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D-PROXIMITY SPACES 

GiusEPPE Di MAio*), Napoli and SoMASHEKHAR NAiMPALLY**), Thunder Bay 

(Received June 21, 1988) 

1. INTRODUCTION: 

It is well known that a pseudo metric space (X, d) provides a motivation for defining 
an EF-proximity viz. 

(1.1) AÖB iff d(A,B) = 0 . 

The pseudo metric d induces a covering uniformity (on X) with a countable base 
{%n: n e N}. In terms of this base, the above proximity can also be defined by 

(1.2) AÖB iff S t ( i , f „ ) n ß + 0 foreach neN. 

Now a developable space {X, т) is a topological space with a development 
[<%n: n e N} which is a family of open covers such that for each x eX {St(x, <%„): 
n e N} is a nbhd. base at x. A developable space is one of the most important 
generalizations of a metric space and commands a vast literature. Hence it is natural 
to expect that a developable space would provide a motivation for another proximi­
ty — a generalization of an EF-proximity. Indeed if a proximity ô is defined by (1.2) 
for a development {%„}, then obviously S is a compatible LO-proximity on (X, т). 
Moreover, ô satisfies the additional condition: 

(1.3) A non ô B implies the existence of subsets C, {Cn: n e N] o fX such that 

B c C, X - C = (J {C„: n є N}9 A non 8 C and C„ non <5 C for each n. 

To verify (1.3), we set C = B~ and we know that, č being a LO-proximity, 
Л non 5 C. We set C„ = X - St (С, Фи). Clearly, Cn non č C for each n e N. Also 
since X — C is open, for each x eX — C, there is an n є N such that St (x, ^ n ) c 
cz X - C i.e. x e C„. Thus X - C = U {Cw: n є N]. We will show later on that 
(1.3) is stronger than the LO-axiom and weaker than the EF-axiom. 

Although pseudo metric spaces provide a motivation for EF-proximjties via (1.1) 
or (1.2), a topological space (X, т) has a compatible EF-proximity if and only if 
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1987). 
**) Partially supported by an operating NSERC (CANADA) grant. 

232 



(X, т) is completely regular (CR) i.e. homeomorphic to a subspace of the product 
of pseudometric spaces. Analogously, we will show that a topological space (X, т) 
has a compatible D-proximity ifand only if(X, т) is D-completely regular (DCR) i.e. 
homeomorphic to a subspace of the product of developable spaces. These spaces 
were first discovered by Brandenburg [1], who along with Heldermann [5, 6] and 
others, also made a detailed study of these spaces. DCR spaces are generalizations 
of CR spaces and have analogues for most of the known results concerning CR 
spaces — see the above mentioned references (the readers.will find a complete 
bibliography in Brandenburg [2]) as well as Di Maio-Naimpally-Pareek [3]. In this 
paper we continue this study with special reference to D-proximities. 

In Section 2, we prove the compatibility of a DCR topology with a D-proximity 
and show that a D-proximity lies strictly between EF and LO proximities. In Section 3, 
we developthetheoryofbasesandsubbases for D-proximities along the lines of the 
work of Sharma [10] who constructed such a theory for EF-proximities. In Section 
4, we study a D-compactification of a D-proximity space which is a generalization of 
the well known Smirnov compactification of an EF-proximity space. This enables 
us to show how every D-proximity is generated by a family of USC pseudo-
semimetrics. We also point out the important role played by closed Gô sets in D-
proximities. 

In Section 5,we construct D-proximities in several ways: (i) by continuous functions 
into a developable space, (ii) by pseudo-semimetrics, (iii) by closed G^-bases etc. 
Following Mrówka [8], we show that D-proximities can be constructed from grills 
(or semi-ultrafilters) which satisfy certain conditions. 

In Section 6, we study D-uniformities in relation to D-proximities which are 
analogous to Weil (W) or Alfsen-Njastad(AN) uniformities with reference to EF-
proximities or Mozzochi (M) uniformities in relation to LO-proximities. Several 
results concerning continuity, p-continuity and u-continuity are similar to those in EF 
or LO proximities. 

X, Y denote nonempty sets. P(X) is the power set of X. If (X, т), (У, o) are 
topological spaces, C(X, Y) denotes the family of continuous functions on X to Y. 
If Y = [0, 1], we just write C(X) for C(X, Y) and write U(X) for the family of all 
USC functions/: X ^> [0, 1] such that /"*(0) is closed a n d / _ 1 [ r , 1] is a closed G3 

set for each r є (0, 1]. Z(X), ZU(X) denote the zero sets of C(X) and U(X) respec­
tively. 

(1.4) Definition: A topological space (X,x) is pseudo-semimetrizabIe iff there is 
a function d: X x X ^ R such that for all x, y in X 

(a) d(x, y) = d(y, x) ^ 0 , 
(b) d(x, x) = 0, 
(c) peA~ iff d(p,A) = 0 

where d(P, Q) = Inf{d(p, q): P є P, q e ß } . 

233 



Furthermore, if 
(d) d(x, y) = 0 impies x = y 

then d is a semimetric and т is semimetrizable. 

(1.5) Definition: A 7\ topological space (R, т) is called developable if and only if it 
satisfies either of the following conditions: 

(a) There exists a development i.e. a family {tf/n: n e N] of open covers oïX with 

^n+1 < <%n a n d ( S t (*> # n ) : w є Л/} a n b h d - base for each x є X. 
(b) (X, т) has a compatible USC semimetric d. 

[Gagrat-Naimpally [4]] . 
We will refer to d as the natural semimetric associated with the developable space 

(X, т) and it is related to the development by 

(1.6) d(x, y) = Inf{l/n + 1: у є St (x, <%„)}. 

(1.7) Definition: A collection @i of clcsed subsets of a topological space ( X т) is 
called a Gô-collection iff for each Б є ^ , there exists a family {£„: n e N) c ,J* such 
t h a t X - B = V{Bn: neN]. 

(1.8) Definition: A Gô-base is a G^ collection which is a base for closed subset of 
(X, т). 

Brandenburg [2] has constructed a ^ developable space D t which is second 
ccuntable and of cardinality c which serves as a model for all DCR spaces just as 
[0, 1] serves for all CR spaces. 

(1.9) Theorem: A Tx topological space (X, т) is DCR if and only if any one of the 
following equivalent conditions is satisfied: 

(a) For each z ф D~ and distinct points p, q in Du there is an fe C(X, Dt) 
such thatf{z) = p andf(D~) = q. Dl can be replaced by any 7\ developable 
space. 

(b) There exists a Gô-base &for closed subsets of(X, т). 
We note that M c ZU(X) (see 1.11). 

(1.10) Lemma: IfX - C = (J [Cn: n e N] where C, Cn are closed subsets of(X, т) 
then there is an USC function f:X ^> [0, 1] such that C = / _ 1 ( 0 ) , f(Ct) = 1, 
f(Cn) c= [l|n, 1]. 

Proof . Define/(C) - 0 , / (C j ) = 1 and inductively,/[C„ - U {Cm: m < w}] = 
= \\n for n ^ 2. 

(1.11) Corollary: lf C, Cn are closed Gô sets, then,fe U(X). 
In analogy with CR spaces versus normal spaces, Brandenburg [ l ] defined 

D-normal spaces. The following statement gives the information that we need. 

(1.12) Theorem: The following conditions are equivalent for a T^-space (called 
a T>-normal space) 
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(a) A, B are disjoint closed sets implies there is anfe U(X) such thatf(A) = 0, 
/ (B) = 1. 

[This is a bit stronger than what is known, but itfollows easilyfrom ( l . l l ) ] 
(b) Disjoint closed sets in (X, т) are contained in disjoint closed Gò-sets. 
(c) Ay B are disjoint closed sets in X, implies there is anfe C(X, D^) such that 

f{A) = p, f(B) = q, p Ф q. 

2. D-PROXIMITY: 

In Section 1, we provided a motivation for the D-proximity axiom (1.3) via the 
developable spaces. Here we provide another motivation which, in additon, supplies 
us with a D-proximity compatible with a DCR space. An analogy is provided by 
a CR space (X, т) which has a Gô base Z(X); if we define two sets as/ariff they are 
contained in disjoint members of Z[X) then the resulting proximity ôF is EF and 
compatible with т. In the present case, suppose (X, т) is a DCR space; then it has a Gô 

base @l for closed sets [l.9(b)]. We may assume that $ is a ring i.e. closed under 
finite unions and finite intersections. Then & is a separating ring i.e. z ф D~ iff z 
and D~ are contained in disjoint members of &. If we consider disjoint members 
of & asfar, then we arrive at the following: 

(2.1) A non ö B iff A, B are contained in disjoint members of &. 

It is easy to show that ô is a compatible basic proximity viz. 

(2.2) (a) A Ô B implies B Ô A 
(b) A Ô B implies A ф 0, В Ф 0 
(c) A n В Ф 0 implies A ö B 
(d) A Ô (B u C) iff A Ö B or A Ô C 

ô is also separated i.e. 
(e) {x} o{y} implies x = y. 

Since ffl is a Gô base, for each D e J*, there exists {Dn: n e N} c & such that 

X — D = U {Dn: n є N), we find that ô as defined by (2.1) also satisfies the D-axiom 

below 

(2.3) (D) A non ô B implies there is a D c X such that Л non <5 D, B c Dy 

X - D = U {Ar « є W} and Dn non á D for each n e N. 

(2.4) Definition: A binary relation ô on P(X) is called a D-proximity iff č is a basic 
proximity satisfying the D-axiom (2.3). 

Thus we have proved: 

(2.5) Theorem: Every DCR space (X, т) has a compatible separated D-proximity. 

We now recall the EF and LO axioms. 

(2.6) Definition: A basic proximity ô on X is called 
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(EF) if A non ô B implies there is a D cz X such that A non ô D and 
(X - D) non Ö B. 

(LO) if A Ö B and b ô C for each b e B, then A Ô С. 

It is known (see for example Sharma [10] that every EF proximity <5 is induced 
by a family of pseudomctrics {df: i eI}. i.e. A non ô B iff there is an /* eI such that 
di(A, B) > 0. Set Si(A, e) = {x e X: d^x, a) < є for some a e A}. 

(2.7) Theorem: EF => D => LO. 
Proof . (EF) => (D). Suppose ô is EF and A non č Б. Then there is an i eI such 

that di(A, C) > 0 where C = {x e X: d,-(jc, Б) = 0}. Then Л non 5 C and Б c C. 
Set C„ = X - St(B, l|n). Then X - C = U {Си: n e N} and Ся non S C. Hence Ô 
is D. To prove (D) => (LO), suppose (D) holds, A ô B, b ô C for each b e B but 
A non ô C. Then there is a D cz X such that X - D = (J {Dn: n e N], A non ö D 
and D„ non ô C for each n. Since Л c5 Б and A non č D, Б ф D. Hence there is 
a Ь є Б n Д, for some п. Since b ô C, Dn non ö C, a contradiction. 

(2.8) Lemma: IfAnon ö B in a D-proximity space (X, ô), then there exists sets D, 
{Dn: n e N) which are closed Gô sets in r(c>), such that A non S D, B cz D, X — D — 
= U [Dn: n e N} and Dn non ô D, for each n e N. 

Proof . In (2.3) we have A~ non ô D~, D~ non ô D and so X — D~ cz X — D = 
= U {Dn: neN} cz (J{AT: neN} czX - D " . H e n c e X - D~ = U{^n": neN}. 
Thus in (2.3) D can be chosen to be a closed Gô set. By symmetry A non ô B implies 
the existence of closed Gô sets C, D such that A cz C, Б cz D and C non c5 D. Con­
tinuing further, since D non ô Dn we may replace Dn by a closed G^-set. 

(2.9) Theorem: If(X, ô) is a separated D-proximity space, then r(c5) is DCR. 

Proof. From Lemma (2.8) it follows that 

Я = {A cz X: X - A = (J {Л*. « є Л/}, А, An closed G^-sets in z(S) 
and Д, non á A) 

i sa G^-collection as well as a base for closed sets in (X, т{о)). We also note that Ь(
КЩ 

as defined by (2.1) is precisely b. 
Combining (2.5) and (2.9) we have the main result of this section. 

(2.10) Theorem: A topological space (X, т) is DCR if and only if X has a com­
patible separated D-proximity. 

Since there are 7\ spaces which are not DCR and DCR spaces which are not CR, 
we have: 

(2.11) Theorem: D-proximity is distinctfrom both LO-proximity and EF-proximity. 
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3. BASES AND SUBBASES: 

The study of D-proximity bases and subbases provide us with a powerful tool to 
construct compatible D-proximities on DCR spaces. In several constructions, the 
union axiom (2.2) (d) is either not satisfied or is rather tricky to prove. With the help 
of a base or a subbase, these situations are handled easily. Our study of bases and 
subbases is along the lines similar to the study of EF-proximity bases andsubbases 
by Sharma [10], wherein the reader will find further details. For the most part, 
we sketch the proofs only when they are different from Sharma's. Im denotes the set 
of first m natural numbers. 

(3.1) Definition: A D-proximity base on X is a binary relation $ on P(X) satisfying: 
(B.1) (9,Х)фЯ 
(B.2) A n В Ф 0 implies (A, В) є Я 
(B.3) (A, B) e Я implies (B, A) e Jf 
(B.4) If (A, В) є Я and A c A\ B cr B', then (A', B') є Я 
(B.5) If (Л, В) ф J>, then there exist subsets E, {En: n є N} oîX such that, B c E, 

X - E = U {E„: n є N} and (A, E) ф m and (E, En) ф & for each n є N. 
Furthermore, a D-proximity base Я is separated iff 
(B.6) (x, y) e Я implies x — y. 

Now we show how a D-proximity base generates a D-proximity. 

(3.2) Theorem: Suppose J* is a D-proximity base on X and suppose a binary 
relation ô = o(&) on P(X) is defined by: 

(3.3) A ô B iffgiven anyfinite covers {A{. i eIm}, {By.j eIn) of A, B respectively, 
there exists an (i,j) eIm x In such that (Ah Bj) є Я. 

Then ô is the coarsest D-proximity on X which isfiner than Я. Furthermore,5 is 
separated ifand only if& is separated. 

Proof. Obviously ô > 0Ü and from Sharma's paper it follows that ò is a basic 
proximity and that it is separated ifT Я is separated. So we need prove only the axiom 
(D). Suppose Акопов, then there exist finite covers {A{.iel^, {Bf.jel^ 
of A, B respectively such that (AhBj)& Š for each (i,j) eIm x /„. By (B.5) there 
exist countably many sets Eij9 {Е"у. ne N} such that Bj a Eu, X — Etj = 
= U {Ея

и: n e N), (Ah Eij) ф Я and (E*tj9 EtJ) ф Я for і є Im9 j є /„, n є N. Set Ej = 
= П {Etj' i є Im} and E = (J {Ey. j e In]. Then (Ah E,) ф & for each i, j and hence 
A non ö E. Now denote by £"j° any element ofthe family {E"j}. Clearly B c E and 
[U {E#'>: і є /m}] non Ô Eu for each j . Hence [ П (U {JEg0: і є /«})] non 5 £ since Ô 

JeIn 

is a basic proximity. And the family of subsets on the left side is countable and 
covers X — E. Thus the axiom (D) is satisfied. That Ô is the coarsest D-proximity 
finer than Я can be proved as in Sharma [10]. 
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If 3H is a D-proximity base we say that 8(@f) is generated by J^. 

(3.4) Definition: A D-proximity subbase on X is a binary relation Sf on P ( ^ ) 
satisfying (S.1) and (S.2): 

(5.1) A n B Ф 0 implies (Л, B) e <f. 

(5.2) If (A, В) ф Sf, then there exists a countable family of subsets ofX, namely E, 
{En: n e N} such that B c £ , X - £ = U {£„: n є N}, (A, E) ф У and 
(En, E) ф £f for each n e N. 

Furthermore, Sř is separated iff 

(5.3) x ф y and (x, y) є У , then there are sets P, Q of X such that x є P, у є ß , 
( P , 0 ) ^ o r ( ß , P ) * ^ . 

Several of the results in the rest of this section follow from appropriate modifica­
tions in Sharma's proofs [10]. Hence we state them without proofs. 

(3.5) Theorem: Let У be a D-proximity subbase on X. Then the binary relation 
& = St(Sf) on P(X) defined by 

(3.6) (A, B) e @ iffA Ф 0, В Ф 0 andfor any Ä => A, В' з B both (A', B') 
and (B', Ä) are in У 

is a D-proximity base on X. Furthermore, the D-proximity 8 — 8(Sf) generated 
by ^ is the coarsest D-proximityfiner than Sf and is separated iff<^ is separated. 

(3.7) Theorem: Suppose {áf: i eI} is a nonemptyfamily ofD-proximities on a setX. 
Then the proximity 8 generated by the D-proximity base @i = П {<V * e ^ } řS tne 

coarsest D-proximityfiner than each 8t. We denote 8 = Sup [8^ ieI). 

(3.8) Corollary: Let {5ř: iel} be a nonemptyfamily of D-proximities on a set X. 
Then 

T [ S a p { i , : i 6 l ) ] = V { < i i ) : i e / } 

(3.9) Theorem: Let {5£: i eI) be a nonempty collection of D-proximities on a set X. 
Then there exists afinest D-proximity 8 on X such that 8 is coarser than each 8t. 

From Theorems (3.7) and (3.9) we have 

(3.10) Theorem: The collection of all D-proximities on a set Xforms a complete 
lattice under the natural ordering ^ . 

We recall that a function/from one proximity space (X, St) to another (Y, 82) is 
jp-continuous iff A 8X B implies f(A) 82 f{B). 

A proof of the following result is similar to Sharma's (3.7) [10]: 

(3.11) Theorem: Let (X, c^), (У, 82) be two D-proximity spaces and let У be a sub-
base for 82. A function / : X ^ Y is p-continuous if and only if (A, В) ф У implies 
f~\A)nonôJ-\B). 
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Next we consider the problem of defining an initial D-proximity ô on a set X when 
we are given D-proximity spaces {(Y/9 öf) :f : X ^ Yf a function}. 

(3.12) Theorem: Let F be a nonemptyfamily offunctions eachfe F being afunc-
tion on X to a D-proximity space [Yf, ôf). Then the proximity ô generated by the 
D-proximity base & defined by: 

(3.13) (A,B)e^ iff f(A)off(B) foreach feF 

is the coarsest D-proximity on X such that each member of F is p-

continuous. 

In Theorem (3.12) we may replace ôf by a base &f or even a subbase £ťf and the 
result remains true. A special case of Theorem (3.12) is the construction of a D-
proximity for the product of D-proximity spaces. This, of course, is the coarsest 
D-proximity such that each projection is jp-continuous. If(F, S2) denotes the product 
of D-proximity spaces {(Y^): і є / } , then a function g : (X, ôt) ^ (Y, ô2) is p-con-
tinuous if and only if pt о g is p-continuous for each projection pv 

4. D-COMPACTIFICATION: 

Brandenburg [2] has shown that every DCR space (X, т) has a D-compactificalon. 
In this section, we improve this result by showing that every separated D-proximity 
space (X, 5) is proximally isomorphic to a subspace of a D-compact space and that S 
is obtained from the D-proximity £0 on its compactification where 

AÔ0B iff A~nB~ + 0. 

This is analogous to the well known results: every separated EF(LO) proximity 
space (X, ô) is a proximal subspace of a compact Hausdorif (respectively compact Tt) 
space (X*, S0) (Naimpally-Warrack (9), Mozzochi-Gagrat-Naimpally [7]). We then 
show that in a D-proximity space far away sets are separated by a ^-continuous 
function to Dt and that each D-proximity ô is generated by (i) a family of USC 
pseudo-semimetrics as well as by (ii) a Gô base for closed sets. 

(4.1) Definition: A topological space is called D-compact iff every open cover has 
a finite refinement consisting of open Fa sets (Brandenburg [2]). 

Every compact Hausdorff space is D-compact a 7\ topological space is D-compact 
if and only if it is compact and DCR. Brandenburg [2] has shown that the Wallman-
Frink compactification oc(D^ of Dt is a D-compactification. We may suppose that 
Dx a oc D1 and p, q are two distinct points of Dt. If (X, ô) is a separated D-proximity 
space, then A non ô B implies there exist C, D in & (Theorem 2.9) such that A c= C, 
B cz D and C non ö D, C, D are D-closed sets and f(C) = p, f(D) = q, p Ф q, 
p, q e ©! is continuous on C u D. By a result ofBrandenburg [ 2 ] , / h a s a continuous 
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extension from X ~> Dt c aD1. Hence 

(4.2) A non ô B implies there is a function / = fAB є C(X, aD^ 
such that f(A) = p , / (B) = g . 

We claim that the evaluation map e:X^Y=n{Yf:f^=fA>BeC(X,aDi) and 
Yf = aD^ for each/} is a proximal isomorphism on X to e(X). Clearly, e is an injective 
homeo.morphism on (X, r(a)) ~> e(X) with the subspace topology induced by Y. 
Also if A non c> Б, t h e n / = fAiB exists such t h a t / ( 4 ) = p,f(B) = q\ hence e(A)~ n 
n e(B)" = 0. On the other hand, if AÖB, then for each / є C(X, О ^ Д Л ) " n 
nf(B)~ ф 0 i.e. e(^)~ п е(В)~ Ф 0 in e(^)~ which we denote by ctX. Hence our 
claim that e is a proximal isomorphism is proven. Thus we have shown: 

(4.3) Theorem: For every separated D-proximity space (X, ô), there exists a D-
compact space caX and a proximal isomorphism e: (X, ô) ~+ (ocX, <50). 

Every compact HausdorfT space has a unique compatible EF-proximity S0 but may 
have more than one compatible D-proximities. 

(4.4) Example: The compact Hausdorffspace [0, 1] has two compatible D-proximi­
ties S0 and ö where the latter is defined by 

AôB iff Aô0B or A,B arebothinfini te . 

In an EF-proximity space (X, ô) ifA non ö B then there is a p-continuous function 
f:X ^ [0, 1] such that f(A) = 0, / (B) = 1. We now prove an analogous result 
for D-proximity spaces. 

(4.5) Theorem: In a separated D-proximlty space (X, ô) ifA non ô B, then there is 
a p-continuousfunctionf:X ^> D1 such thatf(A) = p,f(B) = q. 

Proof : If AnonôB, then e(A)~ ne(B)~ = 0 in the D-compactification aX. 
Since ocX is D-normal, there is a continuous function g: ocX ^ Dx such that g e(A) = 
= p, g e(B) = q. li otX is assigned the D-proximity ô0, then g is p-continuous and 
hence / = ge is also p-continuous. 

If in the proof of Theorem (4.5) df is defined by 

(4.6) ds{x,y) = d{f{x)J{y)) 

where d is the natural semimetric on Bu then df is an USC pseudo-semi-metric on X 
and S(df) ^ ö. Clearly ô = Sup {à{df) :f : X ^ Dx p-continuous]. Hence we have 
the following result which may be compared to Sharma's result (3.12) [10]: 

(4.7) Theorem: If ô is any D-proximity on a set X, then there exists a nonempty 
collection (oi'. ieI) oj USC pseudo-semimetric proximities on X such that ô = 
= S u p { ^ : / e / ] . 

(4.8) From Lemma (2.8) we have: I f^ non ô B in a D-proximity space then A, B are 
contained in closed Gô sets GA, GB respectively, such that GA non ô GB. 
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In any EF-proximity space (X, ô) if A n B — 0 and one of them is compact, 
then A non ô B. We now prove an analogous result for D-proximity spaces. 

(4.9) Definition: A closed subset E of a DCR space (X, т) is called G-compact ifT 
every cover of E by closed Gô sets has a finite subcover. 

The following result follows easily from (4.8): 

(4.10) Theorem: In any D-proximity space (X, <5), A~ n B~ = 0 and one of them is 
G-compact implies A non ô B. 

5. CONSTRUCTION OF D-PROXIMITIES: 

It is well known that every CR space (X, т) has a compatible finest EF proximity òF 

defined by 

(5.1) A non ÖF B ifT there is an fe C(X) such that f(A) = 0 , f(B) = 1. 

In addition, a CR space (X, т) need not have a coarsest compatible EF-proximity; 
however, it has a coarsest compatible EF proximity ôCE ifT X is locally compact 
where 

(5.2) A ôCE B ifT A~ n B~ Ф 0 or both A~, B~ are non compact. 

In the case ofa Tx space (X, т), the finest and the coarsest compatible LO-proximi-
ties 50 , ôCL respectively always exist and are given by: 

(5.3) AS0B iif A~ n B " ф 0 . 

(5.4) A ôCL B ifT A ô0 B or A, B are both infinite . 

In this section we make a study of the construction of compatible D-proximities 
on a DCR space (X, т). We show the existence ofthefinestcompatible D-proximity òv 

and investigate the existence of the coarsest compatible D-proximity ôCD. We 
compare these with their analogous in EF and LO proximities. 

It follows easily from Theorem (2.9) that if ô is any D-proximity on X, then 

(5.5) A non ô B implies there is an fe U(X) such that f(A) = 0 , 

f(B) = 1 • 

This can be compated to the well known result in EF-proximities where in /є C(X). 
The existence ofthe finest proximity ôv on a DCR space (X, т) follows from Theorem 
(3.7). 

We now give several equivalent ways ofdescribing ôvi 

(5.6) Theorem: On a DCR space (X, т) thefollowing are equivalent, and describe 
thefinest compatible D-proximity ôv. 

(a) X x X - Я = {(A,B)eP(X) x P(X): there is an fe C(X, Dj) such that 
f(A) = p,f(B)^q, p*q). 
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(b) X x X - Я = {(A, B)eP(X) x P(X): there is an fe C(X, Bj such that 
d(f(A),f(B)) > 0 where d is the natural semimetric on D j . 

(c) X x X - @ = [(A,B)eP(X) x P(X): there is an feC(X,Bj and an 
n e N such that St (f(A), Wn) n B = 0 where {%n: n e N) is the development 
on Dx). 

(d) X x X - Я = {(A,B)eP(X) x P(X): there is an fe C(X, D±) such that 
f(A) non of(B) where Ô is defined by (1.2)}. 

P roo f : (a) => (b) o (c) o (d) is trivial. To show that (b) => (a) we note that Dt 

is D-normal and so there is a g e C(DÍ9 Dx) such that g(f(A)) = p, g{f(B)) = q. 
The last statement is obvious. 

{5.7) Theorem: A DCR space (X, т) is D-normal if and only if ôv = ô0. 

The above result may be compared to the proposition: A CR space is normal iff 
SF = 50. 

(5.8) Theorem: If(X, т) is a CR space, then 

<>o è Sv ^ ôF. 

We now give some examples to clarify the relationships among ö0, öv and òF. 

(5.9) Example: If (X, т) is DCR but not D-normal (Brandenburg (5.8) [2]), then 
<5o + <V 

(5.10) Example: IfpT, т) is D-normal but not CR, then <50 = Sv Ф ôF. 
Having considered the finest compatible D-proximity on a DCR space (Z, т), we 

now take up the study of the coarsest one. The discussion preceeding (4.1) suggests 
that the coarsest compatible D-proximity may not always exist and that it exists only 
when (X, т) is locally G-compact i.e. each point is contained in a G-compact set. 
An example of a locally G-compact space is a T± topological space (X, т) in which 
each singleton set is a Gô. 

{5.11) Theorem: Let (X, т) be a locally G-compact DCR space. Then 

(5.12) AnonöCDB iff A~nB~=0 andatleastoneof A~,B~ 
is G-compact 

defines the coarsest compatible D-proximity on X. 
Proof . That öCD is a separated basic proximity is straightforward. To verify the 

D-axiom suppose A non SCDB i.e. A~ n B~ = 0 and A~ is G-compact. For each 
xeA~, there is a G-compact set Gx such that xeGx and GxnondCDB. A~ c 
c {Gx: xeA~] and hence A~ c [Gx: xeJ) where J is a finite subset of A~. 
If G = U {Gx- x e J } , then G non ôCD B and X - G = U {G„: n e N], since G is 
a closed Gô set. Also G non öCD Gn for each n. 

To show that òCD is compatible with т we note that since (X, т) is locally G-compact, 
z ф D~ implies z є Gz, D~ cz GD where Gz is G-compact, GD is closed and Gz n GD = 
= 0. That öCD is the coarsest compatible D-proximity follows from Theorem (4.11). 
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(5.13) Theorem: In a CR space (X, т) 

<5o =a °u ^ òF ^ ôCE ^ ôCD ^ ôCL. 

(5.14) Corollary: In a DCR space in which singletons are Gâ, ôCD = ôCL. 

(5.15) Example: In [0, 1] with the usual topology 

ÔCL = <>CD < <>CE = ^ 0 • 

(5.16) Example. We now give an example of a completely normal compact space X 
which has no coarsest compatible D-proximity. X is the Alexandroff suqare (Steen-
Seeback [ l l ] ) Page 120. No point on the diagonal, different from the endpoints, 
has a closed G-compact set containing it which separates it from a disjoint closed 
set. So X does not have the coarsest compatible D-proximity, although it has the 
coarsest compatible LO-proximity as well as the coarsest compatible EF-proximity 
(in fact, it has a unique compatible EF-proximity). 

We now conclude this section by giving a method of construction of D-proximities 
on the lines of Mrówka's [8] construction of EF-proximities. 

(5.17) Definition: A grill ^ on a set X is a union of ultrafilters. A semi-ultrafilter £f 
on X is a grill such that it contains at most one singleton. 

The following result is similar to Mrówka's — see Theorem (5.20) Naimpally-
Warrack [9]: 

(5.18) Theorem: Let Я> be afamily of semi-ultrafilters on a set X satisfying: 
(a) Suppose A, В є P(X). Iffor each C e P(X), B cz C, X - C = U {Cni n e N], 

there is a a e <в such that either {A, C) cz a or {Cn, C] c afor some n e N, 
then there is a o' e Я> such that {A, B) cz o'. 

(b) Each ultrafilter on X is contained in some a e &. 
Then there exists a DCR topology т on X and a compatible D-proximity ö on X 
such that each a e 4> is a bunch in (X, т). 

P r o o f : In the proof of Mrówka's theorem concerning EF-proximities, an EF-
proximity can be directly defined using semi-ultrafilters, since it involves clusters. 
In our case here, we must go to a D-proximity via a topology. So we define a topology 
on X via a closure operator defined by 

(5.19) peA~ i f f thereisa ae^ suchthat {p,A)aa. 

It is easy to show that (і) ф~ = ф (ii) A cz A~ (iii) (A u B)~ = A~ u B~. We now 
prove (iv) (A~)~ = A~. Suppose this is not true and pe(A~)~ but рфА~. Then 
for each o e % {p, A] ф a. There exist C, Cn such that A cz C, X - C = (J {Cn: 
n e N} such that for each a e c€, {p, С] Ф o and (Сп, С} ф a for each n e N. 
A~ ф C for otherwise, {p,A"] cz o which implies {p, C} cz a a contradiction. So 
for some n e N, A~ n Cn ф 0. Suppose z є A~ n Cn. Then {z, A} cz a for some 
a є c€ and this, in turn, implies {C„, A} cz a, a contradiction. 
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Next we define a proximity ô by 

(5.20) AòB i f f thereisa oe% containing {A~,B~}. 

It is easy to show that ô is a compatible LO-proximity on (X, т). Condition (a) 
makes ô a D-proximity. Clearly each a e # is a bunch. 

6. D-UNIFORMITY: 

It is well known that every EF(LO) proximity ô on X is induced by a Weil (respec­
tively Mozzochi) uniformity. There are also generalizations of Weil uniformities, 
namely AN uniformities and correct uniformities which also induce EF proximities 
(Naimpally-Warrack [9]). In this section we investigate generalizations of uni­
formities which induce D-proximities. Wefollow the entourage forms ofuniformities 
for the most part and indicate briefly how the covering forms are handled. 

(6.1) Definition: A basic uniformity °ll is a familyofsymmetric subsetsofX x X 
such that 

(a) A c f){U: Ue%]. 
(b) For each AeP(X), U, Ve <W, there is a We °U such that W[A] c U[A] n 

n V[A]. 

(c) If Ue<9t and U <= 7 = V~\ then Ve%. 

A basic uniformity is separated iff it satisfies 

(d) A = f){U:UeW} . 

Without the condition (c) we get a basic uniformity base. We call members of % 

entourages. 

(6.2) Theorem: Afamily °U of symmetric subsets ofX x X is a basic uniformity 
if and only if ô = o(%) defined by 

(6.3) A non S B iff U[A] n B = 0 for some U e Щ 
is a basic proximity. °U is separated iffb is separated. 

Proof. This is a part of Theorem (2.2) of Mozzochi-Gagrat-Naimpally [7]. 

(6.4) Definition. A basic uniformity °U is 
(M) if for every A, В e P(X) and U e <Ш if V[A] n В Ф 0 for each Ve Щ then 

there exists an x e B and a We % such that, W[x~\ c U[A]. 
(D) if for every U e °U, A c X, there exist 7, {7„: n e N} in <?/ and subsets C, 

{C„: n є A/} of Jř such that X - U[A~] c C, X - C = U { Q : и є Л/}, 
Vn[Cn] с X - C and 7 [C] с X - Л. 

(С) if for each U e %, А с X, there are 7, Жє Щ such that W [ 7 [ 4 ] ] с U[A]. 
(AN) if for each finite family {At: ieIm} cz P(X) and {Ut: ieIm} c <%, there is 

a U e f such that U[A^ cz i 7 , [ ^ ] , ieIm and the triangle inequality 
viz. for We <%, there is a 7 є Ф such that 7 2 cz Ж 
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(W) if for each U, Ve °U, U n Ve % and the triangle inequality. 
We now prove the relation between D-uniformities and D-proximities. 

(6.5) Theorem: A basic uniformity % is a D-uniformity ifand only ifô = b(öU), 
as defined by (6.3), is a D-proximity. Furthermore, ô is separated if and only if%l 
is separated. 

Proof . Suppose °U is a D-uniformity and ò — bi^U) is defined by (6.3). IfA non ô B, 
then there exists a U e % such that U[A] n B = 0. By (6.4) (D) there exist V, 
{Vn: n e N) in Ш and subsets C, {Cn: n e N} of X such that B a X - U[A] c C, 
X - C = U { Q : n e N}9 Vn[Cn] c X - C and V[C] c X - A. So C non Ö A and 
C;J non ô C for each n. showing thereby that ô is a D-proximity. 

Conversely, suppose ^ is a basic proximity such that Ô is a D-proximity. Suppose 
U e % and A e P(X). Set Б = X - U[A]. A non Ö B and so there are C, C„ є P(Z) 
such that, Б c C, Z — C = U { Q : w є А/},Л non ô C and C„ non ô C for each n. So 
there are F, {Vn: n e N} in ^ such that F„[Cn] n C = 0 and F[C] n Л = 0. Hence Ш 
is a D-uniformity. 

(6.6) Corollary: (W) => (AN) => (C) => (D) => (M) for any basic uniformity. 
Proof . (W)=>(AN)=>(C) see Naimpally-Warrack Theorem (13.14) [9]. Since 

every EF-proximity is a D-proximity, (C) => (D) for a basic uniformity. Similary 
since every D-proximity is a LO-proximity, (D) => (M) for a basic uniformity. 

(6.7) Remarks: If any basic uniformity base satisfies(P), theuniformity generated by 
the base also satisfies (P), where P є {M, D, C, AN, W}. 

Every (LO) EF proximity space (X, ô) has a compatible totally bounded (M) 
W-uniformity. The following is an analogue for D-proximity spaces. 

(6.8) Theorem: Every (separated) D-proximity space (X, ô) has a compatible 
(separated) totally bounded D-uniformity. 

Proof. By Theorem (2.22) ofMozzochi-Gagrat-Naimpally [7], (X, ô), being also 
a LO-proximity space, has a compatible totally bounded M-uniformity tf/i(o) having 
a base: {UAtB: Anon 6 B] where 

(6.9) UAiB = X x X - [A x B u B x A]. 

By (6.5) and (6.7), ^l^(o) is a totally bounded D-uniformity. 

(6.10) Corollary: A topology т on X is induced by some separated D-uniformity if 
and only if(X, т) is DCR. 

(6.11) Definition: If(X, S) is a D-proximity space then 

n(o) = {Ш : °U a D-uniformity such that o(9l) = d) 

is the D-proximity class of uniformities. 

{6.12) Theorem: / / (X,a) is a D-proximity space then %i(o), as constructed in 
Theorem (6.8), is the coarsest member of П(д). 
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Proof. Suppose <%єП(о) and UAiBeô^1(o), where AnonöB. Then there esists 
a Ve % such that (A x Б) n 7 = 0 and so V c Ул § в i.e. J 7 ^ є Ф. 

Having shown the existence of the coarsest member of Я(<5), we now show the 
existence of the finest member of П(о). 

(6.13) Theorem: If (X, d) is a separated D-proximity space, then the union $ of 
members ofn(o) is a basefor separated D-uniformity, which turns out to befinest 
element of П(д). 

Proof. By Theorem (2.29) and Corollary (2.30) of Mozzochi-Gagrat-Naimpally 
[7] £й is a base for an M-uniformity ^ 0 which is the finest M-uniformity compatible 
with ö. By (6.5), <Ш0 e Jl(o) and is the finest member. 

(6.14) Definition: £f is a subbase for a (separated) D-uniformity °U on X iff the set 31 
of all finite intersections of elements of £f is a bse for Ш. 

(6.15) Example: (2.36) of Mozzochi-Gagrat-Naimpally [7] shows that a base for 
a D-uniformity need not be a subbase. 

(6.16) Definition: A (separated) D-uniformity °U is p-correct iff there exists a (se­
parated) D-proximity ô such that Sf = {UAB:AnonöB} is a subbase for °tt . 
D-proximity ò is the generator proximity for °U. 

(6.17) Theorem: Suppose (X, tft) is a p-correct (separated) D-uniformity. Then 

(X, tfČ) is totally bounded and has an open base. Furthermore, %x(S) has an open 
base. 

Proof. By Theorem (3.9) of Mozzochi-Gagrat-Naimpally [7], % is an M-uni­
formity which is totally bounded. Since °U is a D-uniformity, the first assertion is 
obvious. The second assertion follows from Theorem (3.10) (l.c.) 

(6.18) Corollary: Let ÇX, ô) be a (separated) D-proximity space. Then there exists 
in n(S) a unique p-correct D-uniformity <Ш2(а) which is generated by the subbase 
{UAtB:AnonôB}. 

Proof. This follows from Theorems (3.16), (5.4) of Mozzochi-Gagrat-Naimpally 

И-
(6.19) Remarks: Unlike the EF-proximity case, in which there is a unique totally 
bounded compatible W-uniformity, a D-proximity class of D-uniformities #(c) may 
contain two distinct totally bcunded D-uniformities viz. °ìii(ò) and ^ 2 (^ ) - As an 
example we may consider reals with the usual EF-proximity whichis also a D-
proximity. 

Having studied the D-uniformities from the standpoint of entourages, we now 
briefly describe them from the point of view of covers, and relate them to oara-
uniformities of Brandenburg [2]. 
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If Щ is a D-uniformity on X, then for each U є °U we set 

(6.20) oc(U) = {tf(x): x є X} , а cover of X . 

Then ^ = {a(Lf): U e Щ is а family of covers oïX. 

(6.21) Definition: Suppose ^ is a family of covers of a set X. Then (X, yt) is called 
parauniform space iff 

(N.1) If ^ є ^ and % refines тГ, then і^єц. 
(N.2) If ^ , ^ є fi, then ^ л Г e fi. 
(N.3) If m є û, then intM ^{int^ U: U є Щ є p 

where int;, L̂  = {x e tf: St (x, f^) e U" for some тГ є ^ ] . 

(P.U) For each ^ e fi, there exists a countable kernel-normal subcollection 
ß = ß(qj) of fi i.e. {^n: n є N} a ß such that %± = Щ and for each 
<Шп є ß there is an úUm e ß such that ^ m refines int^ °U. 

The following result is easy to prove: 

(6.22) Theorem: / / % is a D-uniformity on X, then (X, ju) where fi= {oc(U): U e <Ш} 
as defined by (6.20) satisfies (N.l), (N.2), (N.3) and 

(CD) for each i^ e fi, there exists a countablefamily {Ý"n: n є N] cz ц such that 
Іґг = <jry іґп + 1 refines i^nfor each n e N. 

[If^ satisfies (N. l ) - (N.3) and (CD), we call (X, ц) a covering D-uniformity.^ 

(6.23) Corollary: {X, ô) is a D-proximity space if and only if it has a compatible 
covering D-uniformity fi, where A ô B iff St (Л, °fá) n В Ф 0 / o r every 41 є ft. 

Obvicusly (P.U) => (CD). Hence we have 

(6.24) Corollary: Every parauniform space(X, ^) induces a compatible.D-proximity 
on X. 

Since a finer uniformity induces a finer proximity, we have from Brandenburg [2] 
Theorem(2.13): 

(6.25) Corollary: Thefamily fif of all kernel-normal open covers of a DCR space 
(X, т) is compatible with thefinest D-proximity ôv on X. 

We conclude this section with a discussion of continuity, p-continuity and (uni­
form or) u-continuity. Suppse (X, ^ ) , (Y, ^ 2 ) a f e two separated D-uniform spaces, 
ôi = o(%i) i = 1,2 the induced D-proximities and xx = r(<5,.), the induced DCR 
topologies. It is easy to show that for a function/: X ^ Y 

u-continuity => p-continuity => continuity 

but that the converses are not true. Now we investigate when the converses hold. 
The following is an analogue ofaresult concerning EF proximities viz./ : (X, öF) ^ 

~* ( ^ ^i) is p-continuous iff it is continuous. 
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(6.26) Theorem: Supp0sef:(X,T^^(Y,T2) is continuous and ôl = ôv thefinest 

compatible D-proximity. Then f: (X, ô^ ^ (7, ô2) is p-continuous. 

Proof. If C non ô D in 7, then there is a g є C(7, Bj such that #[C] = p, g[D] = 
= g, p Ф 4. By Theorem (5.6) (/"*(C), / _ 1 ( ^ ) ) є x x * - # • Hence / _ 1 ( C ) 
n o n ^ / - ' ( D ) . 

In EF-proximities it is well known t h a t / : (X, ô^ -^ (7, 52) is p-continuous and ^ 2 

is totally bounded, then / : (X, ^ ) >̂ (7, ^ 2 ) is u-continuous. An analogous result is 

true for D-proximities which follows from Theorem (5.8) of Mozzochi-Gagrat-

Naimpally [7]. 

(6.27) Theorem: Supposef: (X, ôx) ^> (7, ô2) is p-continuous and °U2
 / s the coarsest 

element of n(ö2), then f(X, Ш^ ^> (7, <Ш2) is u-continuous. 
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