in \mathscr{H}$; let G' be the corresponding graph from the definition of H. Then G' contains at least one induced subgraph isomorphic to H'; let its centre be u_1 , its other vertices u_2, u_3 . The graph $N_{G'}(u_1)$ contains u_2 and u_3 . As $N_{G'}(u_1) \cong H'$, there exists a vertex u_4 in $N_{G'}(u_1)$ joined by double edges with u_2 and u_3 . The graph $N_{G'}(u_2)$ contains the vertices u_1, u_4 ; they are joined by an edge. As H contains only double edges, there must be a double edge with exactly one of the vertices u_1, u_4 . It cannot be u_3 , because it is joined by double edges with both u_1, u_4 . Thus v is different from all u_1, u_2, u_3, u_4 and is joined by a double edge with u_1 and u_4 . But then u_1 or u_4 has the degree at least 4 and its neighbourhood graph has at least 4 vertices, which is a contradiction.

Now suppose that $H'' \in \mathscr{H}$ and let G'' be the corresponding graph. The graph G'' contains an induced subgraph isomorphic to H''; let the common end vertex of two double edges in it be u_1 , the initial vertex of the simple edge u_2 and its terminal vertex u_3 . Again the graph $N_{G''}(u_1)$ contains a vertex u_4 joined by double edges with u_2 and u_3 . The graph $N_{G''}(u_2)$ contains u_1, u_3, u_4 and double edges between u_1 and u_3 and between u_3 and u_4 . Thus u_1 and u_4 must be joined by a simple edge. The graph $N_{G''}(u_3)$ contains the vertices u_1, u_4 joined by a simple edge; therefore there must exist a vertex v in $N_{G''}(u_3)$ joined by double edges with u_1 and u_4 . It cannot be u_2 , because then u_2 and u_3 would be joined by a double edge. Thus v is different from all u_1, u_2, u_3, u_4 and is joined by double edges with u_1 and u_4 . But then u_1 has the degree at least 4, which is a contradiction.

Now consider the graphs without double edges. We shall determine the graphs G for particular graphs H. If H is an empty graph, then G is any graph without edges. If H consists of one vertex, then G is any (directed) cycle. If H has two vertices and no edge, then G is the graph whose vertex set is V(m, 2) for $m \ge 3$ and in which from each (v_1, v_2) edges go to $(v_1 + 1, v_2)$ and $(v_1, v_2 + 1)$. If H has two vertices

· 270

and one edge, then G is the graph whose vertex set is V(m, 1) for $m \ge 5$ and in which from each (v_1) edges go to $(v_1 + 1)$ and $(v_1 + 2)$. All graphs with three vertices without double edges are in Fig. 2. The graph G for H_i will be denoted by G_i for i = 1, ..., 14. The graph G_1 has the vertex V(m, 3) for $m \ge 5$ and from each vertex (v_1, v_2, v_3) edges go to $(v_1 + 1, v_2, v_3), (v_1, v_2 + 1, v_3), (v_1, v_2, v_3 + 1)$. The graphs G_2, G_3, G_4, G_5 have the vertex set V(m, 2) for $m \ge 5$, m even. In G_2 from each (v_1, v_2) edges go to $(v_1 + 1, v_2), (v_1 + 2, v_2), (v_1, v_2 + 1)$. In G_3 from (v_1, v_2) edges go to $(v_1 + 1, v_2)$, $(v_1, v_2 + 1)$, $(v_1 + 1, v_2 + 1)$. In G_4 we distinguish some cases. If both v_1, v_2 are even, then from (v_1, v_2) edges to go $(v_1 + 1, v_2), (v_1, v_2 + 1),$ $(v_1 + 1, v_2 + 1)$. If both v_1, v_2 are odd, then from (v_1, v_2) edges go to $(v_1 - 1, v_2)$, $(v_1, v_2 - 1), (v_1 - 1, v_2 - 1)$. If v_1 is even and v_2 is odd, then from (v_1, v_2) edges go to $(v_1 - 1, v_2), (v_1, v_2 + 1)$ and $(v_1 - 1, v_2 + 1)$. If v_1 is odd and v_2 is even, then from (v_1, v_2) edges go to $(v_1 + 1, v_2), (v_1, v_2 - 1), (v_1 + 1, v_2 - 1)$. In G_5 from each (v_1, v_2) an edge goes to $(v_1, v_2 + 1)$. Further if v_2 is even, then edges go to $(v_1 + 1, v_2)$ and $(v_1 + 1, v_2 + 1)$, and if v_2 is odd, then to $(v_1 - 1, v_2)$ and $(v_1 - 1, v_2 + 1)$. The graphs H_6 and H_7 are tournaments and the assertion on them follows from the results in [4]. But we may say that G_6 has the vertex set V(m, 1) for $m \ge 7$ and from (v_1) edges go to $(v_1 + 1)$, $(v_1 + 2)$, $(v_1 + 3)$. The graph G_7 is a tournament on 7 vertices u_1, \ldots, u_7 in which from u_i edges go to $u_{i+2}, u_{i+4}, u_{i+6}$ for $i = 1, \ldots, 7$, the sums being taken modulo 7.

Now we turn to graphs with one or three double edges. If H is a graph with two vertices and one double edge, the corresponding graph G is the complete digraph with three vertices. The digraphs with three vertices and one or three double edges are in Fig. 3. The graph G_8 is obtained from the undirected graph of a trilateral prisma by replacing each undirected edge by a pair of oppositely directed edges. The graph G_9 has the vertex set V(m, 1) for $m \ge 5$ and in it from the vertex set V(m, 1) edges go to $(v_1 - 1), (v_1 + 1), (v_1 + 2)$. The graph G_{10} has the vertex set V(m, 1)

Fig. 3.

for $m \ge 6$, *m* even. From (v_1) the edges go also to $(v_1 - 1)$ and $(v_1 + 1)$; further for v_1 even an edge goes to $(v_1 + 2)$ and for v_1 odd an edge goes to $(v_1 - 2)$. The graph G_{11} is in Fig. 4, the graph G_{12} is in Fig. 5, the graph G_{13} is in Fig. 6. The graph G_{14} is the complete directed graph with four vertices.

·

References

- [1] Graph Theory and Its Applications. Proc. Symp. Smolenice 1963. Academia Prague 1964.
- [2] Sedláček, J.: Lokální vlastnosti grafů. (Local properties of graphs.) Časop. pěst. mat. 106 (1981), 290-298.
- [3] Sedláček, J.: On local properties of finite graphs. In: Graph Theory, Łagów 1981. Springer Verlag Berlin-Heidelberg-New York-Tokyo 1983.
- [4] Zelinka, B.: Neighbourhood tournaments. Math. Slovaca 36 (1986), 241-244.
- [5] Zelinka, B.: Neighbourhood digraphs. Arch. Math. Brno 23 (1987), 69-70.

Author's address: 461 17 Liberec 1, Studentská 1292, Czechoslovakia (katedra tváření a plastů VŠST).