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i. INTRODUCTION

Letl < p< and let 5 = (s, ..., s,) be an n-tupel of natural numbers ordered

by 1<s, = ... . Then the anisotropic Sobolev space Wj(R") consists of all
fe€L,(R") such that
O I = L] + % 2L <o

Besides these anisotropic Sobolev spaces we deal also with their fractional counter-
parts, the anisotropic Besov spaces Bj(R"), where now § = (s, ..., s,) stands for an
n-tupel of positive numbers ordered by 0 < s, < ... < s,. These and more general
spaces attracted much attention, in particular by the Russian school of the theory
of function spaces, see [N, BIN]. One of the outstanding problems is the calculation
of the exact trace of these spaces on hyper-planes. This problem has been solved
in the early sixties in a final way, see Nikol’skij’s book. In the isotropic case, i.e.
s, = ... =s,, this is the starting point in order to calculate the traces of isotropic
Sobolev-Besov spaces on (smooth) surfaces. The situation is completely different
for genuine anisotropic spaces. First we mention an affirmative observation due to
S. V. Uspenskij some twenty years ago, see [UI, U2]. Let the surface in question
be given by
(2) x, =y(x') with x =(x,x,), xeR",

where  is, say, a C*-function on R"~!, then the trace of the above anisotropic
Sobolev-Besov spaces on that surface is more or less the same as on the hyper-plane
given by x, = 0. We return to this question later on in connection with fibre-
preserving diffeomorphic maps of R” onto itself. There is no possibility to calculate
on this way traces on spheres or on boundaries of bounded C* domains in R".
There are only very few papers dealing with traces of anisotropic spaces on surfaces
different from those ones in (2). What has bzen done by S. V. Uspenskij himself
and co-workers has been surveyed in [UDP] including references to the original
papers, see also [ST: p. 218] where one can find a collection of some relevant
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references in this connection. In [ST: chapter 4, in particular section 4.5] and in the
underlying papers [T1] anisotropic spaces in the plane and traces of Bj(R?) and
W;(R?) on curves of the type

(3) x,=x%, x,>0, 0<po<1,

and on circumferences are considered. The used technique is completely different
from those one by S. V. Uspenskij at all. It is based on anisotropic Hardy inequalities.
In the case of the curve (3) the origin is a singular point in many respects. The
extension of these considerations from the plane, i.e. n = 2, to higher dimensions is
by no means an obvious technical matter. A first step in this direction will be done
in the present paper, where we restrict ourselves to the three-dimensional case, i.e.
n = 3. We calculate traces of some subspaces of Bj(R*) and W;(R*) with 0 < s; <
< s, < s5 on cylindrical surfaces (with, roughly speaking, (x;, 0, 0) as the symmetry
axis) and on spherical surfaces. For example, under the additional restriction 0 <
< 4s; < 25, < s, one can determine the trace of Bj(R*) on the unit sphere. The
result is an anisotropic weighted Besov space on the unit sphere where the two poles
(=1,0,0) and (1,0,0) are singular points and the distinguished meridian
{x{ 4+ x3 = 1, x3 = 0} is a singular curve.

This paper is organized as follows. All definitions and resuits are collected in
section 2, proofs are presented in section 3. The main results are formulated in 2.2.4,
an n-dimensional anisotropic version of Hardy’s inequality, and in 2.5, 2.6, traces
on surfaces of cylindrical and spherical type, respectively.

The paper should be considered as the continuation of [ST: chapter 4] and the
underlying paper [T1]. Presumably the developed technique can be used in order
to study traces of other types of anisotropic spaces, for example traces of spaces
Bf,(R3) with 0 < s; < s, = s3 on finite or infinite cylindrical surfaces. Furthermore
it seems to be possible to use results of this type in connection with boundary value
problems for semi-elliptic equations, heat equations or Schrodinger equations. As
far as the case n = 2 is concerned a first step in this direction has been done in [T2],
see also [ST: chapter 4.8].

2. DEFINITIONS AND RESULTS

2.1. Anisotropic spaces on R".

2.1.1. Let R" be the Euclidean n-space. Then @ = (ay, ..., a,) with

n
(4) 0<a,£4a,.y=<..Za; <o and Ya;=n
i=1
stands for a given anisotropy and

leﬁ = Z ,xj]”aj sox = (xg, x,) € R",
=1
denotes the respective anisotropic distance — function. Let S(R") and S'(R")
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be the Schwartz space of all complex-valued rapidly decreasing infinitely differentiable
functions on R" and its dual, the space of all tempered distributions. Derivatives D*f,
where « = (ay, ..., ®,) is a multi-index, and differences

AT f(x) = i(——l)"“"(?)f(x +kh), xeR", heR",

where m is a natural number, must be interpreted in the sense of distributions. Let
t € R be a real number and j = 1, ..., n. Then we put
A7if(x) = AP f(x) with h=(0,...,1,...,0),

where t occupies the j-th entry (differences in direction of the x;-axis). Let s > 0 and

let a be the above anisotropy. Then the anisotropic smoothness § = (sy, ..., s,) is
given by
(6) 5= (81, 82) szi with j=1,...,n
a;

We have

1 &1
(7 0<s, £...5s, and— -y =,

nj=1 S

which makes clear why s is called the mean smoothness. If § and s are given by (7)
then the anisotropy a is calculated uniquely by (6). Finally we mention that L,(R")
with 1 < p < oo is the usual Banach space of complex-valued functions on R"
normed by

171 LR = (fro |£(x)]7 dx) 7

where dx stands for the Lebesgue measure.

2.1.2. Definition. Let 1 < p < 0.
(a) Let s = (s, ..., s,) be an n-tupel of natural numbers ordered by 1 < s,
.. £ s,. Then W;(R") is the collection of all f € L,(R") such that

IIA

S( mpn n (7 f n
(8) I 1w = 7] L(re)]| + Z ***** o | L)
(b) Let § = (sy, ..., s,) be an n-tupel of real numbers ordered by 0 < s; <.
..<s, Let m = (m,, ..., m,) be an n-tupel of natural numbers with m; > s; for
Jj=1,...,n Then B‘(R" is the collection of all f € L,(R") such that
1/p
©) 111 B = IF | Ly(@)] + 3. (f GG ALY
j=1\

2.1.3. Remark. The anisotropic Sobolev space Wi(R") and the anisotropic Besov
space Bi(R") are Banach spaces, the latter is independent of the chosen i (equivalent
norms). This justifies to omit the subscript m in (9) and to write simply || /| Bj(R")].
Spaces of this type and their generalisations B}, ,(R")and H;(R")(fractional Sobolev

520



spaces) have been studied extensively, see [N, BIN]. We refer also to [ST: chapter 4].
We need two well-known embedding assertions which we formulate in the following
two subsections.

2.1.4. Embedding. Let C(R") be the usual space of all complex-valued continuous
bounded functions on R", normed in the usual way by the sup-norm. Let | < p <
and let § = (sy, ..., s,) be an anisotropic smoothness, see (6). Let o = (ay, ..., a,)
be a multi-index with

(10) Y L (aj+l>< 1.
s p

Let f e Bi(R"). Then D*fe C(R") (usual interpretation) and
() s (o] = el B

where c is independent of f. If sy, ..., s, are natural numbers then we have (10), (11)
with W, instead of B;,.
Proofs may be found in [N: 6.3, 5.6.3].

2.1.5. Traces. We write x = (x', x,) € B" with x" e B"~'. The trace operator Tr:
f(x) = f(x’,0) is called a retraction from By(R") (or Wj(R")) onto By(R"~') if there
exists a linear and bounded (extension) operator Ext from Bj(R"~') into Bj(R")
(or W(R")) with Tr o Ext = id (identity in Bj(R""')).

Let 1 < p< o and § = (sy,...,s,) be an anisotopic smoothness with s, > 1/p.
Let

(12) G=(64...,0,_() with o, =s, (1 - —L) , where k=1,..,n—1.
Sﬂp

Then

(13) Tr: BY(R") - BY(R"™"): f(x) > f(x', 0)

is a retraction and, if in addition the components of § are natural numbers, then
(14) Tr: W(R") > By(R"™'): f(x) > f(x', 0)
is also a retraction.

A proof of this assertion may be found in [N: 6.7, 6.8, 9.5].

2.2. An anisotropic Hardy inequality.

22.1. Let 1 < p < oo and let § = (s, ..., s,) be an an anisotropic smoothness.
Then § is called critical if there exist non-negative integers my, ..., m, such that

(15) il<m,+1)=n.

J=1s; D

Otherwise § is called non-critical.
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2.2.2. Definition. Let 1 < p < o and let the anisotropic smoothness § =
= (s, ..., s,) be non-critical. Then

(16) B(R") =
= {f[fe By(R), D’f(0) = 0 for all & with Y L <ocj + 1) < 1}
i=s; P
and, if in addition the components of 5 are natural numbers,
(17) W (R") =
= {f|fe W,‘f(R"), D*f(0) = 0 for all o with )’ 1 (ocj + —1) < 1} .
j=18; )4

2.2.3. Remark. This definition must be understood in the sense of the embeddings
described in 2.1.4. Of course, (16) and (17) make also sense, if § is critical. However
in these cases we shall give below a modified definition of the dotted spaces.

2.2.4. Theorem. Let 1 < p < oo and let § = (s,,...,s,) be a non-critical ani-
sotropic smoothness. Let the mean smoothness s, the anisotropy a = (ay, ..., a,)
and |x|; be given by (7),(6) and (5), respectively. Then there exists a positive number
¢ such that

(18) [ [x[a " [f(x)|P dx < || f | By (R
holds for all f € BZ(R") and, if in addition the components of § are natural numbers,
(19) Jro [x[a " [f(] dx < el £] W3(RY)]”

holds for all f e Wi(R").

2.2.5. Remark. This is an anisotropic inequality of Hardy-type. The theorem itself
is by no means a surprise, it is the extension to n dimensions of the theorem in [ST:
4.3.2], see also [T1:I]. In 3.1. we give a proof by mathematical induction with respect
to n.

2.2.6. Definition. Let | < p < o andlet§ = (sy, ..., 5,) be an anisotropic smooth-
ness. Let again s, @ and |x|; be given by (7), (6) and (5) respectively. Then

(20) By(R") = {f|fe Ly(R), [ [|a" S| L(R")]| + [ /] By(R")] < oo}
and, if in addition the components of § are natural numbers,
(21) Wo(R) = {f | fe LR, | | F(I LR + £ ] Wo(R")] < oo} .

2.2.7. Remark. If § is non-critical then the spaces Bj(R") from (16) and (20)
coincide, and also spaces Wj(R") from (17) and (21). In order to prove this assertion
we assume that Bj(R") is given by (16). If f € Bj(R") then it follows from (18) that f
belongs to the space on the right-hand side of (20). Conversely, if f e Bj(R") with
|x|s % f(x) € L,(R") then we can use the same technique as in [ST: p. 213] (approxi-
mation by smooth functions combined with anisotropic polar coordinates) and
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obtain f e B}(R") in the sense of (16). In the same way one proves that (17) and (21)
coincide if § is non-critical. In other words: if § is non-critical then the above definition
is a proposition and it extends Definition 2.2.2 to critical values of 5.

2.3. Fibre-preserving diffeomorphic maps.

2.3.1. Let y = ¢(x) = (¢4(x), ..., ¢,(x)) be a diffeomeorphic map of R" onto
itself with
(22) [D? ¢(x)] < ¢, and |det pu(x)| = ¢ >0

for all multi-indices y and all x € R". Here ¢, stands for the Jacobian matrix. In our
context such a diffeomorphic map is called fibre-preserving if

(23) 0i(x) = @/(xy, ..., x;) with j=1,..,n,
i.e. the fibre “x; = ¢,” is mapped onto the fibre “y, = ¢'(c,)”, the sub-fibre
“X, = ¢, X, = ¢, is mapped onto the sub-fibre “y, = ¢'(c,), y, = @*(cy, ¢;)” etc.

2.3.2. Proposition. Let 1 < p < oo and let § = (sy,...,s,) be an anisotropic
smoothness, (in particular 0 < s; < ... <'s,). Let ¢ be an fibre-preserving dif-
feomorphic map of R" onto itself as defined above. Then

(24 0~ (f20)(x). xeR

is an isomorphic map from Bj(R") onto itself. If in addition the components of §
are natural numbers then ® is also an isomorphic map from W:(R”) onto itself.

2.3.3. Remark. In the isotropic case, i.e. s = §; = ... = 5, > 0, it is well-known
that any diffeomorphic map of type (22), not necessarily fibre-preserving, yields an
isomorphic map from Bj(R") onto itself and, if s is natural, also from W,(R") onto
itself. The proof of the above proposition is based on this fact and will be given
in 3.2. Uspenskij's observation about traces of Bj(R") on surfaces of type (2) is now
an easy consequence of the above proposition.

2.4. Traces on curves.

2.4.1. Our main aim is the study of traces of anisotropic spaces in R* on two-
dimensional surfaces. However for several reasons it is necessary to recall and to
modify some results obtained in [ST: 4.5, 4.6] (and the underlying papers) about
traces of anisotropic spaces in R? on curves. Firstly we need these results in a slightly
modified form compared with [ST]. Secondly we formulate some principles and
ideas which shed light on the treated subject and which can also be used in higher
dimensions.

2.4.2. Spaces on R?. First we wish to modify the spaces Bj(R*) and W;(R?) from
Definition 2.2.6 slightly. Let again § = (s, s,) with 0 < s, < s, be an anisotropic
smoothness and let s, @ = (a,. a,) and |x|; be given by (7), (6) and (5), respectively,
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now with n = 2. Let x® = (—1,0) and x' = (1, 0) then
(25) (x)a = min (|x = x°fs, [x = x'],)

is now the anisotropic distance with respect to these two singular points. Let 1 <
< p < o0, then

(26) By(R?) = (/] /e L(R). ()i f() | Ly(RH)] + [£] By(R?)] < oo}
and, if in addition s, and s, are natural numbers,
(27) Wy(R?) = {f| e Ly(R?), |(*)a" () | L(R*)[| + [ f | Wp(R?)] < oo} .

Compared with (20) and (21) we have now two singular points. Otherwise we have
the same situation as it has been described in Remark 2.2.7. If § is non-critical then
Bj(R?) and W;(R?) are unweighted spaces in the sense of (16) and (17) with D* f(x°)
and D* f(x') instead of D* f(0).

2.4.3. Spaces on curves. Let 0 < ¢ < 1, then K, is the closed curve in the plane
given by
(28) Kol =1 x| = (1= x])29(x),
where (1) is a positive C*-function in the closed interval [ —1, 1]. This curve has

two singular points, x° and x' and the behaviour of this curve near these two points
is the same as the behaviour of

(29) x; 20, |x,|=x{

near the origin. In [ST: 4.5] traces of B}(R?*) and W,(R?) on the curve (29) are studied
and these considerations are extended to spaces of type B} and W, in the unit
circle (¢ = 4, where K, coincides with the unit circumference). The above modifica-
tions are of technical nature there is no need to repeat the slightly modified arguments
given in [ST]. But we give a precise descprition of the results and we outline those
ingredients of the proofs which are useful in higher dimensions. First we introduce
weighted Besov spaces on K,,. Let ¢ be the arc length on K, measured from, say, x!.
Let 2L be the length of K, then o = L characterizes x°. In a little sloppy notation
we write o € K, and introduce the distance of o € K, to x%and x! by

(30) d(¢) = min (o, 2L— o, |L — d]),

in particular 0 < d(o) < L[2. It is clear what is meant by L,(K,) with 1 < p < o
and by distributions on K,. Let g(o) be a regular distribution on K, and let m be
a natural number, then

(31) ATg(o) = 3 (~ |)m-k<’:> glo+ ki), 0<o<2l, 0<ts2L
k=0
are the usual differences where ¢ + kt must be understood modulo 2L. Now we

come to the definition of the spaces B}(K,, ) where s > 0, 1 < p < o0 and pe R:
Let m be a natural number with m > s, then Bj(K,, ) is the collection of all regular
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distributions g on K, such that
(32) l | By(Ker )]l = (fo" d™*7"7(0) lg(o)|” do)' " +

2L (2L _—sp|Am( q— p de\'/”
+ [ 35 [5F v7*7|AT(d " g) (0)] da—r« <.

By the theory of Besov spaces it is quite clear that Bj(K,, x) is independent of m
(equivalent norms), see also [ST: p. 221].

2.4.4. Theorem. Let | < p < oo and let§ = (sy, s,) with0 < s, < s, ands, > 1/p
be an anisotropic smoothness. Let s,[s, < o < 1,

o eefen ) o))

Then the trace operator
(34) Tr: f(x) > f|, (restriction of f on K,)

is a retraction from §f,(R2) onto B;(Kg, w). If in addition s, and s, are natural
numbers then Tr from (34) is a retraction from Wy(R") onto Bj(K,. p).

2.4.5. Remark. What is meant by a retraction is clear by the explanations given in
2.1.5, now with K, instead of B"~'. Beside some necessary technical modifications
this theorem is essentially covered by the theorem in [ST; 4.5.4, 4.6.3]. This justifies
to omit any details, but we wish to describe the basic ingredients of the proof in
such a way that they can be taken over to higher dimensions.

2.4.6. The main principles.

(i) The number x. By 2.1.5 the above number x coincides with o, from (12).
Hence the degree of smoothness remains unchanged compared with the trace on the
curve “x, = 07.

(ii) Regular curves. Let
(35) C:x, =y(x,), W) < if ter,

see (2). Then Proposition 2.3.2 can be applied to y; = x, y, = x, — ¥(x,). One
obtains as a consequence that the trace of Bj(R?) on C is the same as on “x, = 07,
i.e. By(C), where the definition of the latter space is obvious.

(iii) Model case. Equipped with the knowledge of (i) and (ii) it is now quite
clear that it is sufficient to study the trace of Bj(R?) on the curve

(36) Cp0<x, =1, x;=x%,
see (29). Hence we may replace B3(R?) by B}(R?) from (20).

(iv) Decomposition. The crucial point is the decomposition of a function

525



f€B}(R?) near the origin. Let y(t) be infinitely differentiable functions on R* with

(37) suppy; < {xe R* | 2777 < |x|, < 279*!} where j=1,2,3,....
(38) prdmmmionz pry (f)] < ¢,, = (o5, ;) multi-index ,

(39) iln//j(z) =1 if |x;=% and x#0.

We proved iJn [ST] that for any f e Bj(R?) with supp f = {x| |x|; < 1}

@ I BE Y s B

Here one needs Hardy’s inequality from Theorem 2.2.4 with n = 2.

(v) The number ¢. By (40) one has to calculate the traces of f; = y,f on C, and
to clip together these traces in order to determine the trace of f on C,. The latter will
be done via dilation arguments and for this purpose it is desirable that the part of C,
given by, say, 27UtV < x < 27U~ Da . — x? lies in the rectangle

(41) =G+ Day <x, £ -G~ Das , X, < ¢ 2 i ,
for some ¢ > 0 which is independent of j. This is ensured because of a,fa; =
= 51/52 S o

(vi) Dilations. The rest is now a matter of dilation and homogeneity arguments.
Let

(42) yi=2%"x,, y, =2"x,,
and let f;(x) = g;(y). Then we have
3) | By®)| = 2¢77g, | BY(R?)]

LR

where “~” indicates an equivalence which is independent of j. The curve C, near
x; = 277 is transformed into the curve C, ; given by y, = 2/ y¢ near y, = 1
which by (v) satisfies uniformly the hypothesis of (35). Hence the trace is given by
B;(CM.), restricted to a neighbourhood of y;, = 1. The dilation factor from C,

near x; = 279" to C, ;near y, = 1 is equivalent to 2/*:2. Then we obtain

(44) [Tes; [ BYCI = 20 Tr g, | BY(C, )]

)

where again ““~’" indicates an equivalence which is independent of j .

(vii) The number p. By (43), (44) and the observations from (ii) about traces on
regular curves we have uniformly

(45)' ITrf,| BX(C,)| < ¢ 2j[ane(x—(1/p))-(s—(2/r'))]”fj | BY(R?)] .
By (33) it follows

(46) x—lzs,(l——l——-1—>=—s—<1——2«>=i<s—g)
p PSy PS> a; ps aj p

and the factor on the right-hand side of (45) equals c27 /¢, see (33). Finally we have
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d(o) ~ 277" in the sense of (30), now with the origin as the off-point, for a point
on C, which corresponds to x, ~ 277 This yields the desired factor d *(c) in the
sense of the theorem.

2.47. Remark. The obtained principles make clear that the space Bj(K,, p) is the
only candidate to be the exact trace space of B}(R?). We omit all technical estimates
where Hardy's inequality from Theorem 2.2.4 and Proposition 2.3.2 are indispensable
tools. We refer for details to [ST]. As far as higher dimensions are concerned we
adopt now the following point of view: We prove Theorem 2.2.4 and Proposition
2.3.2 in detail. Then we restrict ourselves to n = 3 and search for surfaces in R* for
which the main principles from 2.4.6 may be applied. This causes some trouble and
requires some restrictions. The remaining technicalities are left to the reader with
a reference to the relevant estimates detailed in [ST] in connection with the two-
dimensional case.

2.5. Traces on surfaces of cylindrical type.

2.5.1. Cylindrical surfaces. Let 0 < ¢ < 1, then Z, is the closed surface in R®
given by
(47) Zp -0 <x; <o, |x]S1, x3=(1-x3)%9(x,),

where  has the same meaning as in (28). In other words, we have Z,=R x K,,
where K, is the curve given in (28), now in the x, — x; plane.

2.5.2. Spaces on R*. We extend the definition from (26), (27) to three dimensions.
Let § = (sy, 53, 53) with 0 < s, < s, < s be an anisotropic smoothness and let s, a

and |x|; be given by (7), (6), and (5), respectively, now with n = 3. Let & = (s, 53),

(48) 1=1(14+~'—>, b= (byby) with b, =—, by=—,
v 2\s, 3 S2 S3
see again (7) and (6). Similar as in (25) we introduce
(49) (x)s = min (]x, + 1" + x|, |x; — 1'% + |x;]'")
where x = (xy, x,, x3). Let 1 < p < oo, then
(50) By (R°) = {f[fe L(R), ()" f() | L(R*)| + [f | By(R*)] < oo}
and, if in addition s, s,, s; are natural numbers,
(51) W(R) = {f|fe L(R), [[()s " S() | Ly(R®)| + [ f | Wy(R?)] < 0} .

Of course, (x, 1, 0) and (x;, — 1, 0) are singular points, x; € R. On the other hand,
the situation is similar as in 2.2.6 and 2.2.7. First we recall

amz+m3f . )
(52) ————— (x, £1,0) € B,(R) if
OxT2oxT
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m,, my are natural numbers such that

(53) 1 <m2 + 1) + 1 (m3 + l) <1 and
52 p) s P

et d)
S2 p S3 p

see [N]. Let & = (s,, s3) be non-critical in the two-dimensional sense then

54) Bi(R®) = J,f feBy(RY), ammy xy, £1,0) =0 for all
( P( ) l 14 A (

0x520x75?

x,;€eR and L (m2 + ]> + 1 (m3 + ]) < 1}
S2 p S3 p

and similarly for W;(R*). This follows from the two-dimensional case, see 2.2.7.
In other words, besides some limiting cases Bj(R®) and W,(R*) are unweighted
subspaces of Bj(R*) and W,(R?), respectively.

2.5.3. Spaces on Z,. We write Z, = R x K, = {(1,0)| 1€ R, 0 € K,}, where the
arc length ¢ has the same meaning as in 2.4.3 and 4 = x, is the arc length along the

corresponding straight lines. Let g(4, o) be a regular distribution on Z, and let m e N,
then

(55) AT 9(%, o) =k§_0( ~ 1)<k> 9% + kt, 0)

and

m

(56) ATyg(A o)=Y (—1)" 7k (T) g9(, 6 + kr)

k=0
where arguments in the second entry must be understood modulo 2L, the length
of K,. Let d(c) be given by (30), now interpreted as the distance of a point (4, 0) € Z,
to the two above-mentioned singular lines which can also be described as {(4,0) | 1 e
e R} and {(4, L)| 1eR}. Let % = (3, %,) be a couple of positive numbers, 1 <
<p < w,ueR andlet m = (m;, m,) be a couple of natural numbers with m, > x,

and m, > x,. Then Bj(Z, u) is the collection of all reular distributions g on Z,
such that

(57) lg | BX(Zy 1)||lm = (J [*6d™**P7#"(a) lg(i, a)]” do dA)''? +

2L (2L .~ x2p|Am - » dr 1/p
+ IR 0 ,[0 T lAr.Z(d g) (4, a)l do — dJ +
T

2L (2L . —xp|Am P g:f t/p
+ (Jrfot foF 7 |A" 1g(2, 0)]P do —dA) < 0.
T

By the theory of Besov spaces it is quite clear that Bj(Z,, p) is independent of in
(equivalent norms), see also 2.4.3. The integration over t between 0 and 2L is quite
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natural in the second term of (57), but 2L can be replaced by any positive number.
In the third term in (57) the number 2L as the upper limit of integration with respect
to t can be replaced by any positive number or by oo. The latter would be natural,
but we prefer (57) for sake of simplicity.

2.5.4. Theorem. Let | < p < oo and let § = (s, s,,53) with 0 <s; <5, < 53
and sy > 1[p be an anisotropic smoothness. Let s,[s3 < ¢ < 1, % = (3, x,) with

(58) %, =8 (1 - —]—) X, = s2<l - J) and =.<1 - l) (x2 —1>
PS3 Ps3 2 p

Then the trace operator
(59) Tr: fi> fl,, (restriction of f on Z,)

is a retraction from Bj(R?) onto Bj(Z,, ). If in addition s,, s,, and s; are natural
numbers then Tr from (59) is a retraction from W,(R*) onto B}(Z,, p).

2.5.5. Outline of proof. The proof is essentially a two-dimensional matter, the
x,-direction is unimportant, and we can follow the main principles described in
2.4.6 step by step: First the number » in 2.4.6 (i) must be replaced by %, see (12).
Proposition 2.3.2 covers the modification of 2.4.6 (ii). The replacement of (36) is
clear, the decomposition in 2.4.6 (iv) is strictly two-dimensional, with respect to the
X, — xz-variables. Afterwards the rest, i.e. 2.4.6 (v)—(vii) is clear. In the sense of
Remark 2.4.7 we omit all technical details which are more or less the same as in the
two-dimensional case. We refer for details to [ST: Chapter 4].

2.6. Traces on surfaces of spherical type

2.6.1. Spherical surfaces. Let 0 < ¢, < 1 and 0 < ¢, < 1, let y,(t) and (1)
be two positive C*-functions in the closed interval [ — 1, 1]. Then the two-dimensional
surface S; with @ = (¢, @) is given by

(60) |X1| =1 Ile = y(x,) = (]- - x%)m Yi(xy) s

o1 bl = y(xl)<l B v;(fn)yz‘l/2 (v(jczx))

The geometrical meaning of this a little bit complicated looking surface is quite
clear: The intersection of S, with ““x; = 0" is given by x, = y(x,), this is the curve K,,,
from (28) in the x, — x,-plane. The intersection of S; with “x, = 0” and “x, = 0”
yields curves K, and K,, in the x; — x3-plane and the x, — x;-plane, respectively.
Furthermore for fixed x, the x, — x; curve given by (61) is the homothetic image
of a fixed K,,-curve, say, that one which corresponds to x, = 0. Hence the result is
a spherical surface with the two poles x® = (=1, 0, 0) and x" = (1, 0, 0) as singular
points and M = {(x,, x5, x3)| |x,| < L, |x,| = 9(x,), x3 = 0} as the singular curve.
The most important example is the unit sphere, then we have ¢, = ¢, = 1.
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2.6.2. Spaces on R*. We have to combine the structure of the spaces from (50),
where now M is the singular curve, and from (26), where now the two poles x°
and x' are the singular points. Let again § = (s, s, 53) With 0 < sy <5, < 55 be
an anisotropic smoothness and let s, @ and |x|; be given by (7),(6) and (5), respectively.
Let & = (s, s3) and let v and b be given by (48). The counterpart of (49), i.e. the
anisotropic distance from the curve M measured in the planes x; = const. is given by

(62) [X]E = min (|x2 + y(xl)[’/”z + Ixsll/b3)

where x = (x,, x,, x3) with |x,| < L. Let (x); be given by (25) now in three dimen-
sions, where x° and x! have the above meaning. Let 1 < p < oo and let y be the
characteristic function of the strip “}x,| < 17, then

(63) *By(R°) = {f | fe Ly(R*), [()a" f() | L(R*)]| +
+ [ 15 % () S ) [ LR + |1 By(R®)] < oo}
and, if in addition s, s, and s; are natural numbers,
68 WAR) = (] Fe L), [0 1) | LR +
T O 7O L&) + 17| W) < oo}
The above spaces combine what has been said in 2.4.2 and 2.5.2: Let § = (s,, 55, 53)

and & = (s,, s3) be non-critical, then *Bj(R*) is the collection of all f e B}(R*) such
that

(65) D’f(xo) = sz(xl) -0 if i 1 (ij + ,1> <1

j=18; D

=0 if l(m2+~%>+41<m3+—1><1,
M S2 p S3 p

furthermore in this case the norm in (63) is equivalent to || Bj(R*)|. Similarly
for *W;(R?). This follows from (16), 2.5.2 an the decomposition arguments which
will be explained later on.

and

(66) o

m2 343
0x%? 0x5

2.6.3. Spaces on S;. First we equip S, with meridians and latitudinal lines. The
latter ones are given by (61) where x, is fixed and |x,| < y(x,). Let ¢ be the arc
length on the distinguished latitudinal line which corresponds to x; = 0, the equator.
The measurement starts at, say, x, = y(0), x; = 0, where we may assume without
restriction of generality y(0) = 1. We parametrize the equator by ¢. The meridians
are given by

(67) Xy = (x1), x5 =c3y(x;) with —12x,
(68) —1=c, =1, IC3, = (1 - Cg)az ‘/’2("2) s
see (61). We have an one-to-one correspondence between the meridians and the

parameter ¢ with 0 < o < 2L, where 2Lis the length of the equator. Now we extend
the parameter ¢ from the equator to an arbitrary latitudinal line in .an obvious way

IIA

1 s
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such that the meridians are characterized by ¢ = const. Then the arc length on the
latitudinal line characterized by x, is given by y(x,) 0. The meridians are running
from pole to pole. Let A be the arc length of the distinguished meridian (67) with
¢; =1, ¢y = 0 (Greenwich meridian). Then we parameterize this distinguished
meridian by A with 0 < 4 < K and we carry over this parameterization to the other
meridians in an obvious way such that the latitudinal lines are characterized by
A = const. Then the arc length on a given meridian is proportional to A, where the
factor can be calculated by \/(c3 + c3), see (67), (68). Now (4, ¢) are geographical
coordinates on S;. Let d(2, o) be the distance of a point (4, o) € S; measured along
the corresponding latitudinal line to the above curve M, which is the union of the
Greenwich meridian and the (idealized) date line. This is the counterpart of (30).
Let D(4, o) be the distance to the poles measured along the corresponding meridian.
Let g(4, 6) be a regular distribution on S;. Then A7, g(4, 6) is given by (55) where
A+ kt with 0 £ 2 < K and 0 = t < K includes both the given meridian and its
anti-meridian and must be understood modulo 2K. Let y(x,) = I'(1), see (60). Then
we modify (56) by

m

(69) A?,9(%, 0) = 2(—1)"‘“"(:) (ﬂ o+ — ), 0<¢=<?2L, 0<t=<2L,
P r(2)

where ¢ + kt/I'(1) must be understood 2L-periodically. The reason for this modifica-
tion is clear: the difference A} ,g(4, o) should bz the difference of the values of the
function g at the two points (4, ¢) and (4, ¢’), the distance of which along the lati-
tudinal line 2 = const. equals 1. That means I'() ¢’ = I'(X) ¢ + 1, because not o
but I'(1) o is the arc length on 4 = const. (see above). Hence by iteration one obtains
(69). Let % = (x,, %,) be a couple of positive numbers, 1 < p < o and i =
= (py, ft2, 13), Where piy, pt5, py are real numbers. Let m = (m,, m,) be a couple
of natural numbers with m; > %, and m, > x,. Then B}(S;, ji) is the collection of
all regular distributions g on S; such that

(70) lg | B3(Se )|m =
- (j’o ’Ld X2P = H2P [y~ %1P = u:rr+u3 lg()”’ ),p 1—(,{) do dl)”" +
+ (j{f [K 3k e arprr g=ear=wr|Am (D1 g) (2, 0)|7 /() dp & d/l) "4

+ ( o Jor Joh TP DT T IIP|AT (472G (4, 0) [P T(A) d—"g—’ d/{) <.

Again these Besov spaces are independent of 7 (equivalent norms). The integration
over 7 between 0 and K or between 0 and 2Lcan be replaced by an integration over t
between 0 and an arbitrary positive number.

2.6.4. Theorem. (Traces) Let 1 < p < oo and let § = (sy, 55, 53) with 0 < s, <
<'s, < sy and s3 > 1[p be an anisotropic smoothness. Let § = (g,, 0,) be a couple

\l’
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of real numbers with s,[s; < 0 <1 ang
and g

= (”1: ”2) and ji = (#1, Nzuul) be given by afss =S 0, < 1. Furthermore let % =

1
W (i) (1)
and Pss
I 1
(72) /‘1=<‘_—]>(x1‘“>, #z—(l—l)(vz—l>,
Q24 14 0, p
(73) H3 = ;i!~

Then the trace operator
(74) Tr: f(x) > flsg (restriction of f on S;)

is a retraction from *Bf,(RA) onto Bﬁ(SE, R). If in addition s,, s, and s; are natural
numbers, then Tr from (74) is also a retraction from *W3(R*) onto B}(S,, ji).

2.6.5. Remark. We recall that s is the mean smoothness of B}(R*) nad that a; is
given by a; = s/s,., i = 1,2, 3. The theorem looks somewhat complicated, but more
important than the actual values of u,, p,, and u; is the structure of the trace space:
An anisotropic weighted Besov space on S, where the weights degenerate on the
poles and on M, the ‘“union of the Greenwich meridian and the date line”. The
restrictions are of such a type, that the main principles from 2.4.6 combined with
the Theorems 2.4.4 and 2.5.4 can be applied. In 3.3 we add few more details.

2.6.6. Remark. In [ST: 4.5] one finds a discussion of further possibilities restricted
to two dimensions. For example, what happens if 5, < l/p in Theorem 2.4.4. This
can be extended to three dimensions and simplifies the situation. Another interesting
possibility is to restrict the considerations to non-critical cases such that *Bj(R*)
from (63) is the subspace of Bj(R*) characterized by (65), (66). In this case it seems
to be possible to determine the trace of the full space Bj(R*) on S, on the basis of
Theorem 2.6.4 and some additional considerations, see [ST: 4.5.6] for the two
dimensional case.

3. PROOFS

3.1. Proof of Theorem 2.2.4. We prove the theorem by mathematical induction
with respect to n. It is clear for n = 1 because of the one dimensional Hardy ine-
quality, see [ST: Proposition 4.3.1 and the corresponding remarks]. We prove (18).
The proof of (19) is the same.

3.1.1. Let 0 < s, < 1/p. Then the proof of (18) is the same as in [ST: p. 205]
(now with n = 1, 2, ... instead of n = 2).
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3.1.2. Let § be non-critical, l/p <s;, £...<s,< o and assume temporarily
that s, — 1/p is not an integer. Let m be the (non-negative) integer given by

(75) m+l<s,,<m+1+—1.
p p

Furthermore as in [ST: p. 205/206] we may assume fe S(R") n B}(R"). Let x =
= (x, x,) € R" with x’ e B"~". Let y(t) be a function on the real line with compact
support and y(t) = L if || < 1. We decompose f(x) by

(76) fx's %) = Zx( ")

k'ak( ,0) + g(x', x,) -

We fix x" € R"~! and apply the one-dimensional case of (18) to g(x', x,) and obtain

) Jelel -=""11A'"+2g<x', 9] L.,m)n"f‘—‘

<c J‘R —Sap

AT (¥ )le(R)ll"

We integrate (77) over R"~'. Because of |x[; = |x |"‘ we have
(08 Tw b ol ax 5 el | B+ o5 ”——( 0)| L)
By (75) we have
)
—{m+-])<1
Sn p
and hence we can apply the embedding theorem from [N: 6.7] which yields

) Lo e

<c|f|BYRY|, k=0,...,m.

Hence we arrive at
(80) fre [x[a " lg(0)|” dx < ] f | By(RY)]” -
Next we estimate the terms
X(xn) x: a—x—{‘l (x ’ 0)
from (76). We have

k k
(81) J i b ., 0) "dx=J ‘Z{ (< o)| f 5[ x| dx, dx'
R® n Rn-

We estimate the inner integral and introduce temporarily

n—1
(82) [¥la =3 ||, x' = (x4 .0, X,—q) R,
i=1
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and a = (ay, ..., a,-,), although in general a, + ... + a,_; + n — 1, see (5) and
(4). Let x' = 0, then we have

(83) e b = (b'la + bl o) 77 faf” =

= |x’|;sl’+kﬂnp <1 + M)lm")_b‘p —JﬁL N *
: A e

The inner integral in (81) converges because of

(84) —f£+kp=p(k—-s,,)§p(m——s,,)<—1

all
and we obtain
(85) jn |x|a—sp Ixnlkp dx,, — Clx/lg—sﬁkannﬂn — clxolzp((k/sn)ﬂllpsn)—1)_
By (75) we have
(86) ak=s(—ﬁ—~—1—+l>>0 with k=0,....,m,

Sy DS,
and
(87) A§=gﬁ=sj(—E——la+l)>0 with j=1,...,n—1.
aj Sp DSy

Next we claim that A* = (1}, ..., 25_,) is non-critical in the sense of 2.2.1 (with n — 1
instead of n). Let us assume that AF is critical, i.e. there exist non-negative integers
My, ..., m,_; with

n—1
1 1
—|m; +—-)=1.
f; i’f-( ! p)
Then we have by (87)
| 1 1
Y w(mj+—>+— k+l>= 1.
i=s; p/ s p
This is a contradiction bzcause we assume that § is non-critical. Hence A* is non-
critical. Let g = (B, ..., B,—1) be a multi-index. Then we have

(88) v (p, + ;) <1

L gk
ji=1 /{j

if and only if

n—1 i 1

y ‘-(/;,+~>+-1-<k+1><1.

j=1 Sj p S p
Recall f € Bi(R"), then by (88) and (16) we have

k
(89) 0% 2L (0) = 0 for all § with (88).
oxk
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By mathematical induction we apply (18) with n — 1 instead of n to (&*f/0x}) (x', 0).
This is justified by (89) and the above mentioned fact that 2* is non-critical. By (87)
and (18) we obtain

o [k

(where it is not necessary to normalize a, because only the quotients ok/aj are of
interest). Now by (85, 86) and (81) we have

N

One can replace L,(R""!) in (79) by B (R"~ '), see again [N: 6.7]. In other words,
the left-hand side of (91) can be estimated from above by c|f | Bj(R")|. Now (18)
is a consequence of (76), the last observation and (80).

akf(x 0) "dx’ <ec

e CUIEAC

P
dx < ¢

*f N
i (OB (&7

&*f
0
axﬁ( )

3.1.3. The rest is the same as in [ST: p. 207]. First one removes the additional
assumption that s, — 1/p is not an integer by interpolation. Secondly one finds in
[ST: p. 205—207] the necessary modifications in order to prove (19).

3.2. Proof of Proposition 2.3.2.

321. Let 0<s; <...<s, and 1 <p<oo. Let x=(X;, X" /)eR" with
%= (xy,....,x;)e R and "/ = (x;, , ..., x,) € R" "/ (where we use subscripts and
superscripts in order to indicate the ﬁrstj or the last n — j components of x, respec-
tively). By the theory of isotropic Besov spaces the anisotropic Besov space from
Definition 2.1.2 (ii) can be re-normed in the following way

SN TECTE
< Lo+ [ (1l + 3, [ coriansop ) ac = by +

+J <[ [Ifxn X" ll"+ZJ “”’IA"' S(xy, X" ‘)I” ]dxz...dx,,>dxl.
R\J Re-1

By iteration of the above argument we arrive at

(93) llle(R")H’“= S 1 1 =) | By ()] | ()
with an obvious interpretation of R°.

3.2.2. Let ¢ be the fibre-preserving diffeomorphic map from Proposition 2.3.2,
in particular we have (23). Let X; € R’ be fixed, then by the structure of ¢ it follows
that

(P" 7 X" JH1¢J+I(XJ’ x"_j)v (P,,(\’ x"" J)}
is an diffeomorphic map of R"”/ onto R"~/ where all the derivatives and also the
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Jacobian can be estimated in the sense of (22) uniformly with respect X;. By the
theory of the isotropic Besov spaces we have

(94) lg - @57 [ By (& )] ~ g | By~ ()]

where “~” must be understood uniformly with respect to X;. Now by (93), (94) and
the structure of ¢ it follows

Ife 0] B®R) ~ [ 7] ByRY] -

The proof of the corresponding assertion for the Sobolev spaces W,;(R") is the same
but simpler.

3.3. Proof of Theorem 2.6.4 (outline). The proof is based on Theorem 2.2.4
(Hardy’s inequality), Proposition 2.3.2 (fibre-preserving diffeomorphic maps),
Theorem 2.5.4 (traces on cylindrical surfaces), and the main principles from 2.4.6.
We describe the main steps without technical details which are similar as in [ST: 4.5],
now for three dimensions. We follow 2.4.6. The counterpart of x from 2.4.6 (i) is
from Theorem 2.5.4. Similar as in 2.4.6 (iii) it is now sufficient to deal with the trace
of *B}(R*) on S, near a pole which we now shift to the origin. In other words, the
counterpart S; of (36) looks like

2 \e2
(95) 0= x, =1, |x,]<xp, lx3l=x‘{‘(l—%> ,
X1
see (60), (61). We have a counterpart of the decompositions from 2.4.6 (iv) now
applied to the appropriately modified space *Bj(R®). We obtain the counterpart
of (40) with the modified space *B}(RR*) on the left-hand side and with spaces of type
B}(R®) from (50) on the right-hand side, where singularities of the latter spaces
located on |x,| = x§' with x, &~ 27/*'. The counterpart of 2.4.6 (v) and (41) is given by

(96) {x|xe8, 270+ < x < 27U~} ¢
 {x]x = (x4, x5, %3), x| £ 277 with k =1,2,3}.

This follows from the restriction ¢, = s,/s, = a,/a, (recall a, = a, = a; > 0).
Then we can apply the modified dilation argument from 2.4.6 (vi) which yields the
counterpart of (43). We straighten the transformed piece of S; given by (96) and arrive
at something like Z,, from (47) with “x, ~ 1”. Now we apply Theorem 2.5.4,
which explains the numbers %, x, and p, from (71) and (72) (here we use 0, = a;/a,).
Retransformation is now similar as in the two-dimensional case which yields u,
from (72). Finally the number p; must be chosen in such a way that the trace spaces
and the above modified spaces *Bj(R*) show the same homogeneity behaviour under
the above dilation map

(97 (x1s X3, X3) > (27" %y, 272, 27%x5)

see 2.4.6 (vii).
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