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In this paper, the concepts of orthogonal mappings and prolongations are used
to obtain loops whose multiplication groups contain the alternating group. The results
partially overlap those of [4], but here a different method is employed.

1. INTRODUCTION

For a non-empty (finite) set M, let &(M) denote the symmetric group and &/(M)
the alternating group on M. If G is a subgroup of $(M), then A7(G) will be the
normalizer of G in #(M).

Let Q be a quasigroup. We put Z(a, Q) (x) = ax and %(a, Q)(x) = xa for all
a, x € Q. The transformations #(a, Q) and %(a, Q) are permutations of Q (the left
translation and the right translation by a) and we put #,(Q) = {Z(a, Q); a€ @),
M(Q) = {%(a, Q); ae Q) and M(Q) = (.M (Q), M,(Q)>.

A finite quasigroup @ is said to be of type

(1), if every translation of Q is even;

(2), if every left translation is odd and every right translation is even;

(3), if every left translation is even and every right translation is odd;

(4), if every translation of Q is odd.

A finite loop Q is said to be of type

(L1), if it is of type (1);

(L2), if #(a, Q) is odd and %(a, Q) is even for every 1 + a € Q;
(L3), if #(a, Q) is even and 2(a, Q) is odd for every 1 + a € Q;
(L4), if both #(a, Q) and %(a, Q) are odd for every 1 + a € Q.

In the sequel, we shall need the following well known assertions:

1.1. Lemma. Let Q be a primitive permutation group on a non-empty finite set M
Then /(M) < G provided G contains either a transposition or a 3-cycle. '

1.2. Lemma. Let A be a finite group and let G be a finite simple group from the
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variety of groups generated by A. Then there exist subgroups B and C of A such
that C is a normal subgroup of B and G is isomorphic to B/C.

Proof. There exist n = 1 and subgroups N € H = K = A" such that N is normal
in H and G is isomorphic to H/N. Assume n = 2 and put K; = {(xy, ..., x,) € K;
x;=1},H;=HnK;forevery i = 1,...,n. If H; = N for some i, then we have
G = (H/H))/(N/H;) and H[H; ~ HK;/K, = K|[K; = A. On the other hand, if
H; € N for some i, then H = HN, G % HIN = HN|N @ H/Nn H; and H;
c K; = A" '. In this case, we can proceed by induction.

2. PROLONGATIONS OF IDEMPOTENT QUASIGROUPS

Let Q be a finite idempotent quasigroup and let e ¢ Q. We denote by P = P(x) =
= 2(0Q, ¢) the corresponding prolongation of Q. That is, P = QU {e} and the
operation # is defined on P as follows: x ¥y = xy, x*x = e =e*eand x*e =
=x =-exx for all x,ye Q, x & y. Obviously, P is a 2-elementary (and hence
monoassociative) loop, e is its neutral element and P is commutative iff Q is so.

The concept of prolongation is well known (see [1] for further references) and we
have the following two evident lemmas:

2.1. Lemma. sgn(Z(x, Q)) = —sgn(Z(x, P)) and sgn(%(x, Q)) = —sgn(%(x, P))
for each x € Q.

2.2. Lemma. The following conditions are equivalent for f e #(Q):
(i) fMf~* = M for M = {%(x, Q); x€ Q};
(ii) fNf~* = N for N = {Z(x, Q); x€ Q};
(iii) f is an automorphism of Q;
(iv) fis an automorphism of P (here, f(e) = e and f| @ = f);
(v) fKf~! = K for K = {%(x, P); xe P};
(vi) JLf~* = L for L = {%(x, P); xe P}.
In this case, fe A(M,(P)), N (M ((P)), N (M(P)).

2.3. Lemma. Suppose that the automorphism group Aut(Q) of Q is transitive
on Q. Then the permutation groups N (.M P)) and N (M (P)) are 2-transitive.

Proof. By 2.2, Aut(Q) = /(#,(P)). Hence the stabiliser of e in (4, (P)) is
transitive on Q. But .#,(P) is transitive on P, and therefore A(.#,(P)) is 2-transitive.
Similarly for A4°(.# ,(P)).

2.4, Lemma. Suppose that %#(a, Q) € Aut(Q) for at least one ae Q. Then
A (M (P)) contains a transposition.

Proof. Put h = %(a, Q)~'. #(a, P). Then, by 2.2, he A (#,(P)). However,
h is a transposition.

2.5. Corollary. Let Q be a finite idempotent quasigroup of order at least 4.
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Suppose that Aut(Q) is transitive on Q and that %(a, Q) € Aut(Q) for at least one
aeQ (eg., if Q is right distributive). Then (P) = M (P), P = ?(Q,e), e ¢ Q.

2.6. Remark. Let P = P(+) be a finite 2-elementary abelian group of order at
least 4. Put Q = P — {0} and xy = x + y, xx = x for all x, ye Q, x #+ y. Then Q
is a symmetric idempotent quasigroup, Aut(Q) is tansitive on @ and P = #(Q, 0).
However, &/(P) & (P).

3. PROLONGATIONS AND ORTHOGONAL MAPPINGS

3.1. Proposition. The following conditions are equivalent for a quasigroup Q:

(i) Q is right distributive and Q is isotopic to a group.

(ii) There exist a group Q(o) and f € Aut(Q(c)) such that g: x — f(x ') o x € #(Q)

and xy = f(x) o g(y) = f(x 0o y™") o y for qll x,ye Q.

Proof. (i) implies (ii). Let ae @ and xoy = f7!(x) g7 '(¥), f = #(a, Q), 9 =
= Z(a, Q). Then xy = f(x) 0 g(¥), x = f(x) o g(x), g(x) = f(x) ™' o xand f(x o y) =
=f(f(x) 97 () = xfg~ ' (») = xg 7 () =F 1 F(x) g7 F () = f(x) o S(¥); we
have f g(x) = ax.a = a.xa = g f(x).

(ii) implies (i). We can write xy . z = f(f(x) 0 g(y)) o 9(z) = f2(x) o f 9(¥) o 9(2) =
=f4(x) £ 9(2) o f(g(2)™1) o S2(r™") o S(¥) 0 9(2) = f*(x) 0 S 9(2) 0 9(f(¥) o (2)) =

= Xxz.yz.

3.2. Corollary. The following conditions are equivalent for a quasigroup Q:
(i) Q is distributive and isotopic to a group.

(i) Q is idempotent and medial.

(iii) There exist an abelian group Q(+) and fe Aut(Q(+)) such that g: x -
- x — f(x) e L(Q) and xy = f(x) + g(y) for all x,y € Q.

Quasigroups satisfying the equivalent conditions of 3.1 have been called left
orthomorphic in [2]. Thus, orthomorphic quasigroups (i.e. both left and right ortho-
morphic) are nothing else than idempotent medial quasigroups.

Let G be a group and f, g € #(G). Then (f, g) is said to be a pair of left (right)
orthogonal permutations of G if f(1) = 1 and g(x) = f(x7') x (g(x) = xf(x™1))
for every x € G. In this case, we have also g(1) =1 and f(x) = g(x™*) x (f(x) =
= xg(x~1)), so that (g, f) is again a pair of left (right) orthogonal permutations of G.
Clearly, the pair (f, g) is a pair of left orthogonal permutations of G iff (f, g) is
a pair of right orthogonal permutations of the opposite group G°®.

Let (f,g) be a pair of permutations of G. Put f'(x) = f(x™*)"* and g'(x) =
= g(x~*)™". Thenf" = f, g" = g and (f, g) is a pair of left orthogonal permutations
of G iff (f’, ¢') is a pair of right orthogonal permutations of G. Hence (f, g) is a pair
of left orthogonal permutations of G iff (', g’) is a pair of left orthogonal permuta-
tions of G° (further details on orthogonal permutations can be found in [1]).

Now, let (f, g) be a pair of left (right) orthogonal permutations of a group G.
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Put xoy = f(xy™ )y = gx™ V) x (xoy = xf(x"1y) = yg(y "'x)) for all x, y € G.
Then G(o) = 0,(G,f, g) (G(o) = 0,(G, f, g)) is an idempotent quasigroup and such
a quasigroup will be called orthostrophic.

I (f, g) is a pair of left orthogonal permutations of G, then G(o)? = 0,(G™,f, 9) =
= 0(G, g,f), G(s) = 0,G,f, g). Further, G(s) = 0,(G*, ¢,f) and the mapping
x = x~ ! is an isomorphism of G(s) onto 0,(G, g’, f").

Clearly, every left (right) orthomorphic quasigroup is orthostrophic.

3.3. Lemma. Let (f, g) be a pair of left orthogonal permutations of a finite
group G. Put G(s) = 0,(G, f, g). Then sgn (%(a, G(-)) = sgn (f) and
sgn (Z(a, G(-)) = sgn(g) for every aeG.

Proof. Easy.

3.4. Lemma. Let Q be an orthostrophic quasigroup, e¢ Q and P = 2(Q, e).
Then the permutation groups N(M (P)) and N (M (P)) are 2-transitive on P.

Proof. There are a group Q(o) and a pair (f, g) of left orthogonal permutations
of Q(o) such that xy = f(x o y~!) oy for all x, y € Q. Now, it is easy to check that
M (Q()) = Aut (@), and the result follows from 2.3.

4. PROLONGATIONS AND THE SINGULAR DIRECT PRODUCT

Let R be a non-trivial finite idempotent quasigroup and Q a finite non-empty set.
Further, suppose that for every ordered pair x = (a, b) € R* a quasigroup operation
q.: Q> = 0 on Q is given such that g, is idempotent if a = b. Put T= R x Q and
define a multiplication on T'by (a, x) (b, y) = (ab, q( (%, ¥)). In this way, we obtain
an idempotent quasigroup T. Put also n = card (R) and m = card (Q). Then nm =
= card (T).

4.1. Lemma. sgn (%((a, x), T)) = (sgn (%(a, r)))" [ 1 sgn (Z(x, 2(4¢.0))) and

beR

sgn (Z((a, x), T)) = sgn (Z(a, R)))" [] sgn (L(x, Q(q,p))) for allae Rand x e Q.

beR

Proof. Easy.

Now, let e¢ R U Q U T. In what follows, we shall work with the prolongations
S = 8(x) = #(T,e) and P, = P,(*) = (Q(4(a,a)> €)» a€R. For every aeR, the
set Q, = {(a,x); xe Q} U {e} is a subloop of S. Put also H(a) = {Z((a, x), S),
%#((a, x), S); x€ Q> = (S) and denote by P the set Q U {e}.

4.2. Lemma. (i) .#(S) = (UH(a); a € R}.
(ii) H(a)(Q.) = Q. = H(a) (e).
Proof. (i) This is evident.

(i) We have (a,%) # (4, 3) = (4, Ga(x: 3)). (0, %) % ¢ = (4, %) = e (4, x) and
exe=cforallx,yeQ, x =+ y.
ForaeR,put S, =S — Q, and define a mapping i,: P —» S by i.,(x) = (a, x) for
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each x € Q and i (e) = e. Clearly, i, is an isomorphism of the loop P, onto the loop
Q,. Now, we define mappings 7,(t,, s,) of H(a) into F(P)(¥(S,), (P) x &(S.))
by Za(f) = ig '(f] Qa) i (ta(f) = [ | Sas (/) = (rd(f), 1()) for every f e H(a) (see
4.2(ii)).

Obviously, s, is injective.

4.3. Lemma. r, is a homomorphism of H(a) onto J#(P,).

Proof. Clearly, r(%((a, x), S)) = Z(x, P,) and r(%((a, x), S)) = %(x, P,).

For aeR, let K(a) = #(S,) be the set of all feF(S,) such that p(x) = p(B)
implies p f(«) = p f(B) for all a, € S, (here, p: S, — R denotes the restriction of the
natural projection). Clearly, K(a) is a subgroup of #(S,). Further, let L(a) be the set
of all f e K(a) such that p(«) = p f(«) for every a e S,. Again, L(a) is a subgroup
of K(a).

4.4. Lemma. 1,(H(a)) = K(a).

Proof. Evidently, t,(%(a, x)) € K(a) and t,(%(a, x)) € K(a).

Put Gy(a) = s,(H(a)), G,(a) = {(f,g)e Gy(a); geL(a)} and Gi(a) = {(f,g)e
€ G,(a); g = 15,}. Further, put H,(a) = r,s; '(Gy(a)) and Hj(a) = r,s; '(G;(a)).
Obviously, Hj(a) is isomorphic to G(a).

4.5. Lemma. H,(a) is transitive on P.

Proof. Let x,y€ Q, x + y, and h = Z(a,x),S), k = Z((a,y), S), | = hk™".
Then 5,(1) & Ga(a) and () () = a2

Let G(a) = fs; '(G:(a).

4.6. Lemma. If H(a) is trivial, then H,(a) is isomorphic to G(a)|N for a normal
subgroup N of G(a).

Proof. Obviously, G(a) is the set of g € L(a) such that (f, g) € G,(a) for some
f € #(P). If Hy(a) is trivial, then (f, g) — g is an isomorphism of G,(a) onto G(a).

In the rest of this section, let m = 4, A = #(P) and B = (S).

4.7. Lemma. If A = M(P,), then A = H;(a).

Proof. Since Gs(a) S G,(a) = G,(a), we have Hs(a) < H,(a) = #(P,) =
= r,(H(a)) 2 4. But P contains at least five elements and H,(a) is non-trivial.
Consequently, 4 = H,(a). Similarly, either A = Hj(a) or Hs(a) = 1. Now, assume
that Hy(a) = 1. By 4.6, A belongs to the variety generated by G(a). However,
G(a) < L(a) and L(a) is isomorphic to the direct product of n — 1 copies of #(Q).
In particular, 4 belongs to the variety generated by #(Q), a contradiction with 1.2.

4.8. Proposition. Suppose that n 2 2, m = 4 and that A = M(P,) (4 < J (P,),
A < MLP,)) for every aeR. Then B = M(S) (B < M ,(S), B < M(8S)).

Proof. By 4.7, H(a) contains every even permutation f € &(S) such that f | S, =

= 15, However, S = U Q, and Q,n Q, = {e} for a # b. The result now follows
from 1.1. ack
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5. LOOPS WITH THE PRESCRIBED PARITY OF TRANSLATIONS

5.1. Proposition. (1) For every odd n =7, n = 15, there exist orthomorphic
quasigroups of order n and types (1), (2), (3), (4).
(ii) For every n = 4 divisible by 4 there exists an orthomorphic quasigroup of
order n and type (1).
(iii) There exists orthomorphic quasigroups of orders 5,15 and types (2), (3).
(iv) There exist orthomorphic quasigroups of orders 3,5 and type (4).
(V) There exists an orthomorphic quasigroup of order 15 and type (1).

Proof. See [2, Corollary 6.6].

5.2. Proposition. (i) There exists an orthostrophic quasigroup of order 15 and
type (4).

(ii) For every n = 8 divisible by 8 there exists an orthostrophic quasigroup of
order n and type (4).

Proof. See [3, Propositions 7.2, 10.2].

5.3. Proposition. (i) For every n = 8 divisible by 4 there exists an idempotent
quasigroup of order n and type (4).

(ii) Every idempotent quasigroup of order 3 is of type (4).

(iii) Every idempotent quasigroup of order 4 is of type (1).

(iv) There is no idempotent quasigroup of order 5 and type (1).

(v) There is no idempotent quasigroup of order 6 and types (2), (3) or (4).

(vi) There exists an idempotent quasigroup of order 6 and type (1).

Proof. See [3].

5.4. Lemma. (i) For every n > 3 there exists a loop of order n and type (1).

(ii) For every n = 3 there exist quasigroups of order n and types (1), (2), (3), (4).

Proof. (i) If n = 2*m for k # 1, then we can take the abelian group Z, x Zj.
If n = 2m, m = 3 odd, we may use the prolongation of an idempotent quasigroup
of order n — 1 and type (4) (see 5.1 (i), (iv)).

(ii) Let Q be a loop of order n and type (1). For f, g € #(Q), define x * y =
= f(x) g(») for all x, y € Q. Then sgn (Z(x, Q(*)) = sgn (g9) and sgn (Z(x, O(*)) =
= sgn (f).

5.5. Proposition. Let m > 4 and 1 < i £ 4 be such that there exists an idem-
potent quasigroup Q of order m and type (i) and with (P) = M (P) n M (P),
P = .@(Q, e). Then, for all n =23 and 1 £ j £ 4, there exists an idempotent
quasigroup T of order nm, type (j) and such that £(S) = M (S) " ML(S), S =
= (T, e).

Proof. Let R be an idempotent quasigroup of order n and let Q(q,,,)) = Q for
every a € R. Now, the result follows by an easy combination of 4.8, 4.1 and 5.4 (ii).

5.6. Theorem. Let n = 6 be such that n % 2p + 1 for every prime p = 3. Then
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there exist loops Ly, L,, Ly and L, of order n and types (L1), (L2), (L3) and (L4),
respectively, such that

(1) ML) = A(L) = (L) = sH(LY;

(i) M (Ly) = M(Ly) = F(Ly), M[(Ly) = #(Ly);

(i) A (Ly) = A(Ls), M [(Ls) = M(Ls) = F(Ls);

(iv) MLy) = MLy) = M(Ly) = F(Ly).

Proof. It is divided into several parts.

(a) n = 6. The existence of L;, L, and L; follows from 5.1 (iii), (iv) and 2.5.
For L,, we can take the following loop:

| 123 456
1] 123456
2 214365
3 13526 4.1
4 1 465213
51536124
6 | 6 41532

(b) n = 8iseven, n + 16. In this case, the result follows from 5.1 (i) and 2.5.

(c) n = 9. The existence of L, follows from 5.1 (ii) and 2.5. For L;, we can take
the prolongation of the following idempotent quasigroup:

| 1 23456 78
1| 132547286
2 | 321628457
31213762845
4 156847132
5168735214
6 | 75483621
7184612573
8 | 47521368

0

Now, it suffices to put L, = LY and to consider the prolongation of the following
idempotent quasigroup (for L,):

| 1 23456 7 8
1] 13256784
2 132164857
3 |2437816S5
4158647213
5167835421
6 | 71583642
7185412376
8 0467215338
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(d) n = 19. Consider the following idempotent quasigroup Q:
2 4 5 6

v AW -
N N YW | =
N = N WA D Ww

— h NN W
WA N~ O
N L W= BN
AW BN

6 4

Then Q is of type (1) and .,
follows from 5.5.

(e) n = 16. The result follows from 5.1 (iii) and 5.5.

(f) n =2 13 is odd, n + 19. Then n = mk, where k = 3 and either m > 5 is
a prime or m = 4. Now, the result follows from 5.1 and 5.5.

—~

P) = M [(P) = #(P), P = #(Q, e). The result now

5.7. Remark. (i) There exists no idempotent quasigroup of order 5 and type (1).
Consequently, the existence of L, for n = 6 cannot be proved by using the prolon-
gation.

(il) Every at most four-element loop is an abelian group, and hence we have the
following obvious existence-table:

1 2 3 4
L, | + - + -
L, | + - - -
Ly | + — - -
L, | + + — +

(iii) The complete list of five-element non-associative loops (see e.g. [1]) shows
that every such loop possesses at least one odd left translation as well as at least
one odd right translation. Therefore, the loops L, and L, do not exist for n = 5.
On the other hand, by 5.1 (ii) and 2.5, L, exists.

(iv) Let n =2p + 1, p = 3 a prime. For these numbers, the existence of L, is
proved in [4] Perhaps, using similar methods, the other cases could be solved, too.

5.8. Remark. Let (f, g) be a pair of left orthogonal permutations of a group G
and let, for every a € G, (h,, k,) be a pair of left orthogonal permutations of a group H.
Define

h(a, x) = (f(a), ho(x)) »
k(a, x) = (9(a), k,-1(x)) forall aeG, xeH.

Then (h, k) is a pair of left orthogonal permutations of the product G x H. This
constructions could be used to find further orthostrophic quasigroups and their
prolongations with prescribed parity of translations. '
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5.9. Remark. Let n = 7, n = 2p for every prime p. Then there exist idempotent
quasigroups of order n and types (1), (2), (3), (4). The situation for n = 2p is not
clear. Using 5.6, we can give a somewhat simplified proof of a result from [5]:

5.10. Proposition. Let n = 3. Then there exist quasigroups Qy, Q,, Q3 and Q4
of order n and types (1), (2), (3) and (4), respectively, and such that £(Q;) =
< M(Q;) O ML(Q;) for every 1 < i < 4.

Proof. It is divided into several parts.

(a) n = 6 is even. By 5.6, there exists a loop Q of order n, type (1) and such that
M(Q) = M,(Q) = #(Q). Hence, we can put Q; = Q. Further, let f € #(Q) be an
odd permutation. Now, it is enough to put Q, = Q(*), Q3 = Q(c) and Q4 = Q(A),
where x * y = x f(y), X0y = f(x) yand x A y = f(x) f(y) for all x, y € Q.

(b) n = 3 is odd. Put Q = Z,(+) (the group of integers modulo n) and choose
f,9€#(Q) such that (Q) = <h,f) and #(Q) = <h,g), h=(012...n — 1).
Now, it is enough to put Q; = Q(x), @, = Q(c), Q5 = Q(A) and Q, = Q(V),
where x * y = f(x) + f(y), xoy = f(x) + 9(y), x Ay = g(x) + f(y) and xV y =
=g(x) + g(y) for all x, y € Q. '

(c) n = 4. We can proceed similarly as in (b) (for @ = Z, x Z,).
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