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1. INTRODUCTION

We consider the neutral functional differential equations

(A) (% [x(1) = h(1) x(«(1))] =éqi(t)f.~(x(gi(t))),

® L0 — b XE0)] + Y0 fix(a ) = 0.

under the standing hypotheses that:

(a) he C([to, ), (0, o0));
(b) te C([ty, ), R); 1 is strictly increasing and lim (1) = oo;
t—=
(c) g:e C([to, ), R), g(t) 2 0, 0,1 <i < N;
(d) fi € C(R, R); f; is nondecreasing and u f(u) > Oforu £ 0,1 < i < N;
(e) gie C([t5, ), R) and lim g,(t) = 00,1 < i < N.
t— o0

Our primary concern is with the oscillatory (and nonoscillatory) behavior of
solutions of equations (A) and (B). By a solution of (A) (or (B)) we mean a continuous
function x: [T,. o) — R such that x(t) — h(f) x(¢(t)) is continuously differentiable
and satisfies equation (A) (or (B)) for all sufficiently large ¢ > T,. The solutions
which vanish for all large ¢t will be excluded from our consideration. A solution of
(A) (or (B)) is said to be oscillatory if it has an infinite sequence of zeros tending
to infinity; otherwise a solution is said to be nonoscillatory.

After classifying the set of possible nonoscillatory solutions of (A) (or (B)) ac-
cording to their asymptotic behavior as t — oo, we establish criteria for oscillation
of all solutions of (A) (or (B)), i.e., nonexistence of nonoscillatory solutions, on the
basis of known results regarding the non-neutral functional differential inequalities.
Then, we derive sufficient conditions for the existence of certain classes of nonoscil-
latory solutions of (A) (or (B)) with the aid of the Schauder-Tychonoff fixed point
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theorem. As a result, we are able to prove the following theorems indicating classes
of neutral equations for which the situation for oscillation of all solutions can be
characterized.

Theorem 1.1. Suppose that f;, 1 < i < N, satisfy

d—u<oo andf d—u<oo forany m>0.
0 x(u) 0 f.(u)

(i) All solutions of equation (A) subject to the conditions
L<de Sh(t) 2%, () >t and gft) <t(t), 1<

Ay and A* being constants, are oscillatory if and only if
N ©

(L.1) Y gft)dt = 0. -
i=1 ),

(ii) All solutions of equation (B) subject to the conditions
O<h(tys2*<1, t(t)y<t and gt)<t, 1<i

IA
IIA
Z

IIA
z

2* being a constant, are oscillatory if and only if (1.1) is satisfied.

Theorem 1.2. Suppose that f;, 1 < i < N, satisfy

£u—<oo andj dhu<oo forany M >0.
M fi(“) -M fz(u)

(i) All solutions of equation (A) subject to the conditions
O<h(t)ys2*<1, *(t)>t and g(t)>t, 1<i<N,
A* being a constant, are oscillatory if and only if (vl.l) is satisfied.
(ii) All solutions of equation (B) subject to the conditions

L <l Sh(ty22*, 1)<t and gft)>t), 1Si<N,

24 and J* being constants, are oscillatory if and only if (1.1) is satisfied.

The problem of oscillation and nonoscillation for neutral functional differential
equations has received considerable attention in recent years; see e.g. [1 —5, 7—14]
and the references cited therein. Most of the literature, however, centers around
linear equations with constant coefficients and constant deviations to which the theory
of characteristic equations applies, and very little is known about nonlinear equations
with general coefficients and deviating arguments. To the best of the authors’
knowledge, the papers [2—4, 7, 11] are the only references aiming at a systematic
investigation in the latter direction. The principal feature of this paper is that unlike
[2—4, 7, 11] the four cases

{h(t) < 1, «(t) <1}, {h(t) <1, «(t) >t} . {h(t)>1, o(1) < 1} ;
{h(t) > 1, o(t) > 1}

are examined for both equations (A) and (B).
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2. CLASSIFICATION OF NONOSCILLATORY SOLUTIONS

We begin by analysing the asymptotic behavior of possible nonoscillatory solutions
of equations (A) and (B). The following notation will be used extensively:

(2.1) ) =1, (1) =", () =),
i=1,2,...,

where 77 '(t) denotes the inverse function of (t).
Let x(¢) be a nonoscillatory solution of (A) (or (B)). Put

(22) ) = x(0) — o) e(0)
Then, from (A) (or (B)), y(t) is eventually monotone, so that y(t) has to be eventually
of constant sign. Therefore, either

(2.3) x(t) y(t) > 0
(2.4) x(t) (1) < 0

for all sufficiently large . Denote by A * [or A4 "] the set of all nonoscillatory
solutions x() of (A) (or (B)) such that (2.3) [or (2.4)] is satisfied. Let us introduce
the following subclasses of A" and A ~:

NE = {xeN*:limy(t) = 0},

=00

N ={xeN*:lim|y(1)] = const > 0},
t— 00

N ={xex*:lim|yt) = o} .

t— o0
No ={xeN :limy(t) =0},
t—= oo
- ={xe N :lim|y(t)] = const > 0} ,
t— 00
N o ={xeN :lim|p1)| = o} .
t— o
It is easy to see that the totality .#" of all possible nonoscillatory solutions of (A)
(or (B)) has, in general, the following decomposition:
(25) N =HEoNTONguNT for (A),
N =NKroNg o] 0N, for (B). .

The simple lemmas below indicate that additional restrictions upon h(t) and (r)
may force some of the nonoscillatory solution classes appearing in (2.5) to be empty.

Lemma 2.1. In addition to the conditions (a) and (b) suppose that
(2.6) O<h(t) <1 for t2t,.
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Let x(t) be a continuous nonoscillatory solution of the functional inequality

(2.7) x(1) [x(t) — h(r) x(z(t))] < 0
defined in a neighborhood of infinity.
(i) Suppose that 1(t) < t for t = t,. Then x(t) is bounded. If, moreover,

(2.8) O<h()si*<1, t21,,

for some positive constant A*, then lim x(t) = 0.
t— 00
(ii) Suppose that ©(t) > t for t = t,. Then x(t) is bounded away from zero, that
is, there exists a positive constant ¢ such that |x(t)| > ¢ for all large t. If, moreover,

(2.8) holds, then lim |x(1)| = oo.
t— o0

Lemma 2.2. In addition to (a) an'd (b) suppose that
(2.9 1< h(t) for t=t,.
Let x(t) be a continuous nonoscillatory solution of the functional inequality
(2.10) x(1) [x(1) = h(t) x(z())] > 0
defined in a neighborhood of infinity.

(i) Suppose that 1(t) > t for t = t,. Then x(t) is bounded. If, moreover,
(2.11) L < Sh)y, t21,,

for some positive constant Ay, then lim x(1) = 0.

Rinde]

(ii) Suppose that 1(t) < t for t = t,. Then x(t) is bounded away from zero. If,
moreover, (2.11) holds, then lim |x(1)] = oo.
t—= 0

Proof of Lemma 2.1. Let x(r) be a nonoscillatory solution of (2.7). We may
assume that x(r) > 0 on [T, ).
(i) Let o(r) < t for t = t,. Then, in view of (2.6),
x(1) < h(1) x(z(r)) < x(z(r)) for all large 1,
which implies that x(t) is bounded. If (2.8) holds, we have by iteration
x(t7"(t) < (2*)" x(t) >0 as n— oo,
which implies that lim x(r) = 0.
(ii) Let 7(z) > ttf;:t 2 1o. Then, using (2.6) we have
x(t(t)) = h(t) x(t(t)) > x(t) for t 2 T,,
which implies that x(z) has to be bounded away from zero. If (2.8) holds, we obtain
x(t"(1)) > (1/A*)" x(1) > 0 as n—> w0,

whence it follows that lim x(¢) = co. This completes the proof.

10

The proof of Lemma 2.2 is similar, and so we omit it.
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Motivated by the above lemmas we will distinguish the eight cases for {h(r), 7(t)}
listed below:

(2.12) Mo<h(t)ys1, (1) <tfort=ty;
)0 <h(y<sa* <1, «o(t)<tfort=ty;
(IN) 1 S k() < 2%, (1) >t for t = t,;
(I1) 1 < A S h(t) £ 2%, (1) >t for t = 1, ;
(1) 1 < h(r) < 2%, «o(t) <t for t 21, ;
(M) 1 < Ae S h(t) £ 2%, (t) <t for 121,
(IV) 0 <h(ry <1, o(t)>tfort=t,;
(V) 0 <h{t) s 2* <1, (t)>tfort2t,.

In what follows, for simplicity, the equation (A) subject to the case (I) etc. will
be referred to as equation (A-I) etc. From Lemmas 2.1 and 2.2 we easily conclude
that

No=0 for (BI); &L =0 for (AII);
N7 =0 for (AI') and (B-I'); and
NFE =0 for (A-Il') and (B-II).
It follows in particular that
N7 =0 for (BI) and A" =0 for (A-Il'),

that is, (B-I') has no nonoscillatory solution x(t) satisfying (2.4), and (A-II') has no
nonoscillatory solution satisfying (2.3).

3. OSCILLATION THEOREMS

We intend to establish criteria for oscillation of all solutions of equations (A)
and (B) subject to (I)—(IV) by imposing suitable restrictions on g(1), g{t). fi(u).
I £ i £ N, which preclude all the solution classes appearing in (2.5). The following
result is needed for this purpose.

Lemma 3.1. Let the conditions (c), (d) and (e) be satisfied and suppose that
(3.1) i,-m g(t)dt = o .
Then the ir1;;ua1ity
(62 {0+ T ad) o ) senult) 5 0

has no nonoscillatory solution u(t) such that lim inf |u(t)] > 0, and the inequality
t—= oo

63 W0 - a0 Sle ) senul) 2 0

has no nonoscillatory solution u(t) such that lim sup |u(1)] < oo.
t—= o
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Proof. Assume for contradiction that (3.2) has a nonoscillatory solution u(t)
such that lim inf |u(f)| > 0. We may suppose with no loss of generality that u(?) is
t= oo

eventually positive. Then there are constants T 2 t, and ¢ > 0 such that u(g(t)) = ¢

fort = Tand | < i < N. By condition (d), fi(u(g(?))) = fi(c)fort 2 T,1 < i < N,
and so (3.2) implies

(34) u'(r) < —élqi(t)fi(c) , t=T.

Integrating (3.4) on [T, ], t > T, and letting ¢ — oo, we have limu(t) = —oo
because of (3.1), which contradicts the positivity of u(f). e

Now assume that (3.3) has a nonoscillatory solution u(¢) which is eventually
positive and such that lim sup u(¢) < oo. Since, by (3.3), w/(t) > 0 for all large 1,

1=

there exist T = 1, and ¢ > 0 such that u(g,(t)) = ¢ for ¢t = T, and so (3.3) implies
N
(3.5 w(t) =Y qlt)filc), 1= T.
i=1
Integration of (3.5) yields a contradiction: lim u(f) = oo. This completes the proof.
t— o0
Let us now turn to the original neutral equations (A) and (B). Lemma 3.1 enables

us to conclude that condition (3.1) preclude the classes A" and A" in (2.5), since
it can be shown that:

(i) if x€ A" for (A), then the function y(t) defined by (2.2) satisfies
. .
(3-6) {(y'(1) = Y qi(t) fd»(g1)))} sgn y(t) = 0 for all large ¢ ;
i=1
(ii) if x e A"~ for (A-I) or (A-IV), then the function z(f) = — y(t) with y(t) given

by (2.2) satisfies
N

(3.7) {'(r) + Zlq,-(t)fi(z(r‘1 o gi1)))} sgn z(t) < 0 for all large ¢,

(iii) if x e &~ for (A-II) or (A-III), then the function w(t) = — y(¢)/A* with y()
given by (2.2) satisfies

(3.8) {w’(l) + }1: lg:lq,(t)fi(w(r“l o g,-(t)))} sgn w(t) < 0 for all large ¢ ;
(iv) if x e A" for (B), then the function y(t) satisfies

(3.9) {y'(1) +i§!q,-(t)fi(y{g,.(t)))} sgn y(t) <0 for all large ¢ ;
(v) if xe 4"~ for (B-I) or (B-1V), then z(1) = — y(t) satisfies

N
(3.10) {2'(t) = 3 qit) fz(x7" o gi(1)))} sgn z(t) = O for all large ¢ ;
i=1
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(vi) if xe &~ for (B-Il) or (B-III), then w(t) = — y(t)/A* satisfies
(3.11) { w(t) — — 2 qi(t) f(w(x ™' o gi(t)))} sgn w(t) 2 0 for all large ¢.

In fact, if xe & * for (A) and if x(t) is eventually positive, then 0 < y(t) < x(7)
by (2.2) and from (A) we have

y'(1) =§1 qi(t) fi(x(gi(1)) = iqi(t)fi(y(gi(t))) for all large ¢,

which implies (3.6). A similar argument shows that (3.6) also holds for an eventually
negative solution x € 4" of (A). This proves the statement (i). To verify (ii) and (iii)
let xe A" for (A) and let it be eventually positive (that is, y(f) < 0 for large ?).
(A similar argument holds if x(t) is eventually negative.) Then, in the case (I) or (IV),
we see from (2.2) that

o DO ) S T
G120 T R e R
for large ¢, while in the case (IT) and (III), using (2.2) again, we have

I A ) R G U) IS | G 1))
(3.13) x(t) = W (0) 2 T
for large t. Combining (A) with (3.12), we obtain

y(1) z .iqi(t)fi(‘)’(f—l o gi(t))) for alllarge t,

which, if rewritten for z(f) = — (1), reduces to (3.7). From (A) and (3.13) it follows

that N

y(1) 2 Y qdt) f{—y(t™" o g1))/A*) for all large 1,
i=1

so that the function w(f) = — y(t)/A* satisfies (3.8).

The statements (iv)—(vi) can be proved analogously.

Furthermore, we claim that the condition (3.1) also ensures that 4°g = @ for
(B-III) and A" = 0 for (A-IV). In fact, let x € A¢ for (B-III). Then, according to
Lemma 2.2 (ii) x() is bounded away from zero, and an argument similar to that
used in the proof of Lemma 3.1 shows that the function y(r) = x(t) — h(t) x(z(?))
satisfies lim y(f) = — oo if x(t) > 0 and lim y(t) = oo if x(f) < 0, which is clearly

t— oo t— o
impossible. On the other hand, if x € 47§ for (A-1V), then since x(t) must be bounded
away from zero, we see from (A) and (3 1) that llm |»(1)] = oo, which contradicts
the boundedness of y(1).

Summarizing the above observations, we conclude that under the condition (3.1)
the classification (2.5) of the set .4 of all nonoscillatory solutions of equations (A)
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and (B) now specializes to:
(3.14) N =HuN5 for (A]),
N =N for (B-I),
N =HN7 for (A-II),
N =HN5ouN, for (BII),
N =N uNg for (A,
N =N for (B-II),
N =N for (A-IV),
N =5 ouN, for (BIV).
Therefore, in order to establish the desired criteria for oscillation of all solutions

of (A) and (B), it suffices to find additional conditions under which the solution

classes N g, N5, At and A are eliminated from the above list. To do this, we
introduce the conditions

(f) J.d_“<w and J —d—u—<oo forany m>0, 1SiZN;

Ofi(u) 0 fz(u)
* du -% du | |
(g) IM@<w and j-MfTu)<°0 forany M >0, 1£i<N;

and the notation:
l(g;) = {te[ty, 0): git) > 1},
A(gi,7) = {t€[ty, 0): g 1) > 1(t) = t,) ,
R(g:) = {te[ty, ©): 1, < gft) < t},
R(gi»t) = {te[ty, ©): t, < gi(t) < (1)},

The main results of this section are as follows.

Theorem 3.1. Suppose that (f) and (g) are satisfied. If

N
(3.15) Z_:l Jatan i) dt = oo
and

N
(3'16) Zl j.ﬁ(gi,r) qi(t) dt = o0,

then all solutions of equations (A-1) and (A-II1) are oscillatory.

Theorem 3.2. Suppose that (f) is satisfied. If (3.16) holds, then all solutions of
equation (A-II) are oscillatory.

Theorem 3.3. Suppose that (g) is satisfied. If (3.15) holds, then all solutions of
equation (A-IV) are oscillatory.
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Theorem 3.4. Suppose that (f) and (g) are satisfied. If

N
(3.17) .Zl faen at) dt =
and

N :
(3.18) Zl Jettgiey ai(t) dt = o0,

then all solutions of equations (B-1I) and (B-1V) are oscillatory.

Theorem 3.5. Suppose that (f) is satisfied. If (3.17) holds, then all solutions of
equation (B-I) are oscillatory.

Theorem 3.6. Suppose that (g) is satisfied. If (3.18) holds, then all solutions of
equation (B-1II) are oscillatory.

Proof of Theorem 3.1. Note that either of (3.15) and (3.16) implies (3.1). In
view of (3.14) it suffices to prove that /| = A5 = 0 for (A-I) and (A-III).

If there exists a solution x(f) € /"5 of (A-I) or (A-III), then the function y() =
= x(t) — h(t) x(x(t)) (see (2.2)) is a nonoscillatory solution of the differential ine-
quality (3.6) such that lim |y(t)] = oo. This however, is impossible since a result

t— 0

of Kitamura and Kusano [6, Theorem 1] shows that all solutions of (3.6) must be
oscillatory provided (g) and (3.15) are satisfied. Let x € 4" be a solution of (A).
Then, z(t) = h(t) x(=(t)) — x(t) is a nonoscillatory solution of (3.7) such that
lim z(r) = 0 if case (I) holds, and w(t) = [h(t) x(x(1)) — x(¢)]/A* is a nonoscillatory

[ audo]

solution of (3.8) such that lim w(t) = 0 if case (III) holds. This is also a contradiction,
t— o0

since, according to another result of [6, Theorem 2], (f) and (3.16) guarantee the
oscillation of all solutions of (3.7) and (3.8). It follows that both 4L = @ and
N5 = 0 for (A-I) and (A-III), as desired. This completes the proof.

The proof of Theorem 3.4 is similar. Apply the above-mentioned results of [6]
to the inequalities (3.9), (3.10) and (3.11) which are satisfied by possible nonoscillatory
solutions x € A5 U A" of (B-I1) and (B-IIl). The proofs of the remaining theorems
are simpler.

4. NONOSCILLATION THEOREMS

This section is concerned with the existence of nonoscillatory solutions of equations
(A) and (B) which can be unified as

(©) Ei(it [x(t) = h(r) x(z(1))] + UiilQi(f)fi(x(gi(’))j =0,

where ¢ = —1 or +1. First, criteria are given for equation (C) subject to cases
(I')=(1V") (see (2.12)) to have bounded nonoscillatory solutions which are bounded
away from zero, and then conditions are derived under which equation (C) subject
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to (TII') or (IV’) possesses an unbounded nonoscillatory solution which is asymptotic
as t — oo to a positive solution of the functional equation x(t) — h(r) x(z(t)) = 0.
The following notation is employed:

1) mmEl,HM=i@W@Li=LL“”

Theorem 4.1. Suppose that one of the cases (I')—(IV’) holds. Equations (A) and
(B) possess bounded nonoscillatory solutions which are bounded away from zero
if and only if

(4.2) ,ZN; fegqt)dt < 0.

Proof. (The “only if”” part) Let x() be a bounded nonoscillatory solution of (C)
such that lim inf |x(¢)| > 0. Integrating (C) from T to t, T > t,, being sufficiently
t— o

large, and then letting ¢ — oo, we easily see that

N
(43) 2 J7 ai0) [fi(x(g D)) de < oo,
irrespective of the cases (I')—(IV’). The desired inequality (4.2) follows from (4.3)
and the fact that lim inf |x(r)| > 0.
t— o0

(The “if part) (i) Case (I'): {0 < h(f) < A* < 1, 7(t) < t}. Let ¢ > 0 be a fixed
constant and choose T > f, large enough that

(4.4) To = min {7(T), inf g (1), ..., inf gp(1)} = 1o
2T 2T
and
; N c
(4.5) Y [Fa)fil —=)dt (1 =A%) c.
i=1 1 — A*
Let X denote the set
(4.6) X = {xe ([T, ©): 2*¢ < x(t) < ¢ for t = T, x(t) = x(T) for
To,<t<T}, ‘

and with every x € X we associate the function £: [T;,, 00) — R defined by

‘(4 ) )Ac(t) =" :zz; Hi(t) x(‘rf(t)) + I—§(—:z—’r) H,,“)(t) , t>T,
sy= - n<icr, ‘
1 — T)

where n(t) is the least positive integer such that T, < t(t) < T. It is easy to verify
that £(1) is continuous on [T,, ) and satisfies

(4.8) Mo < (1) £ for t=T,
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and
(4.9) £(1) — h(t) %(=(1)) = x(r) for 1= T.
Define the mapping #: X — C[To, ) by

Fx(t) = 6c + oy Z qi(s) f(%(gds)))ds, 1= T,
(4.10) =1

Fx(t) = dc + o[} lglq,-(s)fi(ﬁt(gi(s))) ds, T, <t<T,

where 6 = A*if 6 = 1 and § = 1 if 0 = —1. It is not difficult to verify that Z is
continuous and maps X into a compact subset of X. Therefore, by the Schauder-

Tychonoff fixed point theorem, & has a fixed element x € X, which satisfies

(4.11) x(1) = dc + o_f;”%qi(s)fi(ﬁ(gi(s))) ds, 12T.
i=1
In view of (4.9), (4.11) is rewritten as

(4.12) £(1) — h(t) 2(=(1)) = dc + aj?iiqi(s)fi(ﬁé(gi(s))) ds, t=>T.

Differentiation of (4.12) shows that £() is a solution of equation (C) on [T, ).

From (4.8) it follows that £(¢) is bounded and bounded away from zero.

(if) Case (II'): {1 < A4 < h(t) < A*, 1(t) > t}. Take an arbitrary constant ¢ > 0

and let T > to be so large that (4.4) with 7(T) replaced by t~!(T) holds and

(4.13) erq(t < ]>dt<(,l “1)e.

Define X by

(4.14) X ={xe(C[Ty: —cly S x(t) < —cfor t 2 T,
x(1) = x(T) for T, £t < T}

and with every x € X associate the function £: [Ty, o) — R given by

(1) = — W x(z7(t) x(T)
(415) S HE ) (e (7)) = 1) Hole" )
sy=-—D gt
Weim) -1t T

)

where n(t) is the least positive integer such that T, < 7 "?(f) < T. Then, X(t) is

continuous on [Ty, o) and satisfies (4.9) and

¢ cA
4.16 ~S£t£—-’k—,th.
@1 LSS iz,

* =

We consider the mapping #: X — C[T,, ) defined by (4.10) with & replaced
by d = —cAy for 6 = 1 and 6 = —c for 6 = —1. As in the case (I'), # 'is shown
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to have a fixed element x in X which gives rise to a solution £(¢) of (4.12). This func-
tion £(¢) is a nonoscillatory solution of (C) on [T, ) with the required boundedness
property.
(iii) Case (II'): {1 < A4 < h(t) < A%, 1(t) < t}. For a fixed ¢ > 0 take T > 1,
large enough that (4.4) holds and
c

(4.17) ii 17 ai1) f; (A — 1> dt £ (Ae — )c.

Let X and & be as in the case (II') except that (4.15) is replaced by the following
formula:

=% s

i=1t Hy(t™(t))
(1) = %(T), T,<t<T.
Noting that £(7) given by (4.18) for x € X is continuous on [T,, o0) and satisfies (4.9)
and (4.16), we can show, via the Schauder-Tychonoff fixed point theorem, the existence
of a fixed x € X of & giving rise to the required solution of (C) on [T, ).

(iv) Case (IV'): {0 < h(f) < A* < 1, ©(t) > t}. For a fixed ¢ > 0 choose T > t,
so that (4.4) (with 1(T) replaced by t~*(T)) and (4.5) hold. Consider the set X <
c C[T,, ) and the mapping F:X — C[T,, o) defined by (4.6) and (4.10),
respectively, except that (4.7) is replaced by

(4.19) ﬁ(’)i‘;Hf(t)x(r"(t)), 12T,
s =x1). T=isT.

(4.18)

Since, for every x € X, £(¢) is continuous and satisfies (4.8) and (4.9), it can be shown
as above that there exists a fixed element x € X of &% which generates a required
nonoscillatory solution of (C). This completes the proof.

It is natural to ask if equations (A) and (B) possess unbounded nonoscillatory
solutions. A partial asnwer will be given below.

Let Q denote the set of all continuous positive solutions of the functional equation

(4200 x(t) — h(f) x(z(t)) = 0

defined in a neighborhood of infinity. Suppose that the case (III') or (IV’) holds.
Then, Q is non-empty and lim w(t) = oo for every w € Q. All members of Q have the

t—= 0
same order of growth near infinity in the sense that for any w, @ € Q there are positive
constants ¢y, ¢, such that ¢; o(f) < &(t) < ¢, w(t) for all sufficiently large t.

Theorem 4.2. Suppose that either case (III') or case (IV') holds. Let w € Q and
suppose that

(4.22) i 2 qt) fw(gt)) + a)dt < oo for some constant a > 0.
i=1
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Then, equations (A) and (B) posses unbounded nonoscillatory solutions x(t) such
that lim x(f)/w(t) = const > 0.

t— o0

Proof. (i) Case (III’). Let T > t, be large enough so that (4.4) holds and
42 L f q(t)f,( oo (1) + - )dt < (- 1)e,

where ¢ > 0 is a fixed constant such that cAg/(Ax — 1) < a. Let X denote the set
(4.14). By associating with every x € X the function

(2g JHO=C-X il 12T

Mr)=KT), T,<t=T,

we consider the mapping & defined by (4.10) where 6 = —cAy for ¢ = 1 and
0 = —c for ¢ = —1. It is a matter of easy computation to verify that & maps X
continuously into a compact subset of X. The Schauder-Tychonoff theorem then
implies the existence of a function x € X such that x = Zx. In view of the fact that
%(t) — h(t) 2(=(t)) = x(1), t = T, it follows that £(t) satisfies (4.12), that is, £(¢)
is a solution of (C) for t = T. Since

c cA
= + o) £ 2(1) £ of) + —*—,
5ol = 20 5 ) +

t=2T,

(1) is nonoscillatory and satisfies lim £(t)/w(t) =
t— o0

(ii) Case (IV’). For a constant ¢ > 0 such that ¢/(1 — A*) < a choose T > t,
so that (4.4) (with o(T) replaced by t~*(T)) and the inequality

(4.25) .-i I7 1) f; (w(g,-(t)) + _ci*> dt < (1 - 2%)e¢

holds. Consider the set X given by (4.6) and with every x € X assign the function

(4.26) (1) = (1) + i;QH,.(t) x(7¥(1)) ,

(1) =%T), To<t<T.
With this function £(f) we define the mapping #: X — C[T,, ) by (4.10), where
0 =A*foro =1and 6 = 1 for ¢ = —1. Then, it can be shown that & has a fixed

point xe X, to which there corresponds a solution £(t) of (C) That £(t) has the desired
asymptotic property follows from the inequalities

w(t)+c/1*§5a(t)§w(t)+1 c,l*’ t=>T.

The proof is thus complete.
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Remark 4.1. Theorem 1.1 [or Theorem 1.2] stated in the Introduction now
follows from Theorems 3.2, 3.5 and 4.1 [or Theorems 3.3, 3.6 and 4.1, respectively].

Remark 4.2. As is easily seen, the nonoscillatory ‘solutions of (A) and (B) con-
structed in Theorems 4.1 and 4.2 belong either to class A" or 4", . Naturally, the
remaining solution classes /¥ and 4 may have members as the following examples
show:

(i) The equation

(iii-t [X(1) = Ax(t — 0)] = e*(1 — Ze~7) x(t — o),

2, ¢ and g being positive constants, has a solution x(t) = ', which is of class A"} if
1 — 277> 0and of class A if 1 — Ae™7 < 0.
(i1) The equation :

% [x(1) = Ax(t — 0)] = e~%(2e" — 1) x(t — o),

t

A,0 and ¢ being positive constants, has a solution x(¢) = e, which is of class

N & if e — 1 > 0and of class /5 if &7 — 1 < 0.

It is an interesting but difficult problem to find criteria for the existence of solutions
of classes A3 and A" % for equations (A) and (B).

We conclude with examples which illustrate some of our main results presented
above.

Examples. Define functions F,(u), F, 4(u) by
F,(u) = |u|*sgnu,

_ [Fy(u) for |u
F“"’(u)h{F,,(u) for {ui

and consider the equations

(4.27) (% [x(t) = 2x(t — 0)] = q(t) F. 5(x(t — 20 sin 1)),

1’
L,

IV 1IIA

(4.28) i [x(t) = 4x(t + a)] = q(t) F, 4(x(t + 20sin 1)),

for t 2 0, where a, f, 4 and o are positive constants, and g(¢) is a positive continuous
function on [0, o).

(i) Theorem 3.1 implies that all solutions of (4.27) are oscillatory if & < 1, > 1,

0
3 e an = co

and

@
5 a0 = o,
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(i) From Theorems 3.2 and 3.3 it follows that all solutions of (4.28) are oscillatory
if
@ < 1, Pisarbitrary and kZO JORr 58 gq(t)dt =
or if

B> 1, waisarbitrary and Y [$t""g(t)dt = oo
k=0

(iii) Let A # 1. According to Theorem 4.1, equations (4.27) and (4.28) have
bounded nonoscillatory solutions which are bounded away from zero if and only if

|& q(r)dt < .

(iv) Noting that x(t) = A" [or x(f) = 2/°] is a solution of the equation
x(1) = ax(t — 0) = 0 [or x(t) — Ax(t + o) = O respectively] and applying Theorem
42 to (4.27) and (4.28), we conclude that equation (4.27) with A > 1 has an
unbounded nonoscillatory solution x(f) such that lim x(¢)/A° = const > 0 if

=0
{2 q(1) 2#t dt < oo

and that equation (4.28) with 2 < 1 has an unbounded nonoscillatory solution x(r)
such that lim x(1)/A™"° = const > 0 if

t— 0

§& a(t) =% dt < oo .
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