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Czechoslovak Mathematical Journal, 38 (113) 1988, Praha 

NATURAL TRANSFORMATIONS OF SECOND TANGENT 
AND COTANGENT FUNCTORS 

IvAN KoLÁŘ, Brno and ZBiGNiEW RADZiszEWSKi, Lublin 

(Received April 4, 1986) 

Modugno and Stefani introduced an intrinsic isomorphism between TT*M and 
T*TM for every manifold M, [7]. From the categorical point ofview, this is a natural 
equivalence between the functors TT* and T*T, which are defined on the category Лп 

ofall n-dimensional manifolds and their local diifeomorphisms. In the present paper, 
we analytically determine all natural transformations of TT* into T*T and we in­
terpret them geometrically. We deduce that the natural transformation by Modugno 
and Stefani can be distinguished in a similar way as the canonical involution of the 
second tangent bundle can be characterized among all natural transformations of 
functor TT into itself. Since a basic construction of the symplectic geometry gives 
a natural equivalence between TT* and T*T*, any two of the functors TT*, T*T 
and T*T* are naturally equivalent. On the other hand, functor 7Tis naturally equi­
valent to none of them. In particular, this proves the fact that, in contradictinction 
of the cotangent bundles, there is no natural symplectic structure on the tangent 
bundles. — All manifolds and maps areassumed to be infinitely differentiable. 

1. Differential equations for the natural transformations of TT* into T*T. We 
shall use the concept of a lifting functor by Nijenhuis, [8], in a slightly modified 
form. Let Jtn denote the category of n-dimensional manifolds and their local 
difTeomorfisms. A lifting functor F is a functor from Jin into the category of fibred 
manifolds transforming every rc-dimensional manifold M into a fibred manifold FM 
over M and every local diffeomorphism / : M ^ N into a fibred manifold morphism 
Ff: FM ^> FN over / . The construction of the cotangent spaces is a lifting functor, 
provided we define T*f: T*M ~> T*N in such a way that T*f: T*M ^ T*(x)N is 
the inverse map of the dual map (TJ)*: Tf{x)N ^ T*M. Then TT* and T*T are 
two second order lifting functors. According to a general theory, [9], [2], ifF and G 
are two r-th order lifting functors, then F0Rn and G0Rn are L^-spaces, where Un 

means the group ofall invertible r-jets on Rn with source and target 0, and the natural 
transformations F ^> G are bijectively related with the L^-equivariant maps F0Rn ~+ 
- G0R". 

In our case we first determine the actions of L2
n on TT*Rn = S and T*T0Rn = цг 
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The canonical coordinates xl on R" induces the additional coordinates pt on T*Rn 

and £' = dx', %{ = dpi on TT*R". Ifwe evaluate the effect ofa change ofcoordinates 
on Rn and pass to 2-jets, we flnd that the equations of the action of L2

n on S are 

(1) Pi = a{pj , Iі = afë , Щ = aJ7tj - a\kä™ä[pm? , 

where a}, al
jk are the canonical coordinates of an element of L2

n and ä) means the 
inverse matrix of a). Further, if rj' are the induced coordinates on TRn, then the 
expression Qi dxl + Gt d;7' determines the additional coordinates gi9 at on T*TR". 
Then the action of L2

n 011 Wis 

(2) if = a)nj, ě; = я/е, - а)каТа\етцк, o=, = öfcy . 

Our aim is to flnd all L^-equivalent maps $ ^ W. Any map A: 5 -* MKhas the form 

(3) nl = /*(p, Í, 7l) , 6l = 0i(jP, f, 7l) , ö-f = Ä«(P, L n) • 

If A is L^-equivariant, then for every vector A = (A), Al
jk) of the Lie algebra Iі of L2

n 

the corresponding fundamental vector fields As on S and Aw on FFmust be A-related. 
This gives the following system of partial differential equations for f\ gt and ht 

with parameters A), Al
jk 

(4) A)P = - £1 ^ л + g ^ - £1 (ЛЧ + Л>,?*), 
OPj €ÇJ OTÍj 

(5) -Л^ , - A%hJ> = - ^ i Л*А + ^ 4 ? ' - ^ 1 Й>* + 4tPi?), 
c7^- OÇJ 07lj 

(6) - ^ й , = - д± А)Рк + § Ар - ^ i К Ч + * W ) • 
Ору ^ C <77Ty 

Let <p, О = p ^ 1 denote the value ofp at £. 

Proposition 1. Тйе general solution of the system (4)-(6) is 

(7) 4' = f(<P, O ) ť , 

в, = F(<p, O ) H(<p, О ) «і + G(<p, О ) Р ; , 

o, = H(<p,0)Pi, 

where F(t), G(r) and H(t) are three arbitrary smoothfunctions ofone variable. 

Proof. Setting A) = 0 in (4), we obtain df|dnj = 0. Then (4) are the differential 
equations of an L*-equivalent map f*(p, £): R"* x Än ^ Я". By Proposition 2 of 
[6], it holds fl = F((p, O ) i\ where F is an arbitrary smooth function of one 
variable. Setting A) = 0 in (6), we get dh^dn) = 0..Then (6) are the differential 
equations of an L*-equivalent map ht(p, £): #"* x JT ~> R"*. From the proof of 
Proposition 2 of [6] it follows hi = Я(<р, i>)Pi. where Я is an arbittary smooth 
function of one variable. Then (5) with A) = 0 reads 

(8) -A)f{(v, 0) H((p, ?» ť Л = - ^ i>,?*4* • 
071,-
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Setting in the i-th equation Al
u = 1 and all other A's equal to zero, we obtain 

dgijd%i = F((p, O ) H((p, O)- For A\j = 1, і ф j , and all other ^ ' s equal to zero, 
weget dgijd%j = 0. This implies 

(9) Qi = F(<p, О) Я«р, O) *i + &G>, 0 , 
where Qi are some functions of p and £. Since the function F(<p, £>) #(<P> O ) = 

= c(p, {) is invariant, it holds (dc|dpi) A\pi - (dc|d?) Afë = 0. Substituting (9) 
into (5) and using the latter relation, we obtain 

(10) Mgj = fiA)p,-^Aie. 
dpj d? 

These are the differential equations for an L*-equivariant map Rn* x Rn ^ Rn*, 
so that we have gt = G(<p, O ) Pi similarly as above. Conversely, it is easy to check 
that map (7) is L^-equivariant, so that it satisfies (4)-(6) . QED. 

If F is constant, there exists an underlying natural transformation of T into itself 
expressed by the first line of(7). Similarly, i f # i s constant, there exists an underlying 
natural transformation of T* into itself expressed by the third line of (7). 

2. Geometrical interpretation of the analytic results. We first explain a simple 
geometric construction of one isomorphism of TT*M into T*TM. Let q: T*M ^> M 
be the bundle projection and i: TTM ^> TTM be the canonical involution. Every 
A e TT*M is a vector tangent to a curve (xl(t), a^t)) at t = 0. If B is any vector 
ofTTq(A)TM, then iB'is tangent to a curve (x\t), bl(t)) with the same xl(t). Hence we 
can evaluate <a(f), b(t)} for every t and the derivative 

<"> s <a(i), b{t)} = ^ - fe'(0) + a,(0) ^ в = %i dxi + Pidrii 
) àt àt 

depends only on A and B. This determines a linear map TTq{A)TM ^ Я, i.e. an element 
of Г*ГМ. Thus we obtain a natural equivalence s: ТГ* ̂  Г*Г, 

(12) C* = ^ , 0i = ^ , ^i = Pi 
corresponding to the constant values F = 1, G = 0, Я = 1. This equivalence was 
constructed in another way by Modugno and Stefani, [7]. 

Further we show that for any constant values F = / , G = g, H = h, (7) can be 
determined by a simple modification of the previous construction. The vector fA e 
e TT*M is tangent to the curve (x%ft), аЩ). IfJ3is any vector of TfTq(A)TM, then iB 
is tangent to a curve (x*(/i), b\t)). Then we define an element sifi9>h)A e T*TM by 

(13) <S(/,,,A)4,B> = £ 
dř 

<a(/r), fcb(i)> + flf<a(0), b(0)> . 

The coordinate expression of(l3) is iJhnt + # ^ ) dx' + fr^ drç1' and our construction 
implies ц1 = /£ ř . This gives (7) with constant coefficients. 

Even in the general case (7) can be interpreted in such a way. Let n: TT*M ~> T*M 
be the bundle projection. Every A e TT*M determines Tq(A) є TM and n(A) є T*M 
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over the same base point in M. Then we take the values of F, G and H at 
<7i(v4), Tq(A)} and apply the latter construction. 

It is remarkable that the natural equivalence s by Modugno and Stefani can be 
distinguished by another geometrical way analogously to a property of the canonical 
involution ofthe second tangent functor. According to [3], [4], the natural transfor­
mations of TT into itself form a four-parameter family. Every vector field £ on M 
induces a vector field <TC on M by means of flows, i.e. exp t^Ç = T(exp tÇ), [5]. 
If we compare the results of [4] and [5], we deduce immediately that i is the natural 
transformation TT^ TT satisfying / M ° T£ = 3T^ for every vector field on M, 
where T£: TM ^ TTM is the tangent map of £: M ^ TM. Let co: M ^ T*M be 
any 1-form on M. Then <co, £>: M ~> R and the second component of the tangent 
map T<w, £>: ™ ^ TK = Я x Д will be denoted by c<co, {>• W e h a v e T c o : ™ ^ 
^ TT*M, so that sTco: TM ^ T*TM and <sTco, 9~Ç)\ TM *> Я. 

Proposition 2. s î's řne оя/у natural transformation TT* -»• T*Tover the identity 
transformation of T satisfying 

(14) <sTco, <TO = c<co, O 

/or e^erj vectorfield £ and every 1-form co. 

Proof. Let x' = x', pf = a,-(x) be the coordinate expression of ш, so that the 
additional coordinate expression of Tœ is £' = £', 7rť = (да^дх*) Çj. This is trans­
formed by (7) into 

*' = {', Яі = Н^& + Оаі9 ct = Hal9 dxJ 

where F = 1 follows from the assumption that our natural transformation is over 
the identity of T If b\x) are the coordinate components of a vector field £, then the 
coordinate expression of ЗГ^ is dxl = fr'(x), d£* = (db*jdx*) ÇJ, see [4]. Hence (14) 
requires 

(15) (H
 ЄА ť + GaA fr< + Я*, ̂  ť = Ä Ь' + а, Ä ť • 

v у V öxj y 5^ V^y 0*7 
Since ař and 6і are arbitrary, this implies G = 0, H = 1. QED. 

3. The second tangent and cotangent functors. The iterated cotangent functor 
T*T* is also a second order lifting functor. lix\ wt are the usual coordinates on T*M 
and the additional coordinates f4, ^' on T*T*M are given by the expression Çf dx' + 
+ IIі dW|, then the action of L2„ on T*T*R'1 is 

(16) vv. = ö]Wj . , Či = a{Cj + 4iälaJßkwm\ pl = a)ßj. 

The problem of finding of all natural transformations between any two of the 
functors 7T*, T*Tand T*T* can be reduced to (7), ifwe take into account a classical 
geometrical construction of a natural equivalence between TT* and T*T*. Consider 
the Liouville 1-form on T*M, [ l ] . The exterior differential dco = Q endows T*M 
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with a natural symplectic structure. A basic fact ofthe symplectic geometry is that Q 
determines a bijection tM between the tangent and cotangent bundles of T*M by 

(17) tM(X) = X J 0 

where X J Q means the inner product of a vector X with Q. Since the coordinate 
expression of co is Wi dx\ (17) leads to the following equations of t 

(18) w( = p ; , Сі = я ( > ц' = - £ ' . 

Using (1) and (16), we can check even formally that t is a natural equivalence between 
TT* and T*T*. 

Since 5: TT* ^ T*Tis also a natural equivalence, 10 s"1 : T*T^> T*T* is another 
natural equivalence, the coordinate expression of which is 

(19) Wi = at, Ci = в і , /і1' = -Vі-

This proves 

Proposition 3. The natural transformations between any two of thefunctors TT*, 
T*Tand T*T* depend on three arbitrary smoothfunctions of one variable. Their 
coordinate expressions can be deducedfrom (7) by means o/(l2), (18) and (19). 

Functor TTis not ofthis type, since its natural transformations into itselfdepend 
on four real parameters. This is related with the fact that TTis defined on the whole 
category M of all manifolds and all smooth maps and is product preserving. Ac­
cording to a recent result, [3], the restriction ofsuch a functor to connected manifolds 
is determined by a Weil algebra. (In particular, TT is determined by D ® D, where D 
is the algebra ofdual numbers.) The natural transformations ofany two Weil functors 
are in bijection with the homomorphisms of the corresponding Weil algebras, so 
that they depend on a finite member of real parameters. We further remark that the 
natural transformations between two Weil functors are algebraic, while there are 
three arbitrary smooth functions in (7). 

Since the natural transformations of TT into itself are essentially different from 
the natural transformations of T*Tinto itself, there is no natural equivalence between 
7Tand T*T. This implies that there is no natural symplectic structure on TM. 
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