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Czechoslovak Mathematical Journal, 41 (116) 1991, Praha 

THE TANGENT BUNDLE OF /-VELOCITIES OVER 
A HOMOGENEOUS SPACE 

JACEK GANCARZEWicz, Krakow and MoDESTO SALGADo, Santiago 

(Received May 5, 1988) 

INTRODUCTION 

Let M be a differentiable manifold and TprM = Jr
0(Rp, M) be the bundle of 

r-jets at 0 of mappings Rp ~+ M. This bundle TprM ^ M is called the tangent 
bundle of pr-velocities of M. In this paper, we shall study the geometry of TprM 
where M is a homogeneous space. 

The paper is structured into five sections. 
In Section 1 we introduce general notations and prove some technical lemmas 

concerning the lifts of functions and vector fields from M to TprM for later use. 
Section 2 is devoted to the study of the group Tp,rG when G is a Lie group. In 

particular, we prove that the a-lift Х<лУ, |a| ^ r, of а left invariant vector field X 
on G is left invariant on Tp,rG. Also we show that if M is a G-space then TprM is 
a Tp,rG-space and that, for every element X ofthe Lie algebra J^(G) ofG and every a 
such that |a| й r, X*<a> = X<a>*, where X* and X<a>* are the fundamental vector 
fields defined on M and Tp,rM respectively. Section 2 is ended by proving that 
a-lifts of G-invariant tensor fields and G-invariant connections from a G-space M 
to TprM are TprG-invariant. 

In Section 3 a natural Lie algebra isomorphism QG\ Tp'r(g(G)) ~> if(Tp ' rG) is 
constructed, where &(G) and ^(Tp'rG) denote the Lie algebra of G and TprG 
respectively. This isomorphism has a fundamental role in the next sections. 

In Section 4 we C3iisider the particular case of M being a homogeneous space 
M = G|H. At first, it is shown that Tp,rM is also a homogeneous space and, in fact, 
TprM = TprGJTprH. In particular, if p = r = 1, then TM = TG|TH, that is, the 
tangent bundle o fa homogeneous space is also a homoegenous space; it is worth to 
remark that we show this without the assumption ofM = G|H be reductive (compare 
with Proposition 3.1 in [11]). Next we show that i fM = G|H is a reductive homo­
geneous space with respect to a decomposition i^(G) = Sf(H) ® W, then the homo­
geneous space TprM = Tp,rGlTp,rH is reductive with respect to the decomposition 
Se{T**G) = &(TprH) 0 QG(TprW)y and moreover, the fundamental affine con­
nection of Tp,rM is the complete lift of the canonical connection of M. Also it is 
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shown that if(M, V) is an affine reductive space, then (Tp,rM, Ve) is an affine reductive 
space too, where Ve is the complete lift of V, and for the groups of transvections the 
following equality holds: Tr(Tp ' rM, Ve) = Tpr(Tr(M, V)). Finally, in this section, 
it is shown that if a homogeneous space M = G|H is naturally reductive with 
respect to a Я-invariant pseudometric g, then TrM = T'G|T'H is naturally reductive 
with respect to #(r). (Here TrM = T1,rM is the tangent bundle of order r and # ( r ) is 
the complete lift of G to TrM; we do not consider this situation for p > 1 because 
A. Morimoto's liftings produce a pseudometric on TprM on ly i fp = 1). 

In Section 5 we define prolongations of regular s-structures from M to TprM. 
We prove that if (M, {sx}) is a s-manifold then, there exists a s-structure {s^,)on 
Tp,rM such that for every point x of M we have s'x = Tp,rsx, where x is the r-jet at 0 
of the constant mapping Rp є u ^> x є M. We also prove that the canonical con­
nection o((TprM, {s'x'}) is the complete lift ofthe canonical connection of(M, {sx}) 
and for the group ofthe transvections we have T r ( T " M , {s'x,}) =Tp>r(Tr(M, {Hs})). 
Finally, we show that if {sx} is a Riemann s-structure on (M, g), where g is a pseudo-
metric on M, then { v ] is a Riemann s-structure on (TrM, # ( r )). 

All the results in this paper coincide with Sekizawa's results [11] when p = r = 1, 
that is, for the tangent bundle. Nevertheless, the methods that we have used in 
Section 2 are completely different from those of Sekizawa because he has considered 
TG as semidirect product of G and j£?(G). Also the natural isomorphism QG: 
Tpr(<f(G))^> <$?(TprG) constructed in Section 3 is not used in [11] because with 
the identification of TG = G x &{G) is not needed. All the results in Section 4, 
except Theorems 4.9 and 4.10, are obtained by using only the results ofthis section 
and the natural isomorphism QG. To prove Theorems 4.9 and 4.10 and the results 
in Section 5 we use the same arguments as M. Sekizawa in [11]. 

Through the paper we always suppose that all manifolds are differentiable mani­
folds of class C00 and all functions, vector fields, tensor fields and so on are of 
class C00. 

* * * 

We would like to express our sincere gratitude to Professor Luis A. Cordero from 
the University of Santiago de Compostela for suggesting us to study this problem. 
We would like to thank also to the Department ofGeometry and Topology (Univer­
sity of Santiago de Compostela) for the convenience and the pleasant atmosphere 
for our research. 

1. NOTATIONS AND TECHNiCAL LEMMAS 

Let M be a manifold. We denote by 

TprM = Jr
0(R

p, M) = {j*y|y: Rp ^ M is ofclass C00} 

the bundle of/-velocities and by n: TprM ~+ M, n(f0y) = y(0) the bundle projection. 

571 



If x is a point of M, we shall always denote by 

(1.1) x=f0x 

the r-jet at 0 of the constant mapping R e u ~> x e M. Now the mapping M э x ^ 
>̂ 5c є Tp , rM is an imbedding. 

If^: M ~> N is a mapping ofclass C00, then the induced mapping Tp,r<p: TprM ^ 
_* TprN is given by 

(1.2) Т'Шу) = Vo(<P?) • 

Of course, for two mappings <p: M ~> ЛГ and ^ : N -^ K we have 

(1.3) Тр>гф o T ' > = Тр>г(ф o qy) . 

I f / i s a function on M and a = (a1? ..., ap) is а sequence of nonnegative integers 
such that |a| = 0LX + .. . + ocp g r, then the a-lift / ( a ) o f / f r o m M to 7 p r M is 
defined by the formula 

(1-4) f^(foy) = -DXfoy)(0) 
a! 

wherey*o7e- T p r M . / ( a ) is а function ofclass C00 on TprM. Ifeither |a| > r or there 
is at least one negative integer among a l5 ..., ap we se t / ( a ) = 0. 

If X is а vector field on M, then there is one and only one vector field Х<л} on 
Г р г М (called the ос-lift ofXfrom M to TprM) such that 

(1.5) X<*>(fß)) = (X/)c /?"a) 

for all functions / on M and all ß = (ßt,..., ßn) such that |jS| ^ r. The definitions of 
the a-lifts are due to A. Morimoto ([8], [9]). 

The following properties of a-lifts of functions and vector fields are well known 
(see A. Morimoto [8], [9]): 

i(f+g)^ =/ (a) + 0(*\ {fgr' =Е/ ( / Ѵ я -* } , 
(1.6) \{X + Y)<"> = X<*> + У<а>, (fX)<'> = j^f^X<*+e>, 

[[X<*>, 7<^>] = [X, Y]<*+ß> 
for all functions/, g and all vector fields X, Yon M. 

If(L7, xl) is a chart on M, then the induced chart (7г"1(С/), xI ,a) on TprM is given by 

jC1'« = (*«)(«> 

where |a| ^ r. For the canonical frames we have (see A. Morimoto [8], [10]) 

(1.7) 9|9x*>" = (3/Ях')<а>. 

In case p = 1, the a-lift Z ( a ) ofavector field X from M to T rM = T1 rM is defined by 

(1.8) X (a) = Z < r - a > , 

where a = 0 , . . . , r . In this case, formulas (1.5), (1.6), (1.7) and (1.8) imply (see 
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A. Morimoto [8], [9], [l0]) 

ry(->(yW) = (Xf)^+ß~r) 

\(fxYx) = У fW)x(a~ß) 

(1.9) ' І 
[X<">,yW] = [X,Y]^+ß-r) 

[9|9x*'* = (ЗІЭхУг-а). 
Let M and M' be differentiable manifolds. We shall always identity Tp,r(M x M') 

with T p r M x TprM' using the natural diffeomorphism 

T " ( M x M')3fo(y, y') ^ ( Л у , Л / ) e 7*-'M x T*'Af' . 

If / and / ' are functions on M and M', respectively, then we define the function 
f®f on M x M' by 

(1.10) (f&r)(x,x')=f(x)f(x'). 

Using the standard verification, from (1.3) and (1.10) it follows 

(i.ii) (f®fT = Ifm®(fT~ß)-
ß 

HX and X' are vector fields on M and M' respectively, then we define the vector 
field X x X' on M x M by the formula 

(1.2) (X x X') (x, x') = (X(x), X'(x')) є TXM x Tx, M' = T(JC>J0(M x M ' ) . 

From the Leibniz's formula, for any function h on M x M' 

(1.13) ((X x X') (A)) (x, x') = Xx{h\l) + X:(h\l
x) 

where h\l, and h\l are the functions on M and M' respectively, given by 
A|.x'(*) = ^|x(*') = h(x> x) -

In particular, if h = f®f, then 
(1.14) (X x X') (f®f) = (X/) ® / ' + / ® (X' / ' ) • 

Now, we can prove 

Proposition 1.1. IfX and X' are veciorfie1ds on M and M', respectively, thenfor 
every a 

(X x Х')<лУ = Х<л> x X'<*> . 

Proof. First, i f / a n d / ' are functions on M and M' respectively, then from (1.5), 
(1.11) and (1.14) by straight-forward computations we obtain 

(1.15) (X x X')<*y(f®f'Yß) = (X<«yX'<*>)(f®f'yß) 

for all ß. Now, if h is any function on M x M' and j 0 is a point of Tp,r(M x M r), 
then there exist functions/!, ...,/tf a n d / i , ...,/^r defined on M and M', respectively, 
such that 

л-„+|ь=л„+1(Х/.-®/;) 
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where z0 = 7г(ѵ0)- Therefore, we have 

jlJ+ßi=UZfi®fir 
i 

and hence, from (1.14) we obtain 

(X x X')<*> (h«>) = (X<"> x Z'<*>) (fc(/?)) 

at y0. П 

2. PROLONGATIONS OF LÍE GROUPS 

Let G be Lie group and let <p\ G x G ~> G be the product mapping given by 

(2.1) <p(i,r]) = &. 

The induced mapping Tp,rq>: Tp,rG x TprG ^* Tp,rG defines a Lie group structure 
on TprG. In fact, for any7'0C and jr

0r\ of TprG we have 

(2.2) Л с . fa = {T*>'cp) (/0{, Л , ) = / 0 ( Ф o (ç, , ) ) = Л(«Ч) 

where çrç: Лр ^ G is given by (£rç) (w) = £(u) rç(w). The group T p r G is called the 
Lie group of pr-velocities of G. If G ^ G' is a Lie group homomorphism, then the 
induced mapping Tprf: TprG -+ TprG' is also a Lie group homomorphism. 

Now, we prove the following proposition concerning left invariant vector fields 
on G and TprG. 

Proposition 2.1. IfA is a left invariant vectorfield on G, thenfor every a such 
that |a| S r, 4<3f> is a left invariant vectorfield on TprG. Equivalently, ifA є J^(G). 
then Л<а> є ^(TprG), where &{G) denotes the Lie algebra of the given Lie group, 

Proof. LetVoŠe TprG. In order to prove that (Lyo^)* A<oc> = A<a> we only need 
to verify 

(2.3) A<jU(fVKLj^) = Afoafn 

for every function / on G, every ß such that \ß\ ^ r and every point f0rj є TprG, 
where Ljor* is the left translation on Tp,rG. 

Firstly, let us observe that 

(f^,Lj^)(fon)=f'%m))-

= i D//o Ц{, ,))(o) = Vo<pp>(M,An), 

where <p is given by (2.1). According to (1.13), (2.1) and Proposition 1.1, we obtain 

W 0 L,o4) = A<Z{{fo <py>l^) = 

= ((0x Ay>tfoq>)(f0t,roti) = 
= ((Ox4(/.?f-")(/0{, /D , ) . 
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Since A is a left invariant vector field on G, then (1.13) implies 

((0 x A)(fo<p)){x, x') = Ax.{{fo<p)\\) = A,.(fo Lx) = 

= Axx.f = ((Af) , <p) (x, x') 

and according to (l.4), we obtain 

A)%{f^ o Lvi) = (Afo 9)<'-'"(/o5,/o4) = 

= ̂ r4,^-^-^(^))^ = 
(0 - a)' = ^—^ D ' -^° )̂(°) = wr-"{am = ^i,,(r*). 
(j8 - a)! 

and the proof is done. • 
Let M be a G-space and let Я: G x M ^ M be the action of G on M. The induced 

mapping TprA: TprG x T p r M ^ TprM defines an action of TprG on T p r M 
because i f / 0ç є Tp rG and ./V/ є TprM, then 

/ o i . / o y = ( ^ ^ ) ( / o i , j i y ) = J o ( 5 y ) 
where čy: Rp -^ M is given by 

(2.4) ( с» (и ) = с(М)у(и). 

Proposition 2.2. Leř M be д G-space. For any А є J^(G) and any a such that 

N ^ r> 
^ * < 3 t > _ ^ < a > # 

where Л* tffld Л<я>* are thefundamental vectorfieIds defined by A and A<a> on M 
and TprM respectively. 

Proof. L e t / b e а function on G and lety'o7 be a point of TprM. We only need to 
verify 

(2.5) A</X(fW) = A*<!9(fW) = (A*/r-*Uy) • 

lfQJory: TprG ^> TP'M denotes the mapping given by 

(2.6) QjAfoi) = foZToY = fo(iy) = /o(A o (Í, y)) , 
then 

^ ; = (^0.,)(^D 
where ě is the identity element of Tp,rG. This implies 

л№(Г>) = А<г>и<»ов„д-
Since 

( / ( i ) o P ^ ) O o O = / W O ^ o ( f , 7 ) ) = 

= 1 D,( / о л o (5, y)) = ( / o Af> (jJ{, /оУ) , 
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then using (1.13), (1.5) and Proposition 1.1 we have 

(2.7) ^>*( /^") ) = ^ > ( / o i | ^ ) = 

= (A x 0)<5>^)(/ о Я)(« = ((Л x 0) ( / » A))"""> (ě, .,V/) -

If^^: G ~> M denotes the mapping given by 

(2.8) fc(i) = {x = A(£ x) 

then using (1.13) and bearing in mind that A is left invariant we obtain 

{(A x 0) ( / o A)) (Í, .x) = A ( ( / o A)|* = (dLc) (Ле) ( / о в х) = 

= Л е( /о &L<) = Л е( /о в е х) = л £ ( / ) = ((A*f) о A) (Ç, x) . 

Applying this formula to (2.7) and using (1.4) we get 

A%?fW = ((A*f)oiye-*(e,f0y) = 

= ~ ^ T l D,_.((A*f) o y) (0) = ( Л * / ) ^ > 0*oV), 
(0 - «)! 

and the proof of (2.5) is complete. П 

IfM is a C-space and x is a point ofM, then 

0 , = { { x : { e G } 

will denote the orbit of G through x and 

Sřx = {ieG: £ x = x} 

the isotropy group of G at x. 

Proposition 2.3. 7/ x is a point of M, then Ѳх = ТР,ГѲХ, where x is the point of 
TprMgiven by(l.l). 

Proof. Letf0yeTp'rŮx, then у:Яр^Ѳх. Thus, there exists C(u)eG such that 
у(м) = Ç(u) x. Using the standard methods we can choose c(u) in such a way that 
the mapping Rp э w ̂  £(м) є G is of class C00. Now jo7 = (foí) * belongs to G)x. 

Conversely, ifJo7 є 0*> then there exists f0Ç e Tp,rG such that f0y = f0Ç x = jr
0(Çx). 

Since for every u є Rp, (£x) (u) = {(и) x belongs to 0X, then ^ у є ТР'Г0Х. D 

This proposition implies immediately: 

Corollary 2.4 (A. Morimoto [8], [9]). If M is a G-space, then TprM is a TprG-
space. 

Proposition 2.5. For every point x ofM, Tp,r^x is an open subgroup of£fx, where x 
is the point of TprM given by (1.1). 

Proof. Let f0£ є TPtTSřx. Since for every u e Rp, {(«) belongs to Sx, then f0Ç x = 
= ;J(fx) = x, that is, 7 * ' ^ is a subgroup of 5%. 

The orbits Ѳх and tfb are diffeomorphic to G\£fx and Tp,rGl^x respectively. Using 
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Proposition 2.3 we obtain 

dim Tpr6řx = (P + Л dim Sřx = (P * j (dim G - dim Ѳх) 

dim 9>x = dim TprG - dim 6S = dim TprG - dim ТргѲг = 

= Г + r J (dim G - dim 0X) . 

Thus the inclusion Tp-rSfx c 5 ^ and the equality dim T p r ^ v = dim «9% imply that 
Tpryx is open in Sfx. • 

Next we shall study the liftings ofinvariant tensor fields and invariant connections. 
We start with the following observation: 

Proposition 2.6. The Lie algebra Se{TprG) of TprG is generated by {X<a>: 
X e J ^ ( G ) , | a | èr}. 

Proof. Let Xl4 ...,Xk bs а basis of if(G). Then, from Proposition 2.1, Б = 
= {X^a>: і = 1, ..., k, |a| ^ r} is a set oflinear independent elements of &(Tp,rG) 
(see also [3], [4]). The cardinal o f £ is 

# B = (P + Л k = (P + J dim G = dim TprG = dim &(Tp-rG) 

and this means that B is a basis of <Sť(Tp,rG). • 

Proposition 2.7. Lef G be я connected Lie group and let M be a G-space. If t is 
a G-invariant tensor field of type (г, q) on M, where s = 0, 1, ґ^ея řfte o>-lift ř(a) 

o/ í /rom M řo TprM is TprG-invariant. If V /s a G-invariant linear connection 
on M, íften the complete lift Ve o /V to TprM is also TprG-invariant. 

Proof. Let t be a tensor field oftype (L, g) on M. Let us recall that /(a) is a tensor 
field of type (1, q) on TprM such that 

(2.9) i<->(y<*>, ..., 7<^>) = (í(r l f ..., Yq))«+ßi + '"+ß*> 

forallvectorfields Yl4 ..., F ^ o n M a n d a l l ^ , . . . , ^ s u c h t h a t |j8j g >% ..., |A,| ^ r 
(see A. Morimoto [8], [9]). Also the following formula holds: 

(2.10) (Ly<v> r<->)(Y<*>, ..., Y<'.>) = ((Lyt)(Yu ..., yf))<-+* + ~+*+ v> 

where Ldenotes the Lie derivation. 
Since t is G-invariant, Lx*t = 0 for every X є if(G). Now, according to Proposition 

2.2, formula (2.10) implies that Lx<v>*f(x) = 0 for all v. Thus, using Proposition 2.6 
we obtain Lx.t^ = 0 for every X є Se(T"G). This means that i(a) is Ö-invariant, 
where G is the subgroup of Tp,rG generated by exp (J?(TprG)). But G is connected, 
so G = T*'G. 

Analogously, the proposition can be proved for a tensor field g of type (0, q) 
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on M. In fact, it suffices to substitute formulas (1.9) and (2.10) by 

0<">(y<<4..., Y<'*>) = (g(Yu..., y t ) ) ( - ^ - - f c > , 

(L^^>)(ri''>,.... tf'*>) = ((M)(y,, ..., y,))(-*-'.--W , 
respectively. 

IfV is a linear connection on M, then the complete lift Ve ofV is a linear connection 

on TprM such that 

(2.11) V$^Y<'> = (V*Y)<*+*> 

for all vector fields X and Yon M (see A. Morimoto [6], [8]). 
If V is G-invariant, then for every X e &{G) the fundamental vector field X* 

induced on M is an infinitesimal affine transformation of V. From Lemma 6.6 
in [8] and Proposition 2.2, X<v> is an infinitesimal affine transformation of Ve 

for every v. According to Proposition 2.6 this means that V is TprG-invariant 
(because G is connected). • 

3. THE LIE ALGEBRA OF T*rG 

Let A be a Lie algebra. Then TprA is also a Lie algebra and forf0kJr
0k' є TprA 

we have 
ofok + a%k' = fo(ak + a'k'), [jr

0k,f0k'] = f0[k, k'~] 

where for mappings k, k': Rp ^ A we define 

(ak + a'k') (u) = ak{u) + a'k'(u) , [k, k'] (u) = [fc(w), fc'(u)] . 

If / : Л ^ Л' is a Lie algebra homomorphism, then the induced mapping Tp,rf: 
TprA ~> TprA' is also a Lie algebra homomorphism. 

Let G be a Lie group. We shall construct a natural Lie algebra isomorphism between 
the Lie algebras T"*'(&(G)) and &(T**G). 

Let X = f0k be an element of T*"(&(G)), where fc: Д" ~* J^(G). This means that 
for each u eRp k(u) is a left invariant vector field on G. We consider the mapping 

(3.1) k\ Rp x R э (u, t) ^ expG tk(u) e G 

and we define k": R ~> G and kt: Rp ^ G by 

(3.2) k"(t) = E,(w) = fc(w, ř) = expG tk(u). 

From (3.1) and (3.2) we have 

(3.3) ( £ * " ) ( 0 ) = *(«) e , 

where e is the identity element of G. Since for each fixed w, £r(w) is an 1-parameter 
subgroup of k(u), then f0kt is a 1-parameter subgroup of TprG. Let QG(X) be the 
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left invariant vector field on TprG defined by this l-parameter subgroup ;^ , . Then 

(3.4) (QG(X))9 = ~ (Г0Щ0 
ât 

where e is the identity element of TprG. 

Theorem 3.2. The mapping QG: Tpr(&(G)) ^ £>(Tp>rG) defined by (3.4) is a natural 
Lie algebra isomorphism. 

The proof will be given in a few steps. 

Proposition 3.2. QG is linear. 
Proof. QG is a mapping of class C00 between finite dimensional vector spaces. 

lfX = f0k є Tp,r(J£(G)) and a eR, then we shall denote by k and k the mappings 
defined by (3.1) for X = f0k and aX = jr

0{ak) respectively. Thus we have 

k(u, t) — expG (tak(u)) = k(ta, u) . 

This implies that kt = kat and hence 

(Qo(aX)% = 1 (f0k,)\0 = a ~ (f0k,)\0 = a(QG(X)%, 
at at 

that is, QG(aX) = a QG(X) because QG(aX) and a QG(X) are left invariant. Since QG 

is ofclass C x , it follows that QG is linear. П 

Proposition 3.3. Thefollowing diagram is 

Tpr(^(G))^^ &(T"G) 
Г Р ' г ( е х р с ) \ / e x p r p ' r G 

\ / 
TprG 

commutative. 
Proof. Let X = jr

0ke T"'(&(G)) and let k, kt be the mappings defined by (3.1) 
and (3.2). SinceJo^, is t n e l-parameter subgroup ofQG(X) є JS?(Tp,rG), thus 

(exp7P,rG 0 QG) (X) = f0Rt = /0(expG k) = (Tpr expG) (X) . D 

Proposition 3.4. QG is bijective. 
Proof. Let X = 7'0^ є T"''(&(G)) such that i2G(Z) = 0. Let £ and JE, be the map­

pings defined by (3.1) and (3.2). QG(X) is a left invariant vector field on TprG, andv'o^, 
is the l-parameter subgroup of QG(X). This implies that f0Rt = e for each t. Since 
the diagram in Proposition 3.3 is commutative, it follows 

(3.5) T»r(expG)(tX)=f0Ut = ë. 

The mapping expG is a diffeomorphism of a neighborhood V of 0 in J5f(G) onto 
a neighborhood of e. Therefore T p r exp G is a diffeomorphism of 7t"*(F), neigh­
borhood of 0 G T"(j^(G)), onto a neighborhood of e, where ;r: T*"(&(G)) ^ JSf(G) 
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is the canonical projection. Then there exists t ф 0 such that tXen~l(V). Now 
(3.5) implies that tX = 0, and hence, X = 0. Since QG is linear, QG: T**(&(G)) ~> 
_> j ^ ( 7 p - ^ ) is injective. On the other hand, 

dim Tpr(&(G)) = ( P + Л dim G - dim &(T*>'G), 

which implies that QG is a linear isomorphism. • 

Proposition 3.5. Let Ady0r{: JSf(T'''G) ~> j£?(Tp'rG) be řfce ad/omř automorphism. 
Then the mapping 

MJo4 = ß c" ' o A d , ^ o QG: T>*(2{G)) ^ T>'(&(G)) 

is given by 

(3.6) Mjor,(X) = X' 

where X = f0k, X' = f0k' and k'(u) = Adm(k(u)). 
Proof. Let k and kt be the mappings defined by (3.1) and (3.2) for X =f0k. 

Define 
k':Rp x R3(u,t)^C(u)k(u,t)T*(u)eG 

and î i(w) = k'{u, t) = £(и) kt(u) Ç~l(u). For a fixed u e F , ^i(w) is a 1-parameter 
subgroup of G which defines the left invariant vector field k'{u) — kd^[u)(k(u)). 
So, bearing in mind the definition of QG we obtain (3.6). • 

Proposition 3.6. QG is a Lie algebra isomorphism. 

Proof. According to Proposition 3.2 and 3.4 we only need to verify that for any 
X = 7 o * a n d Y = folinV>-'(&(G)) 

(3.7) QG[X9 Y] = [QG(X)9 QG(Y)] . 

Let k and kt be the mappings defined by (3.1) and (3.2) for X = f0k. The definition 
of QG implies that at = f0kt is the 1-parameter subgroup of QG(X). Then we have 

[QG(X), QG(YJ] = j t (Ad. t(0G(Y))|,_o = QG ( | (QÔ ' « Ada, e 0G) (У)| ,ш 0) 

where in the last equality we use the linearity of QG
 l. Now from Proposition 3.5 

we get 

[QG(X),Qc(Y)] = QG(jt(f0l't)\t = 0 

where l't{u) — Ad£t(H)(/(w)). Since kt[u) is the 1-parameter subgroup of k{u) and 

jWI.-o-M«),'(«)] = [M(«) 
di 

we obtain that (3.7) holds. П 
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Proposition 3.7. / / / : G ->• G' is a Lie group homomorphism, then the diagram 

T"(&(G)) TP'r(*if)\ T^(2>{G')) 

ß G fh; ' 

£>(TprG) *(TP,rf\ z{T**G') 
commutes. 

Proof. Let X =joke T^(y(G)) and let k and kt be the mappings defined by 
(3.1) and (3.2). Define 

E'(t t , t) = / ( E ( t t , t)) , kt(u) = P(u, t) = ( / o kt) (u) , 

£;(w) is the 1-parameter subgroup of&{f) fc(w). On the other hand^fc; = (Tp'r) (jr
0Kt) 

is the 1-parameter subgroup o f J r ( T * 7 ) (ßc(X)). Then 

(oG. r*<W))(x) = QM№f) 0 k)) = j . 0o«;)|r.o -
d/ 

= ^ ( T ' ' / ) ( ß c ( X ) ) 
and the proofofthe Proposition 3.7 is complete. • 

ProofofTheorem 3.1. It follows directly as an immediate consequence of Propo­
sitions 3.6 and 3.7. • 

Proposition 3.8. / / H is a Lie subgroup of a Lie group G, then Tp,r(j?(H)) and 
&(Tp'rH) are Lie subalgebras of T"(&(G)) and y(Tp<rG) respectively and 

i2H = ^G\TP^(i/'(H))-

Proof. The inclusion iH: H ^ G induces the inclusions Tpr(&iH): T"(jSf(H)) ^ 
~> T"{&(G)) and £>(Tp>riH): &(V"H) ^ &(T">'G). Now the result follows from 
Proposition 3.7. • 

4. PROLONGATIONS OF HOMOGENEOUS SPACES 

First we prove the following proposition. 

Proposition 4.1. IfM = G|H is a homogeneous space, then Tp,rM is also a homo­
geneous space and TprM = V"G|T'>'H. 

Proof. Let us consider the point 0 = eH of M and let H be the isotropy group 
of G at 0. The action of Tp,rG on Tp,rM is transitive according to Corollary 2.4. 
Let 0 be the point of TprM defined by (1.1) and H theisotropy subgroup of TprG 
at 0, then TprM = TprGJH. To prove the proposition we only need to show 

(4.1) H = TprH. 

The inclusion TprH c= H is an immedaite consequence of Proposition 2.5. To 

verify the second inclusion we define the mappings 

Q0: G ~> M , Q0(Ç) = ç0 

Q0: T
prG ^ TprM , Qo(j'ot) = j'o& . 
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Then ( Т ^ в о ) ( Л О = Л Ы ) = / о ( ^ ) « Л « о = д0(Ш t h a t i s 

(4.2) T ^ 0 = & . 

We fix a vector subspace W of iř(G) such that g(G) = &{H) 0 W (we do not 
suppose that W is jCf(#)-invariant). Now the mapping ф: £č(G) ^ G, ф(ѵ) = 
= expG (fj) expG (r2), where ü = ѵг + r2 and vx є <£?(Я), v2 6 Ж, is a diffeomorphism 
of some neighborhood U0 of zero in <^(G) onto a neighborhood Ve of e in G (see 
[ l ] , [2]). We can suppose that U0 = ř710 x U20, where Cf10 and U20 are neigh­
borhoods of zero in &{H) and Ж respectively. We consider a element f0Ç of Я, 
that is,7o^o = ö. This implies that £(0) belongs to Я. There exists a positive number 
£ > 0 such tha t (^(o)) - 1 C(u) belongs to Ve for |м| x г. For every u such that |w| < є 
there exists one and only one couple (h(u), w(u)) such that 

(4.3) (h(u),w(u))eU10 x U20 с І?(Я) x W 

(4.3) £ - 1 (0) {(и) = expG (ft(u)) expG (w(w)). 

Since ф ) belongs to Я, then Щ = Л(£(0)) given by (1.1) belongs to TprH с Я. 
For every w such that |ti| < s we have expG (h(u))eH and from this Jo(expG ft) є 
є TprH с Я . Now (4.3) implies 

(4.4) Щ - l 7 ^ = /o(expG й)Л(ехр с w) . 

From this we obtain 

(4.5) / o ( e x p G w ) e # . 

From Lemma 4.1 in [2] there is a neighborhood of zero in W such that g0 о 
0 expG;^: W^> M is a diffeomorphism ofthis neighborhood onto some open neigh­
borhood of 0 in M. We can suppose that U20 is a such neighborhood in W. This 
implies that 

Tpr(g0oCxpGiw):TprW^TprM 

is a diffeomorphism of Tp,rW\Ü20 onto some neighborhood of 0 in Tp,rM. From (4.3) 
we have w(0) = 0. It follows t h a t 7 > є Tp'rW\Ü20. Now, from (4.2) and (4.5) we obtain 

Tp>r(g0 0 QxpG{u) ( y > ) = (Tp>r
Qo) 0o(expG w)) = eo0o(expc w)) = 5 . 

On the other hand, we also have Tp,r(g0 о exp^^r) (0) = д, which implies that7'0W = 
= 0, and from Propositions 3.2 and 3.2 we obtain 

Ä(expG w) = (Tp>r expG) (0) = (exp rP„G 0 OG)(0) = ě 

where ë is the identity element of TprG. 
Now from (4.4) Щ " 1 ^ = Jo(expG ° *) belongs to TprH, which implies t h a t ; ^ 

belongs to TprH because^0) є Г р г Я . The proof of (4.1) is done. D 

From Proposition 4.1 we obtain immediately (the case p = r = 1). 

Corollary 4.2. IfM = G|H is a homogeneous space, then the tangent bundle TM 
is a homogeneous space and TM = TG|TH. • 
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The above corollary generalizes the Proposition 3.1 of M. Sekizawa (see [ l l ] ) . 

Proposition 4.3. If M = G|H is a reductive homogeneous space with respect 
to a &(H)-invariant decomposition if(G) = і?(Я) ® W, then TprM = TprGJTprH 
is a reductive homogeneous space with respect to a decomposition ^{Tp,rH) ® 
® QG(Tp'rW), where QG is the natural isomorphism constructed in Section 3. 

Proof. The equality if(G) = J*f(#) Ѳ W imply Tp-r(&(G)) = T'*(&(H)) ® 
® TprW. Since QG is a Lie algebra isomorphism and QG(Tpr(£>(H)) = &(T**H) 
(this is a consequence ofProposition 3.8), then ^(TprG) = &(T*"H) ® QG(TP*W). 
Now, we only need to show that Ad(TprH) (QG(TprW)) c QG{TprW). lff0k є TprW 
and jo i є TprH, then, taking into account Proposition 3.5 we have 

M(M)(QG(f0k)) = QG(Aď(f0t)(f0h)) = QG(f0{Aâ,k))eQG(Tp>rW) 

because Ad(H) (Pf) с Ж 
Therefore, according to Proposition 4.1, Tp,rM is a reductive homogeneous space 

with respect to the J^(T^#)-invariant decomposition ^(TprG) = ^(TprH) ® 
®QG)Tp'W). D 

As an immediate consequence of Proposition 4.3 we have 

Proposition4.4. (M. Sekizawa [11]). / / M = G|H is a reductive homogeneous 
space with respect to a decomposition &(G) = &(H) ® W, then TM = TG|TH 
is a reductive homogeneous space with respect to a decomposition &(TG) = 
= &(TH) ® QG{TW). We can identify QG{TW) with TW. 

Next, we shall study canonical connections on reductive homogeneous spaces. 
Firstly, we prove the following lemma: 

Lemma 4,5. / / X is an element of J^(G) and QG is the natural isomorphism 
constructed in Section 3, thenfor every oc such that |a| S r we have 

OoUo*i) = X<*> 

where kx: Rp ~> J*f(G) is given by kx(u) = u*X. 
Proof. It suffices to show 

(4.6) (Qo(fokx)-e = X<*>, 

where ë is the identity element of TprG. 
Let us consider the mapping 

(4.7) k: Rp x R э (u, t) ~> expG (tkx(u)) e G 

and kt(u) = k(u, t). From the definition ofi2G we have 

Wob)), = T (/o*.)|,-o • 
Qt 

Now we choose a chart in a neighborhood of the identity element e. The induced 
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chart on TprG is defined in some neighborhood of ë. From (4.7) we deduce that the 
coordinates Xі of(i2G(7o^))ë are given by 

**'-!(s^<"l.-^'((*4)^-) 
- j , o,(u-x%.0 - s;x>. 

On the other hand, the coordinates X'p ofZ< a > are (see A. Morimoto [8], [9]) 

Ц = (xr~Xe) - т ^ Ц D,_Jt*(e)) = sřX • 
(ß - a)! 

Thus, identity (4.6) holds. • 
Let us recall that the canonical connection on a reductive homogeneous space is 

characterized by the following theorem (Theorem 1.10 O. Kowalski [7]). 
Theorem 4.6. Let M = G|H be a reductive homogeneous space with respect to 

a decomposition &(G) = &{H) © W, where G is a connected Lie group. The 
canonical connection on M is the unique G-invariant affine connection such that 
(4.8) (VV.Y)0 = [U*, 7 ] 0 

for any element Ue W and every vector field Y on M, where o = eH, and Lr* 
denotes thefundamental vectorfield on M defined by U. 

Using this theorem we can state: 

Proposition 4.7. Let M = G|H be a reductive homogeneous space with respect 
to a decomposition <&(G) = &(H) © W, where G is a connected Lie group. If V 
is the canonical connection on M, then the complete lift Ve of S/from M to TprM 
is the canonical connection on TprM = TprGJTprH. 

Proof. According to Proposition 4.3, TprM is a reductive homogeneous space 
with respect to a decomposition ^(TprG) = &(Tp'rH) © GG(Tp'rW). 

By Proposition 2.7 the connectionVcis T^G-invariant affine connection on TprM. 
To prove the proposition we are reduced to show 

(4.9) (Vg.f), = [0* , Y]d 

where Ü is an element of&G(Tp*rW) and f i s a vector field on TprM. 
Let U be an element of JFand Ybe a vector field on M. By Lemma 4.5, for every a 

such that |a| й r, we have U<a> = QG(foK), where k*v(u) = uaU e W, and so U<a> 

belongs to QG(TprW). 
Now for every a, ß such that |a| ^ r, \ß\ S t\ using Proposition 2.2 and formulas 

(2.11) and (4.8) we obtain 

(4.10) V£<«>*Y<a> = [i7<*>*, У</?>] . 

Thus, (4.9) holds in the case 0 = U<*> and ? = Ym. 
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Let Ü be an element oïQG(TprW) and Ybe a vector field on TprM. If Ul9 ..., Uk 

is a basis of W9 then (see the proof of Proposition 2.6) 

{t / f> : /= l,...,kl \a\ur} 

is a basis of QG(TprW). Therefore there exist real numbers a\, i = 1, ..., k, |a| ^ r 
such that 

(4.11) 0 = Heitf">. 
i a 

For a vector field 7 o n TprM there exist vector fields Yi9 ..-., 7S on M, functions 
/i1? ..., hs on TprM and a1? ..., as such that |o,-| ^ r,7' = 1, ..., 5, and 

(4.12) F=CA,.y^<>. 

Then from (4.10), (4.11) and (4.12) we obtain (4.9) in the general case. • 

We also prove another result for later use: 

Proposition 4.8. / / &{G) = <$f(H) © W is a <g(H)-invariant decomposition of 
a Lie algebra &(G) of a Lie group G, where H is a closed subgroup of G, and 

(4.13) Se{G) = W® [W, W] , 

thenfor the Lie algebra £>(TprG) = £Є(ТргН) © QG(TprW) we have 

(4.14) £?(TprG) = W® [W9 W] , 

where W= QG{TprW). 

Proof. Since M = GJH is a reductive homogeneous space with respect to a de­
composition J^(G) = <^(G) © W, by Proposition 4.3 we have 

£>(TprG) = £?(TprH) ® W, [^(TprH), W] c W 

where W= QG(TprW). lfXl9 ...9Xk is a basis of W, then (4.13) implies that the set 

{Xl9...9Xk}v{[Xi9Xj]: iJ= l,. . . ,fc} 

generates if(G). Hence, there exist il9...9iq9 jl9...,jq such that {Xl9...9Xk9 

[Xil9 Xjt]9 ..., [Xh9 Xj2]} is a basis of if(G). 
Let X be an element of J?(Tp,rG). Since i2G is an isomorphism, there exists f0k є 

є T"''(&(G)) such that X = ß c(^fc). 
For every u є Яр, A:(w) is an element of j£?(G). This implies that there are real 

numbers ax(u)9 ..., ak(u) and b,(i/), ..., bs(w) such that 

K«) = I«.(")*. + ZW[*.v*;J-
i = 1 4 = 1 

The unicity ofthe tf,-(w) and b (̂w) implies that ax and ^ are functions ofclass C00 

on #p . Now 

/o* = i/oW + Z / A K ^ J 
i = l e=l 
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belongs to TprW + [TprW,TprW]. Since QG is a Lie algebra homomorphism, 
% = ^a(Jok) belongs to W® [W, W], where W= QG(Tp*rW). The proof of (4.14) 
is done. • 

Let V be an affine connection on a connected manifold M. The group of all 
transformations of M preserving each holonomy subbundle of the principal fibre 
bundle LM of linear frames is called the group of transvections of (M, V). This 
group will be denoted by Tr(M, V). (M, V) is called an affine reductive space if the 
group Tr(M, V) acts transitively on each holonomy subbundle ofLM (this definition 
is due to O. Kowalski [7]). Now we prove: 

Theorem 4.9. / / (M, V) is an affine reductive space, then (Tp,rM, Ve) is an affine 
reductive space, where Ve is the complete lift of V to TprM. Furthermore 

Tr(TprM, Ve) = Tpr{Tv(M, V)) . 

Proof. According to Theorem 1.25 in [7], M can be expressed as M = G|H, 
where G = Tr(M, V) and H is the isotropy subgroup ofGat a point o ofM. Moreover, 
M = GJH is a reductive homogeneous space with respect to a decomposition Jžf(G) = 
= J^(#) Ѳ W, V is the canonical connection of M and we have J^(G) = И^® 
0 [W, W]. Now from Proposition 4.3, TprM = TprG\TprH is a reductive homo­
geneous space with respect to the decomposition &(T*"G) = £Є{ТР>ГН) ® W, 
where W= QG(Tp-rW). From Proposition 4.7, the complete lift Ve of V is the 
canonical connection on Tp,rM and from Proposition 4.8 we also have J£(Tp'rG) = 
= W® [W, W]. Using Theorem 1.25 in [7] we obtain that (Tp>rM, Ve) is an affine 
reductive space and 

Tr(T' ' 'M, Ve) = TprG = Tp>r(Tv(M, V)). 

The proof is now complete. • 

To prove the above theorem we have used the same arguments that M. Sekizawa 
in [11] who proved this theorem in case p = r = 1. 

Let M = G|H be a homogeneous space and g be a G-invariant pseudometric 
tensor on M. (M, g) is called naturally reductive if there exists an J2f(#)-invariant 
decomposition Jsf(G) = &{H) ® W such that 

(4.15) <[U, V]m Z> = (U, [V, Z]w> 

for all elements U, V, Z of W, where < , > denotes the inner product on J^induced 
by g via the isomorphism den\w\ W^ T0M, where n\ G3Č, ~> Ço eM is the projec­
tion and [r7, V~\w is the Ж-component of [L ,̂ F] with respect to the decomposition 
Jzf(G) = &{H) ® W. It is easy observe that the condition (4.15) is equivalent to the 
following one: 

(4.16) g(([U, V]w)*, Z*) = g(U*, ([V, Z]wf), 

where U* is the fundamental vector field defined by U. 
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In the case of the tangent bundle TrM = TirM of order r we can state the fol­
lowing theorem: 

Theorem 4.10. If a homogeneous space M = G|H, where G is a connected Lie 
group, is naturally reductivewith respect to a G-invariant pseudometric g, then the 
homogeneous space TprM = Tp,rGlTp,r is naturally reductive with respect to the 
complete lift gir) of g to TprM. 

Proof. We recall that the complete lift g(-r) of g to the bundle TrM, which is 
a pseudometric tensor on TrM, is given by (see A. Morimoto [8], [10]) 

(4.17) < № ( a ) , Y™) = (g(x, )0)(a+/*~r) 

where X (a) is the a-lift ofa vector field X from M to TprM. From Proposition 2.7 g(r) 

is T'G-invariant. 
If U is an element of W, then for every a, tAa) belongs to QG(TrW) because Lemma 

4.5 and formula (1.8) imply t/(a) = U<r~*y = Qo(f0Vu~*) and kr
v~\u) = ur'\ Now 

according to (1.9) for every a, ß = 0, ..., r and U, Ve Wwe have 

(4.18) [U^, V^ß% = ([U, V]wf*+ß-'> . 

From (4.16), (4.17), (4.18) and Proposition 2.2 we obtain 

0<'>(([tfto V^]w)* , #»*) = g^(U^*, ([V(ß), Z^%f) 

which means that TrM is naturally reductive with respect to #(r), because the set 
{U{x): U e W, a = 0, ..., r} generates W. D 

In case r = 1, the above theorem was obtained by M. Sekizawa [11]. In Theorem 
4.10 we consider only the bundle TrM = Tl,rM instead of Tp,rM, because 
A. Morimoto's construction gives a pseudometric on Tp,rM as a lift ofapseudometric 
from M uniquelly in case p = 1 (see [8], [9], [10]). 

5. PROLONGATIONS OF ^-STRUCTURES 

A regular s-structure on a manifold M is a mapping 

M x M э (x, y) ^> sx(y) e M 

ofclass C00 such that for all points x and y we have 

(5.1) sx(x) = x 

(5.2) sx: M -^> M is a diffeomorphism 

(5.3) sx o sy = sz o sx , where z = sx(y) 

(5.4) dxsx: TXM ^ TXM has not fixed vectors except the null vector. 

A couple (M, {sx}) is called a s-manifold if M is a manifold and {sx} is a regular 
s-structure on M. For each x, sx is called a symmetry. A diffeomorphism <p: M ^ M 
is called an automorphism of(M, {sx}) if for every point x ofM we have 

(5 .5 ) <p o sx = s^ ( j c ) o q> . 
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The condition (5.3) implies that each symmetry sx is an automorphism of(M, {sx}). 
The definition ofs-structures was introduced by O. Kowalski [7]. 

Theorem 5.1 (O. Kowalski [7]). Let (M, {sx}) be a connected s-manifold. We 
denote by S the tensorfield of type ( l . l ) on M defined by Sx = dxsx for x e M. Then: 

(a) There exists an unique connection V on M (called the canonical connection) 
such that V is invariant under each symmetry sx and VS = 0. V is complete and 
has parallel torsion and curvature. 

(b) The group Aut(M, {sx}) is a transitive Lie group of transformations of M, 
which is a closed subgroup of the group of affine transformations of V. 

(c) Let G be the identity component of Aut(M, {sx}), o afixed point ofM and H 
the isotropy subgroup of G at 0. Then G|H is a reductive homogeneous space and, 
under the standard identification G|Hs xH ^ xoeM, the connection V coincides 
with the canonical connection of G|H. 

Let (M, {sx}) be a s-manifold. The group generated by all transformations of M 
of type s"1 o Sy, where x, уєМ, is called the group of transvections of (M, {sx}) 
and denoted by Tr(M, {sx}). 

Theorem 5.2 (O. Kowalski). / / (M, {sx}) is a s-manifold and V is the canonical 
connection on M, then Tr(M, {sx}) = Tr(M, V). 

It is easy to show the following proposition: 

Proposition 5.3. Let M be a connected manifold, x0 a point ofM and s0: M ^> M 
be a diffeomorphism such that s0(x0) = x0, and suppose that dxos0: TxoM ^ TxoM 
has notfixed vectors except the null vector. If G is a transitive Lie group of trans­
formations of M such that s0 belongs to the center of the isotropy subgroup H 
at x0, then there exists an unique regular s-structure {sx} on M such that sX0 = s0 

and the transformations of G are automorphisms of(M, {sx}). 
Proof. I fx = £x0, then we define 

(5.6) sx = ( o S o o T 1 . 

Since every element of H commutes with s0, {sx} is a well-defined family of dhTeo-
morphisms of M. The standard verification shows that {sx} is a regular s-structure 
on M satisfying the statements ofthe proposition. We use precisely the same argu­
ments as in the proof of Lemma 0.15 in [7]. П 

Now we formulate the following theorem: 

Theorem 5.4. / / (M, {sx}) is a connected s-manifold, then there is a s-structure 
{s'X'} on Tp,rM such thatfor every point x ofM 

Sx = 1 Sx 

where x is the r-jet at 0 of the constant mapping Rp э u ^ x є M. 
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/ / V is the canonical connection on (M, {sx}), then the complete lift Ve of V to 
TprM is the canonical connection on (Tp,rM, {s'x>}). Furthermore, 

Tr(T>'M, {s;,}) = r>''(Tr(M, {sx})). 

To prove this theorem we need the lemma: 

Lemma 5.5. Let M be a manifold and x0 a point ofM. Iff: M ~> M is a dijfeo-
morphism such thatf(x0) = x0 and dxof: TxoM •+ TxoM has nofixed vectors except 
the null vector, then Tp,rf(x0) = x0 and dxo(Tp,rf): TxoM -+ TXoM has no fixed 
vector except the null vector, where x0 is given by (1.1). 

Proof. Le t (C/ ,x ' )beachar tonMsuchtha tx^(xo) = 0. Wedeno teby ( / 1 , . . . , /" ) 
the local expression o f / with respect to this chart. The hypothesis about / imply 

(5.7) / ' (0) = 0 , 

(5.8) (9f*|W) (0) vj = 0 => Vі = 0 , i = 1, ..., n . 

On the other hand, the condition (Tp,rf)(x0) = xQ is an immediate consequence 
ofthe equality/(x0) = x0. Let Kbe a vector in T^0(Tp,rM) such that 

(5.9) drxo(T>'f)(V)=V. 

If we denote by Vі the coordinates of V with respect to the induced chart, then 
from (5.9) and from the fact that the coordinates xl

a ofx0 are zero for all / = 1, ..., n 
and all a such that |a| ^ r, we obtain 

V> = (V>|$x*)(0)Vi. 

Now (5.8) implies that Vl
v = 0 for all i and a. This means that dxo(Tp,rf) has no 

fixed vectors except the null vector. • 

ProofofTheorem 5.4. We fix a point x0 o fM. Let G be the identity component 
of(M, {sx}) and H be the isotropy subgroup of G at x0. Now s0 = sX0 belongs to the 
center of H. According to Lemma 5.5, s'0 = Tp,rs0 is a diffeomorphism of Tp,rM 
onto itselfsuch that so(-^o) ~ ^o an(^ dxos'0 has no fixed vectors except the null vector. 
We also have 

(5.10) s'0 = Tp<rs0 e T''r(center H) cz center (Tp>rH) . 

According to Proposition 5.1, M is diifeomorphic to G|H. From Proposition 4.1, 
TprM is now diffeomorphic to TprG\TprH. From (5.10) and Proposition 5.3 there 
exists a regular s-structure {sx,} on TprM such that 

(5.11) s'xo = s'0 = T>-'sxo. 

From (5.6) and (5.11) for a point x = Çx0 ofM we have x = | x 0 and 

si = 1 o s'X0 о Г 1 = Tp4 o Tp>'sX0 o T^r1 = Tp<rsx . 

Now, combining the results of Theorem 5.1, Theorem 5.2, Proposition 4.7 and 
Theorem 4.9 we obtain Proposition 5.4. • 
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Let (M, g) be a pseudometric space. A regular s-structure {sx} on M is called 
a Riemann s-structure ifeach symmetry sx: M ~* M is an isometry of(M, g). In the 
case p = 1, we can consider the complete lift #(r) of # to TrM = T1 , rM. g(r) given 
by the formula (4.7) is a pseudometric on TrM. 

We can state the following theorem. 

Theorem 5.6. / / {sx} is a Riemann s-structure on a connected pseudometric space 
(M, g), then there exists a Riemann s-structure {s^} on (TrM, #(r)) such that for 
every point x ofM 

(5.12) 4 = 7 X , 

where g(r) is the complete lift of g to TrM and x is the r-jet at 0 of the constant 
mapping R э u ~> x e M. The canonical connection on TrM is the complete lift of 
the canonical connection on M. Furthermore 

(5.13) T'(Tr(M, g, {sx})) = Tr(T'M, g«\ {s,}). 

Proof. We fix a point x0 ofM. Let Aut(M, g, {sx}) denote the group ofisometries q> 
of (M, g) such that (5.5) holds. Since sx belongs to Aut(M, g, {sx}) for every x є M, 
then from Lemma 0.3 in [7] Aut(M, g, {sx}) is a transitive Lie group of transforma­
tions of M. If G is the identity component of (M, G, {sx}) and H the isotropy sub­
group pf G at x0, then using the same arguments as in the proof of Theorem 5.4, 
we show that (5.12) holds for each point x of M. Since the pseudometric g is G-
invariant, Proposition 2.7 implies that g{r) is TrG-invariant, which means that sx, is 
an isometry of (TrM, g(r)), and hence, {sx,} is a Riemann s-structure on TrM. 
Theorem 5.4 implies that the canonical connection of (TrM, {s'x>}) is the complete 
lift of the canonical connection of (M, {sx}). From Theorems 4.9 and 5.2 we obtain 
(5.13). The proof is done. • 

Theorems 5.4 and 5.6 were proved by M. Sekizawa in the case p = r = 1 (see 
[ l l ] ) . In this general case we have used the same arguments as M. Sekizawa. 
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