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INTRODUCTION

Let M be a differentiable manifold and TP"M = J3(R”, M) be the bundle of
r-jets at 0 of mappings R” - M. This bundle T”'"M — M is called the tangent
bundle of p"-velocities of M. In this paper, we shall study the geometry of T?"M
where M is a homogeneous space.

The paper is structured into five sections.

In Section L we introduce general notations and prove some technical lemmas
concerning the lifts of functions and vector fields from M to T?"M for later use.

Section 2 is devoted to the study of the group T?"G when G is a Lie group. In
particular, we prove that the a-lift X<, |«| < r, of a left invariant vector field X
on G is left invariant on T?"G. Also we show that if M is a G-space then T”'M is
a T?"G-space and that, for every element X of the Lie algebra #(G) of G and every «
such that |a] < r, X*® = X®* where X* and X<* are the fundamental vector
fields defined on M and T?”'"M respzctively. Section 2 is ended by proving that
a-lifts of G-invariant tensor fields and G-invariant connections from a G-space M
to TP"M are T?"G-invariant.

In Section 3 a natural Lie algebra isomorphism Qg: T7"(£(G)) - £(T?"G) is
constructed, where #(G) and Z(T”"G) denote the Lie algebra of G and T*'G
respectively. This isomorphism has a fundamental role in the next sections.

In Section 4 we consider the particular case of M being a homogeneous space
M = GJH. At first, it is shown that T?"M is also a homogeneous space and, in fact,
T?'M = T?"G|T?"H. In particular, if p = r = 1, then TM = TG|TH, that is, the
tangent bundle of a homogeneous space is also a homoegenous space; it is worth to
remark that we show this without the assumption of M = G/H be reductive (compare
with Proposition 3.1 in [11]). Next we show that if M = G/H is a reductive homo-
geneous space with respect to a decomposition £(G) = #(H) @ W, then the homo-
geneous space TP"M = T?"G[T?"H is reductive with respect to the decomposition
L(TP"G) = L(TP"H) ® Q5(T?"W), and moreover, the fundamental affine con-
nection of T?'M is the complete lift of the canonical connection of M. Also it is

570 :



shown that if (M, V) is an affine reductive space, then (T?"M, V) is an affine reductive
space too, where V€ is the complete lift of V, and for the groups of transvections the
following equality holds: Tr(T”"M, V€) = T?"(Tr(M, V)). Finally, in this section,
it is shown that if a homogeneous space M = G/H is naturally reductive with
respect to a H-invariant pseudometric g, then 7'M = T"G/T"H is naturally reductive
with respect to g©. (Here T"M = T'"M is the tangent bundle of order r and g is
the complete lift of G to T"M; we do not consider this situation for p > 1 because
A. Morimoto’s liftings produce a pseudometric on T?"M only if p = 1).

In Section 5 we define prolongations of regular s-structures from M to T?'"M.
We prove that if (M, {s,}) is a s-manifold then, there exists a s-structure {s;,}on
TP"M such that for every point x of M we have s; = T?s,, where X is the r-jet at 0
of the constant mapping R e u - x e M. We also prove that the canonical con-
nection of (T?"M, {s;.}) is the complete lift of the canonical connection of (M, {s.})
and for the group of the transvections we have Tr(T?"M, {s.}) = T?"(Tt(M, {Hs})).
Finally, we show that if {s.} is a Riemann s-structure on (M, g), where g is a pseudo-
metric on M, then {s..} is a Riemann s-structure on (T"M, g").

All the results in this paper coincide with Sekizawa’s results [11] when p = r = 1,
that is, for the tangent bundle. Nevertheless, the methods that we have used in
Section 2 are completely different from those of Sekizawa because he has considered
TG as semidirect product of G and #£(G). Also the natural isomorphism Qg:
T77(%(G)) > £(TP"G) constructed in Section 3 is not used in [11] because with
the identification of TG = G x £(G) is not needed. All the results in Section 4,
except Theorems 4.9 and 4.10, are obtained by using only the results of this section
and the natural isomorphism Q;. To prove Theorems 4.9 and 4.10 and the results
in Section 5 we use the same arguments as M. Sekizawa in [11].

Through the paper we always suppose that all manifolds are differentiable mani-
folds of class C* and all functions, vector fields, tensor fields and so on are of

class C*.
*x ¥ k

We would like to express our sincere gratitude to Professor Luis A. Cordero from
the University of Santiago de Compostela for suggesting us to study this problem.
We would like to thank also to the Department of Geometry and Topology (Univer-
sity of Santiago de Compostela) for the convenience and the pleasant atmosphere
for our research.

1. NOTATIONS AND TECHNICAL LEMMAS

Let M be a manifold. We denote by
TP'M = Jo(R?, M) = {joy[y: R? - M is of class C®}
the bundle of p"-velocities and by n: T"'"M - M, n(j5y) = 7(0) the bundle projection.
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If x is a point of M, we shall always denote by

(1.1) X = jox

the r-jet at 0 of the constant mapping R e u — x € M. Now the mapping M > x —
— X € T?"M is an imbedding.

If ¢: M — N is a mapping of class C*®, then the induced mapping T”"¢: TP"M —
— TP'N is given by

(12) T*¢(joy) = jol®v)-
Of course, for two mappings ¢: M — N and y: N - K we have
(1.3) TP o TP e = TP (Y o ) .
If f is a function on M and o = (al, e ocp) is a sequence of nonnegative integers

such that |a| = o, + ... + , < r, then the a-lift f@ of f from M to T"'M is
defined by the formula v

(L4 10 =~ Df) 0)

where joy € TP"™M. f* is a function of class C* on T?"M. If either |a| > r or there
is at least one negative integer among a,, ..., «, we set /() = 0.

If X is a vector field on M, then there is one and only one vector field X<* on
T?"M (called the a-lift of X from M to TP"M) such that

(L5)  XOGP) = ()0

for all functions f on M and all 8 = (,, ..., B,) such that |§| < r. The definitions of
the a-lifts are due to A. Morimoto ([8], [9]).

The following properties of a-lifts of functions and vector fields are well known
(see A. Morimoto [8], [9]):

(f+9)® =@ +g¢®, (fg)® =Y fPgP,
[

(1.6) (X +Y)@ = X@ 4 Y®, (fX)@ = 3 foxca+
[X(aO’ Y(ﬂ)] — [X, Y]<z+/x> B

for all functions f, g and all vector fields X, Yon M.
If (U, x') is a chart on M, then the induced chart (= (U), x"*) on T”"M is given by

xio — (xi)(a)

where |«| < r. For the canonical frames we have (see A. Morimoto [8], [10])

(1.7) 9/9xt® = (9/9x7)<* .

In case p = 1, the a-lift X® of a vector field X from M to T"M = T'"M is defined by
(1.8) X® = x>

where o = 0, ..., 7. In this case, formulas (1.5), (1.6), (1.7) and (1.8) imply (see

572



A. Morimoto [8], [9], [10])
X(z)(f(ll)) — (Xf)(“p_’)
(fX)® = ¥ fOxe»
[X(’), Y(ﬁ)]ﬂz [X, Y](a+ﬁ—r)
9/9x" = (9/9x) 7).

Let M and M’ be differentiable manifolds. We shall always identity T7"(M x M’)
with T?"M x TP"M'’ using the natural diffeomorphism

TP(M x M')3 jo(y, v") = (joy, jov') € T""™M x T""M’".

If f and f’ are functions on M and M’, respectively, then we define the function
f®f on M x M' by

(1.10) (f®f)(x x) = f(x)/(x).
Using the standard verification, from (1.3) and (1.10) it follows

(L.11) (fRf)® =Y P (f)="n.
B

(1.9)

If X and X’ are vector fields on M and M’ respectively, then we define the vector
field X x X’ on M x M by the formula

(1.2) (X x X')(x,x') =(X(x), X' (x')) e TM x T,, M' =T, . (M x M).
From the Leibniz’s formula, for any function h on M x M’
(L13) (X x X)) (1) (x, %) = X(h2) + X2(h[2)
where h|;, and h|} are the functions on M and M’ respectively, given by
h|i(x) = h|y(x") = h(x, x').
In particular, if h = f ® f’, then
(L14) (X xX)(f®f)=(X)®f +f®(XF).
Now, we can prove

Proposition 1.1. If X and X' are vector fields on M and M', respectively, then for
every o
(X X X')<a> = X x X<

Proof. First, if f and f are functions on M and M’ respectively, then from (1.5),
(1.11) and (1.14) by straight-forward computations we obtain

(1.15) X x XNV (f )P = (XOX'@)(f@f)®

for all . Now, if h is any function on M x M’ and y, is a point of T?"(M x M"),
then there exist functions f1, ..., fy and fy, ..., fy defined on M and M’, respectively,
such that

Ji 'h = (S ® f)
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where z, = 7(yo)- Therefore, we have
ioh® =G S ® £1)P

and hence, from (1.14) we obtain
(X X Xf)(ﬂ) (h(ﬂ)) - (X<z> x X'<’>) (h(ll))
at yo. O

2. PROLONGATIONS OF LIE GROUPS

Let G be Lie group and let ¢p: G X G — G be the product mapping given by
(21 @& n) = n.

The induced mapping T?"¢: TP'G x T?'G — T?'G defines a Lie group structure
on TP'G. In fact, for any ju& and jon of T?"G we have

(2.2) Jo - jon = (TP"¢) (jol. jon) = jol@ - (&, n)) = jo(én)

where &n: RP > G is given by (&n) (u) = &(u) n(u). The group T?'G is called the
Lie group of p"-velocities of G. If G - G’ is a Lie group homomorphism, then the
induced mapping T?'f: T>"G — T?"G’ is also a Lie group homomorphism.

Now, we prove the following proposition concerning left invariant vector fields
on G and T7'G.

Proposition 2.1. If A is a left invariant vector field on G, then for every a such
that ]a’ < r, A is a left invariant vector field on T?'G. Equivalently, if A € Z(G).
then A € #(TP"G), where #(G) denotes the Lie algebra of the given Lie group,

Proof. Let jo& € TP"G. In order to prove that (L) A = A we only need
to verify
(2'3) A;:Z,(f(ﬂ’ © Ljo’s‘) = Aﬁg’iém(fw))
for every function f on G, every B such that |f| < r and every point jin e T?'G,
where L; .. is the left translation on T?"G.

Jo's

Firstly, let us observe that
(fP o Lige) (on) = fP(jo(Sn)) =
1 O

=5 Dy(f o (& ) (0) = (f < ©)P(jo&, jon) »

where ¢ is given by (2.1). According to (1.13), (2.1) and Proposition 1.1, we obtain
AZP o Lige) = AJZ((f o 0)?
=((0 x A= (f - 9) (jo&, jon) =
=((0 x A)(f - 0)?=2) (jo&, jon) -

J!o'C)
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Since A is a left invariant vector field on G, then (1.13) implies
(0 x A)(f>0)(x,x) = A((fo@)|s) = Ac(f L) =
= Aeef = ((4) 2 0) (x, X))

and according to (1.4), we obtain
AR5 L) = (Af 0 @) 7(j58. fom)

=G i o Dy_(Af - @ o (& 1)) (0) =

= Gy DA 8 0) = (AN i) = A1)

and the proof is done. [J

Let M be a G-space and let 2: G x M — M be the action of G on M. The induced
mapping T?"A: T?"G x T"'"M — T?'M defines an action of T?'G on T”'M
because if j,& € T”"G and juy € T""M, then

jo& - joy = (T774) (jo&. jov) = jo(&y)
where £y: R? —» M is given by

(2.4) (&) (u) = &(u) y(u).

Proposition 2.2. Let M be a G-space. For any Ae £(G) and any a such that

|a|§r

AXO = g<O* ,

where A* and A% are the fundamental vector fields defined by A and A® on M
and TP"™M respectively.

Proof. Let f be a function on G and let joy be a point of T?"M. We only need to
verify

(25) AR = AU = (A1) )

If ¢j,-,: T?"G —» TP"M denotes the mapping given by
(2.6) 2o (i08) = Jolior = jo(&y) = jo(% = (&, 7)),
then

A = (dopy) (4S7)

Jo"y
where ¢ is the identity element of T?"G. This implies
A;Z%v*(f(m) = A§“>(f(ﬂ) ° Qjo".f) .
Since

(FP & D) (o) = FP (oA o (7)) =

[}, DS 72 (69) = (Fo P (ol Jo)
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then using (1.13), (1.5) and Proposition 1.1 we have
(2.7) ASRITD) = AL(f < A3re) =
= (A X 0)rp(f 2 AP = ((4 x 0)(f - 1)?7 (2. jo7) -
If o.: G - M denotes the mapping given by
(28) o) = & = A& x)
then using (1.13) and bearing in mind that A is left invariant we obtain
(4 x 0)(fo2) (& x) = AL(f - D]z = (dLe) (A) (f - 0.) =
= Af o 0.Lg) = A(S - 0x) = AL(f) = (4*/) - 2) (&, x).
Applying this formula to (2.7) and using (1.4) we get
AT = ((4%) 0 2072 (2. f37) =
= LD, (A7) 3) (0) = (47 ().
(8 -
and the proof of (2.5) is complete. []

If M is a G-space and x is a point of M, then

0,={¢x:EeG)

will denote the orbit of G through x and
S, =1{(eG: &Ex = x}

the isotropy group of G at x.

Proposition 2.3. If x is a point of M, then O, = T?"0,, where X is the point of
T?'M given by (1.1).

Proof. Let joy € T?'0,, then y: R” > 0O,. Thus, there exists &(u) e G such that
y(u) = &(u) x. Using the standard methods we can choose &(u) in such a way that
the mapping R? 5 u — {(u) € G is of class C”. Now juy = (j5¢) ¥ belongs to 0.

Conversely, if joy € O, then there exists jo& € T?"G such that jiy = jo& X = jo(£x).
Since for every u € R?, (¢x) (u) = &(u) x belongs to @, then jiy e TP0,. O

This proposition implies immediately:

Corollary 2.4 (A. Morimoto [8], [9]). If M is a G-space, then T*'M is a T*"G-
space.

Proposition 2.5. For every point x of M, T”"% . is an open subgroup of &+, where X
is the point of TP"M given by (1.1).

Proof. Let jo¢ € TP ,. Since for every u € R?, &(u) belongs to S,, then jiéx =
= jo(éx) = X, that is, TP, is a subgroup of .

The orbits 0, and 0, are diffeomorphic to G/&, and T?"G/¥ respectively. Using
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Proposition 2.3 we obtain

dim TP, = (” :“ ’) dim &, = (” * ’) (dim G — dim 0;),

r

dim ¥; = dim T?'G — dim ¢; = dim T”'G — dim T"'0, =

- (” :L ’) (dim G — dim 0,) .

Thus the inclusion T?"¥, = &, and the equality dim T?"%_ = dim &, imply that
TP is open in ¥;. [

Next we shall study the liftings of invariant tensor fields and invariant connections.
We start with the following observation:

Proposition 2.6. The Lie algebra £(T""G) of T"'G is generated by {X<:
X e Z(G), |a] = r}.

Proof. Let X,,...,X; bz a basis of £(G). Then, from Proposition 2.1, B =
={X{®:i=1,...k |2f £ r} is a set of linear independent elements of Z(T""G)
(see also [3], [4]). The cardinal of B is

4 B = (” N r) k = <” : "> dim G = dim T7"G = dim 2(T7"G)
and this means that B is a basis of Z(T?"'G). O

Proposition 2.7. Let G be a connected Lie group and let M be a G-space. If t is
a G-invariant tensor field of type (e, q) on M, where ¢ = 0, 1, then the x-lift t*
of t from M to TP"M is TP"G-invariant. If V is a G-invariant linear connection
on M, then the complete lift VE of V to T?"M is also TP"G-invariant.

Proof. Let t be a tensor field of type (1, g) on M. Let us recall that 1 is a tensor
field of type (1, ) on T”"M such that

(29) t(z)(y§ﬂ1>’ ey Y;ﬂ:ﬂ) — (I(Yl, e Yq))(a+li|+..‘+ﬂq>

for all vector fields Y;, ..., Y, on M and all §5;. ..., B, such that Iﬁll <rh.. Iﬁq] <r
(see A. Morimoto [8], [9]). Also the following formula holds:

Q10)  (Lyr () (Y, L Y2 = (Lyf) (Y, ..., X))@ttt

where Ldenotes the Lie derivation.

Since t is G-invariant, Ly.t = 0 for every X € #(G). Now, according to Proposition
2.2, formula (2.10) implies that Ly ..t = 0 for all v. Thus, using Proposition 2.6
we obtain Lg.,t™ = 0 for every X € #(T”"G). This means that ¢ is G-invariant,
where G is the subgroup of T?’G generated by exp (Z(T?"G)). But G is connected,
so G = T*'G.

Analogously, the proposition can be proved for a tensor field g of type (0, q)
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on M. In fact, it suffices to substitute formulas (1.9) and (2.10) by
GO, LYY = (g(Yy .., X)) &P e
(Ly - t®@) (Y2, L YY) = ((Lyg) (Yis .., X)) 0¥ b))
respectively.

If V is a linear connection on M, then the complete lift V€ of V is a linear connection
on T?"M such that

(2.11) Viw YO = (V,Y)HP
for all vector fields X and Yon M (see A. Morimoto [6], [8]).

If V is G-invariant, then for every Xe_%’(G) the fundamental vector field X*
induced on M is an infinitesimal affine transformation of V. From Lemma 6.6
in [8] and Proposition 2.2, X*> is an infinitesimal affine transformation of V¢
for every v. According to Proposition 2.6 this means that V is T?'G-invariant
(because G is connected). [

3. THE LIE ALGEBRA OF TP'G

Let A be a Lic algebra. Then T?"A is also a Lie algebra and for jgk, jok’ € T?"A
we have
ajsk + ok’ = jolak + k'), [jsk, jsk'] = ja[k, k]

where for mappings k, k': R” - A we define
(ak + a'k’) (u) = ak(u) + a’'k'(u), [k, k'] (u) = [Kk(u), k'(u)] .

If f:1A—> A" is a Lie algebra homomorphism, then the induced mapping T?'f:
TP'A — TP"A' is also a Lie algebra homomorphism.

Let G be a Lie group. We shall construct a natural Lie algebra isomorphism between
the Lie algebras T7"(#(G)) and Z(T""G).

Let X = jok be an element of T7"(£(G)), where k: R” » #(G). This means that
for each u € R” k(u) is a left invariant vector field on G. We consider the mapping

(3.1) k: R” x R> (u, 1) — expg tk(u) € G

and we define k*: R —» G and k,: R —» G by

(3.2) k“(1) = k,(u) = k(u, t) = expg tk(u) .
From (3.1) and (3.2) we have

(3.3) <§, E") (0) = K(u).

where e is the identity element of G. Since for each fixed u, k(u) is an 1-parameter
subgroup of k(u), then jok, is a 1-parameter subgroup of T?'G. Let Q4(X) be the
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left invariant vector field on T?”G defined by this 1-parameter subgroup jok,. Then
d .,
(G4 (@00) = S (5R )y

where e is the identity element of T?'G.

Theorem 3.2. The mapping Q;: T7"(£(G)) » £(T?"G) defined by (3.4) is a natural
Lie algebra isomorphism.

The proof will be given in a few steps.

Proposition 3.2. Q; is linear.

Proof. Q; is a mapping of class C* between finite dimensional vector spaces.

If X = jok € T""(#(G)) and a € R, then we shall denote by k and k the mappings
defined by (3.1) for X = jok and aX = ji(ak) respectively. Thus we have

k(u, t) = expg (tak(u)) = k(ta. u) .
This implies that k, = k,, and hence

(Qo(aX)), = 3, (oko)o = a (% (ok)lo = a(Q6(X)): »

that is, Qg(aX) = a Qg(X) because Qg(aX) and a Q4(X) are left invariant. Since Qg
is of class C*, it follows that Qg is linear. [J

Proposition 3.3. The following diagram is

T7(2(G))—=> 2(T7"G)

TP:"(expg) AN / exprPTg

N K
TG
commutative.

Proof. Let X = jok € T""(£(G)) and let k, k, be the mappings defined by (3.1)
and (3.2). Since jok, is the 1-parameter subgroup of Qq(X) € Z(T?"G), thus

(expre.rg o 26) (X) = jok, = jo(expg k) = (T?" expg) (X). O

Proposition 3.4. Q; is bijective.

Proof. Let X = jok € T7"(£(G)) such that Q4(X) = 0. Let k and k, be the map-
pings defined by (3.1) and (3.2). 4(X) is a left invariant vector field on 7°"G, and j,k,
is the 1-parameter subgroup of Q;(X). This implies that jok, = & for each t. Since
the diagram in Proposition 3.3 is commutative, it follows

(35)  TP"(expg) (1X) = jok, = ¢.

The mapping expg is a diffeomorphism of a neighborhood ¥ of 0 in #(G) onto
a neighborhood of e. Therefore T?” exp; is a diffeomorphism of n~'(V), neigh-
borhood of 0 ¢ T7"(#(G)), onto a neighborhood of &, where n: T?"(£(G)) - £(G)
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is the canonical projection. Then there exists ¢t # 0 such that tX e z~'(V). Now

(3.5) implies that tX = 0, and hence, X = 0. Since Q; is linear, Q;: T*"(Z£(G)) -

— #(T""G) is injective. On the other hand,

p+r
,

dim T7"(Z(G)) = ( ) dim G = dim £(T*'G),

which implies that Q; is a linear isomorphism. [

Proposition 3.5. Let Ad;,.: Z(T?"G) - £(T?"G) be the adjoint automorphism.
Then the mapping
Ad;.: = Q' o Ad; e 0 Qg TP(2(G)) » TP(£(G))
is given by
(3.6) A_djor:(X) =X
where X = jok, X' = jok' and k'(u) = Adg,(k(u)).
Proof. Let k and k, bz the mappings defined by (3.1) and (3.2) for X = jik.

Define
k': R? x R3(u,t) - &u) k(u, 1) ¢ (u)e G

and k;(u) = k'(u, t) = &(u) k,(u) ¢~ '(u). For a fixed u e R”, k;(u) is a 1-parameter
subgroup of G which defines the left invariant vector field k'(u) = Ad;,(k(u)).
So, bearing in mind the definition of Q; we obtain (3.6). [

Proposition 3.6. Q; is a Lie algebra isomorphism.

Proof. According to Proposition 3.2 and 3.4 we only need to verify that for any
X = jok and Y = jyl in T?"(Z(G))

(3~7) 'QG[X’ Y] = [QG(X), QG(Y)] :

Let k and k, be the mappings defined by (3.1) and (3.2) for X = jyk. The definition
of Qg implies that a, = jok, is the 1-parameter subgroup of Q4;(X). Then we have

[2u(X), 2u(¥)] = i(Ad,,t(QG(Y))L:O e (g; (@' AdaloQG)(Y)],:())

where in the last equality we use the linearity of Q;'. Now from Proposition 3.5
we get

[26(X). 26(1)] = 24 1 (510

where I,(u) = Adg,,(I(u)). Since k,(u) is the 1-parameter subgroup of k(u) and
< (otli=o = (k). 1] = [k 1) )

we obtain that (3.7) holds. [J
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Proposition 3.7. If f: G — G’ is a Lie group homomorphism, then the diagram
7"(%(G) T""(£(G'))

Q6 ¢’

TP ~(ZL(f))
) ———

Z(TP

2(T7"G) L #(T7"G)

commutes.
Proof. Let X = jok € T"(#(G)) and let k and k, be the mappings defined by
(3.1) and (3.2). Define

R(u.t) = f(R(u. 1)), Ru) = K1) = (£ F) (u),

k;(u)is the 1-parameter subgroup of Z(f) k(u). On the other hand jok; = (T7") (jok,)
is the 1-parameter subgroup of Z(T”'f) (25(X)). Then

(@0 (L) (X) = 26 Gl(21) o ) = 5 (k-0 =

= 2(T"'f) (2(X))
and the proof of the Proposition 3.7 is complete. [

Proof of Theorem 3.1. It follows directly as an immediate consequence of Propo-
sitions 3.6 and 3.7. [J

Proposition 3.8. If H is a Lie subgroup of a Lie group G, then T*"(£(H)) and
L(T""H) are Lie subalgebras of T"'(£(G)) and ¥(TP'G) respectively and

QH - QG'rﬂ- "Y(H))

Proof. The inclusion iy: H — G induces the inclusions T?"(ZLiy): T"'(£(H)) -
- T""(ZL(G)) and L(T?"iy): L(T""H) - L(T""'G). Now the result follows from
Proposition 3.7. [J

4. PROLONGATIONS OF HOMOGENEOUS SPACES

First we prove the following proposition.

Proposition 4.1. If M = G/H is a homogeneous space, then T*'M is also a homo-
geneous space and TP"M = T""G/T”"H.

Proof. Let us consider the point 0 = eH of M and let H be the isotropy group
of G at o. The action of T?"G on T”'M is transitive according to Corollary 2.4.
Let 6 be the point of T?"M defined by (1.1) and H the isotropy subgroup of T?'G
at 8, then T""M = T?"G/H. To prove the proposition we only need to show
(4.1) H=T'"H.

The inclusion TP"H < H is an immedaite consequence of Proposition 2.5. To
verify the second inclusion we define the mappings

00:G—->M, Qo(é) = ¢
3,: T""G - T"'M , 50(165) = jolo .
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Then (T770,) (/5¢) = Jo(0of) = jo(€0) = jod = 2o(Jod), that is
(4.2) T, = G, -

We fix a vector subspace W of £(G) such that £(G) = Z(H) @ W (we do not
suppose that W is %#(H)-invariant). Now the mapping ¥: Z(G) —» G, y(v) =
= expg (v;) expg (v,), where v = v, + v, and v, € £L(H), v, € W, is a diffeomorphism
of some neighborhood U, of zero in #(G) onto a neighborhood V, of e in G (see
[1], [2]). We can suppose that U, = U, x U,,, where U, and U,, are neigh-
borhoods of zero in #(H) and W respectively. We consider a element jo¢ of H,
that is, j0 = 6. This implies that £(0) belongs to H. There exists a positive number
& > 0 such that (£(0)) ™" &(u) belongs to ¥, for [u| x &. For every u such that [u] < ¢
there exists one and only one couple ((u), w(u)) such that

(4.3) (h(u), w(u)) e Uyg x Uyy = L(H) x W
(4.3) E7Y(0) &(u) = expg (h(u)) expg (w(u)) .
Since &(0) belongs to H, then &(0) = j5(£(0)) given by (1.1) belongs to T""H < H.

For every u such that u| <& we have expg (h(u)) e H and from this jh(expg h) e
€ T""H < H. Now (4.3) implies

(4.9) é_(O_)_1 Jo& = jo(expg h) jo(expg w) -
From this we obtain
(4.5) Jjo(expg w) e H .

From Lemma 4.1 in [2] there is a neighborhood of zero in W such that g, o
o expgw: W — M is a diffeomorphism of this neighborhood onto some open neigh-
borhood of o in M. We can suppose that U,, is a such neighborhood in W. This
implies that
T?"(Qo o expgw): TP"W — TP'™M
is a diffeomorphism of T”"W|,,, onto some neighborhood of @ in T?"M. From (4.3)
we have w(0) = 0. It follows that jow € T”"W|y,,. Now, from (4.2) and (4.5) we obtain
T"(g, - expgv) (Jow) = (T""0,) (jo(expg W) = 2,(jo(exps W) = 3.
On the other hand, we also have T7"(g, - €xpgw) (0) = 0, which implies that jow =
= 0, and from Propositions 3.2 and 3.2 we obtain
Jo(expg w) = (TP" expg) (0) = (exprrurg o 26)(0) = €
where ¢ is the identity element of T?'G.
Now from (4.4) £0)! js¢ = jb(expg o h) belongs to T?"H, which implies that j¢
belongs to T?"H because £(0) € T?"H. The proof of (4.1) is done. [J

From Proposition 4.1 we obtain immediately (the case p = r = 1).

Corollary 4.2. If M = G/H is a homogeneous space, then the tangent bundle TM
is a homogeneous space and TM = TG/TH. O
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The above corollary generalizes the Proposition 3.1 of M. Sekizawa (see [11]).

Proposition 4.3. If M = G/H is a reductive homogeneous space with respect
to a #(H)-invariant decomposition £(G) = ¥(H) @ W, then T"'M = T?'G|T?'H
is a reductive homogeneous space with respect to a decomposition Z(T""H) ®
® QG(T”"W), where Qg is the natural isomorphism constructed in Section 3.

Proof. The equality #(G)= Z(H)® W imply T*'(%(G)) = T*"(¥(H)) ®
@ T"'W. Since Qg is a Lie algebra isomorphism and Qq(T?"(£(H)) = £(T""H)
(this is a consequence of Proposition 3.8), then £(T7"G) = Z(T""H) ® Q4(T?"W).
Now, we only need to show that Ad(T?"H) (Qu(T""W)) = Q(T?"W). If jok € T"™W
and jj& e TP"H, then, taking into account Proposition 3.5 we have

Ad(jog) (Qa(iok)) = 2(Ad(jo8) (oK) = Q6(jo(Adek)) € Qo(T?W)
because Ad(H) (W) < W.
Therefore, according to Proposition 4.1, TP"M is a reductive homogeneous space
with respect to the #(T""H)-invariant decomposition Z(T7'G) = ZL(T"'H) ®
@ Q) T'W). O

As an immediate consequence of Proposition 4.3 we have

Proposition 4.4. (M. Sekizawa [11]). If M = G/H is a reductive homogeneous
space with respect to a decomposition ¥(G) = ¥(H)@® W, then TM = TG|TH
is a reductive homogeneous space with respect to a decomposition ¥(TG) =
= Y(TH) @ Q4(TW). We can identify Qi(TW) with TW.

Next, we shall study canonical connections on reductive homogeneous spaces.
Firstly, we prove the following lemma:

Lemma 4.5. If X is an element of Q(G) and Qg is the natural isomorphism
constructed in Section 3, then for every o such that ]oz| < r we have

Qq(joky) = X<

where k: R? — £(G) is given by ki(u) = u’X.
Proof. It suffices to show

(4.6) ((ioky)s = X5,

where ¢ is the identity element of T7'G.
Let us consider the mapping

(4.7) k: R? x R3(u,t) > expg (tkx(u)) e G
and k,(u) = k(u, t). From the definition of Q; we have

:r a d :r
(QG(]o X))é = d_t (]okt)|1=0 .
Now we choose a chart in a neighborhood of the identity element e. The induced
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chart on T?"G is defined in some neighborhood of &. From (4.7) we deduce that the
coordinates X of (Q5(j5k%)): are given by

x; =2 (i (D,F) (0)) = ((% E:‘) (un,:o)

T ar\p
! ayi ayi

ol Dy(w'X")|,—o = S5X".
On the other hand, the coordinates X of X< are (see A. Morimoto [8], [9])

—; ; 1

Xy = (X)P7"() = -

(B — )t

Thus, identity (4.6) holds. [

u=0

Dy_(X'(e)) = 86X°F.

Let us recall that the canonical connection on a reductive homogeneous space is
characterized by the following theorem (Theorem I.10 O. Kowalski [7]).

Theorem 4.6. Let M = G[H be a reductive homogeneous space with respect to
a decomposition #(G) = ¥(H) ® W, where G is a connected Lie group. The
canonical connection on M is the unique G-invariant affine connection such that

(4.8) (VyeY)o = [U*, Y]O
for any element U e W and every vector field Y on M, where o = eH, and U*
denotes the fundamental vector field on M defined by U.

Using this theorem we can state:

Proposition 4.7. Let M = G[H be a reductive homogeneous space with respect
to a decomposition £(G) = ¥(H) ® W, where G is a connected Lie group. If V
is the canonical connection on M, then the complete lift V¢ of V from M to T*"M
is the canonical connection on TP'"M = T""G/T""H.

Proof. According to Proposition 4.3, T?"M is a reductive homogeneous space
with respect to a decomposition £(T?'G) = L(T*"H) ® Q4(T""W).

By Proposition 2.7 the connection V€is T?"G-invariant affine connection on T?""M.
To prove the proposition we are reduced to show

(4'9) (VS'T,)?) = [U*’ V]a
where U is an element of Z(T?"W) and Y is a vector field on T?"M.

Let U be an element of Wand Y be a vector field on M. By Lemma 4.5, for every «
such that |a| < r, we have U = Qq(joky), where ki(u) = u*U € W, and so U®
belongs to Qu(T”"W).

Now for every «, f such that |«| < r, || < r. using Proposition 2.2 and formulas
(2.11) and (4.8) we obtain

(4.10) VG o YO = [USO*, YB]
Thus, (4.9) holds in the case U = U and ¥ = Y.
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Let U be an element of Q(T?"W) and Y be a vector field on T""M. If U,, ..., U,
is a basis of W, then (see the proof of Proposition 2.6)

(U i=1,...k |« <7}
is a basis of Qg(T”"W). Therefore there exist real numbers a’, i = 1, ..., k, |o| < r
such that

(4.11) U=YYau®.
For a vector field ¥ on TP"M there exist vector fields Y;, ..., Y, on M, functions
..., 175 on TP"M and «, ..., %, such that |ozj| <rj=1,...,s and

(4.12) Y=Y hyeo.
Then from (4.10), (4.11) and (4.12) we obtain (4.9) in the general case. [J

We also prove another result for later use:

Proposition 4.8. If Z(G) = L(H)® W is a %(H)-invariant decomposition of
a Lie algebra #(G) of a Lie group G, where H is a closed subgroup of G, and
(4.13) 2G)=wa[W, W],
then for the Lie algebra L(TP"G) = L(T""H) @ Qu(T""W) we have
(4.14) L(TP'G) = Wa [W, W],
where W = Qg(T?"W).

Proof. Since M = G/H is a reductive homogeneous space with respect to a de-
composition £(G) = £(G) @ W, by Proposition 4.3 we have

L(TP"G) = L(T""HY@® W, [L(T""H),W]cW
where W = Qi(T""W). If X,, ..., X, is a basis of W, then (4.13) implies that the set
X o XS u{[XuX;) =1, ...k}

generates _CZ(G). Hence, there exist iy, ..., i, j, ..., j, such that {X,. ees X
[X:..X;] ... [Xi,, X}, ]} is a basis of Z(G).

Let X be an element of #(T?"G). Since Q; is an isomorphism, there exists jok €
€ T""(#(G)) such that X = Qq(j5k).

For every u e RP, k(u) is an element of #(G). This implies that there are real
numbers a,(u), ..., a,(u) and b,(u), ..., b(u) such that
k s
k(u) = 'Z]“i(“)xi + Zlbq(“) [Xi» Xj,]-
i q=

The unicity of the a;(u) and b,(u) implies that a; and b, are functions of class C*®
on R?. Now

k s
Jok =_le6(aixi) + Z]j:)(bq[xiq’qu])
i= q=

585



belongs to TP'W + [T""W, T?"W]. Since Qg is a Lie algebra homomorphism,
X = Q4(jbk) belongs to W@ [W, W], where W = Qq(T?"W). The proof of (4.14)
is done. [J

Let V be an affine connection on a connected manifold M. The group of all
transformations of M preserving each holonomy subbundle of the principal fibre
bundle LM of linear frames is called the group of transvections of (M, V). This
group will be denoted by Tr(M, V). (M, V) is called an affine reductive space if the
group Tr(M, V) acts transitively on each holonomy subbundle of LM (this definition
is due to O. Kowalski [7]). Now we prove:

Theorem 4.9. If (M, V) is an affine reductive space, then (T""M, V) is an affine
reductive space, where V€ is the complete lift of V to T*"M. Furthermore

Te(T?"M, V) = T?"(Te(M, V) .

Proof. According to Theorem 1.25 in [7], M can be expressed as M = G/H,
where G = Tr(M,V)and H is the isotropy subgroup of G at a point o of M. Moreover,
M = G/H is a reductive homogeneous space with respect to a decomposition #(G) =
= #(H) ® W, V is the canonical connection of M and we have #(G) = W®
@® [W, W]. Now from Proposition 4.3, T»"M = T""G|T""H is a reductive homo-
geneous space with respect to the decomposition L(T?'G) = Z(T""H) @ W,
where W = Qq(T?"W). From Proposition 4.7, the complete lift V¢ of V is the
canonical connection on T?"M and from Proposition 4.8 we also have #(T?'G) =
= W@ [W, W]. Using Theorem 1.25 in [7] we obtain that (T?"M, V°) is an affine
reductive space and

Te(T?"M, V) = T?"'G = T7"(Tr(M, V)).
The proof is now complete. [

To prove the above theorem we have used the same arguments that M. Sekizawa
in [11] who proved this theorem in case p = r = 1.

Let M = G/H be a homogeneous space and g be a G-invariant pseudometric
tensor on M. (M, g) is called naturally reductive if there exists an #(H)-invariant
decomposition Z(G) = £(H) @ W such that

(4.15) (U, Vlw, 2> = U, [V, Z]w>

for all elements U, V, Z of W, where {, > denotes the inner product on W induced
by g via the isomorphism den|W: W — TyM, where n: G 3¢ — £o e M is the projec-
tion and [U, V], is the W-component of [U, V] with respect to the decomposition
Z(G) = Z(H) ® W. It is easy observe that the condition (4.15) is equivalent to the
following one:

(4.16) g(([U. VIw)*, 2*) = 9(U%,(LV: Z]w)*) »

where U* is the fundamental vector field defined by U.
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In the case of the tangent bundle T"M = T''M of order r we can state the fol-
lowing theorem:

Theorem 4.10. If a homogeneous space M = G|/H, where G is a connected Lie
group, is naturally reductive with respect to a G-invariant pseudometric g, then the
homogeneous space T*"M = TP"G|TP" is naturally reductive with respect to the
complete lift g of g to T""™M.

Proof. We recall that the complete lift g of g to the bundle T"M, which is
a pseudometric tensor on T"M, is given by (see A. Morimoto {8], [10])

(4_[7) g(')(X(“), Y(ﬂ)) — (g(x, y))(zﬂl-r)
where X® is the «-lift of a vector field X from M to T?"M. From Proposition 2.7 g
is T"G-invariant.

If U is an element of W, then for every «, U® belongs to Q4(T"W) because Lemma
4.5 and formula (1.8) imply U® = U™ = Q4(jbky ) and ki *(u) = u™~* Now
according to (1.9) for every o, f = 0, ..., r and U, Ve W we have
(4.18) [U(”, V(ﬁ)]w = ([U, V]W)(z+tl~r) X
From (4.16), (4.17), (4.18) and Proposition 2.2 we obtain

g(”(([U(’), V(B)]W)* , Z(v)*) — g(”(U(”*, ([V(ﬂ), Z(v)]w)*)

which means that T"M is naturally reductive with respect to g”, because the set
(U UeW, a=0,...,r} generates W. [

In case r = 1, the above theorem was obtained by M. Sekizawa [11]. In Theorem
4.10 we consider only the bundle T'M = T!"M instead of TP'M, because
A. Morimoto’s construction gives a pseudometric on T?"M as a lift of a pseudometric
from M uniquelly in case p = 1 (see [8], [9], [10]).

5. PROLONGATIONS OF s-STRUCTURES

A regular s-structure on a manifold M is a mapping
M x M3(x,y) > s(y)eM

of class C” such that for all points x and y we have

(5.1) se(x) = x

(5.2) s, M > M is a diffeomorphism
(5.3) SeoS, =S,08,, where z=s/(y)
(5.4) ds.: TM - T.M has not fixed vectors except the null vector.

A couple (M, {s.}) is called a s-manifold if M is a manifold and {s,} is a regular
s-structure on M. For each x, s, is called a symmetry. A diffcomorphism ¢: M - M
is called an automorphism of (M, {s,}) if for every point x of M we have

(5.5) PoS, = S«,(x) o .
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The condition (5.3) implies that each symmetry s, is an automorphism of (M, {s,}).
The definition of s-structures was introduced by O. Kowalski [7].

Theorem 5.1 (O. Kowalski [7]). Let (M, {s,}) be a connected s-manifold. We
denote by S the tensor field of type (1.1) on M defined by S, = d.s, for x € M. Then:

(2) There exists an unique connection V. on M (called the canonical connection)

such that V is invariant under each symmetry s, and VS = 0. V is complete and
- has parallel torsion and curvature.

(b) The group Aut(M, {s.}) is a transitive Lie group of transformations of M,
which is a closed subgroup of the group of affine transformations of V.

(c) Let G be the identity component of Aut(M, {s.}), o a fixed point of M and H
the isotropy subgroup of G at 0. Then G/H is a reductive homogeneous space and,
under the standard identification G/H 3 xH — xo0 € M, the connection V coincides
with the canonical connection of G[H.

Let (M, {s,}) be a s-manifold. The group generated by all transformations of M
of type s; ' o s,, where x, y e M, is called the group of transvections of (M, {s:})
and denoted by Tr(M, {s.}).

Theorem 5.2 (O. Kowalski). If (M, {s,}) is a s-manifold and V is the canonical
connection on M, then Tt(M, {s.}) = Tr(M, V).

It is easy to show the following proposition:

Proposition 5.3. Let M be a connected manifold, x, a point of M and s M - M
be a diffeomorphism such that so(xo) = xo, and suppose that d,s,: T, ,M > T, M
has not fixed vectors except the null vector. If G is a transitive Lie group of trans-
formations of M such that s, belongs to the center of the isotropy subgroup H
at x,, then there exists an unique regular s-structure {sx} on M such that s, = s,
and the transformations of G are automorphisms of (M, {s,}).

Proof. If x = &x,, then we define
(56) Sx=éoSOOC—].

Since every element of H commutes with so, {s,} is a well-defined family of diffeo-
morphisms of M. The standard verification shows that {s,} is a regular s-structure
on M satisfying the statements of the proposition. We use precisely the same argu-
ments as in the proof of Lemma 0.15in [7]. O

Now we formulate the following theorem:

Theorem 5.4. If (M, {s,}) is a connected s-manifold, then there is a s-structure
{sx-} on TP"M such that for every point x of M

PR
se = TP's,

where X is the r-jet at O of the constant mapping RP3u — xe M.
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If V is the canonical connection on (M, {s,}), then the complete lift V¢ of V to
T""M is the canonical connection on (T*"M, {s..}). Furthermore,

Tr(T?'M, {sw}) = T""(Tr(M, {s,})) -
To prove this theorem we need the lemma:

Lemma 5.5. Let M be a manifold and x, a point of M. If f: M — M is a diffeo-
morphism such that f(x,) = x4 and d f: T,M — T, .M has no fixed vectors except
the null vector, then T"" f(X,) = X, and dg (TP'f): T(M = T M has no fixed
vector except the null vector, where X, is given by (1.1).

Proof. Let (U, x') be a chart on M such that x’(x,) = 0. We denote by (f', ..., f")
the local expression of f with respect to this chart. The hypothesis about f imply
(5.7) fi(0)y=o0,

(5.8) (%[9x)(0) v/ = 0= 0v'=0, i=1,..,n.

On the other hand, the condition (T7'f) (X,) = X, is an immediate consequence
of the equality f(x,) = xo. Let V' be a vector in T, (T”"M) such that
(59 d TNV) = V.

If we denote by V' the coordinates of V with respect to the induced chart, then
from (5.9) and from the fact that the coordinates x’ of X, are zero foralli = 1, ..., n
and all « such that |¢| < r, we obtain

Vi=(97/9x7) (0) Vi .
Now (5.8) implies that ¥; = 0 for all i and «. This means that d(T”'f) has no
fixed vectors except the null vector. [J

Proof of Theorem 5.4. We fix a point x, of M. Let G be the identity component
of (M, {s,}) and H be the isotropy subgroup of G at x,. Now s, = s, belongs to the
center of H. According to Lemma 5.5, sq = TP's, is a diffeomorphism of TP'M
onto itself such that so(X,) = X, and dx, s, has no fixed vectors except the null vector.
We also have

(5.10) so = TP"sy € T"(center H) < center (T”"H) .

According to Proposition 5.1, M is diffeomorphic to G/H. From Proposition 4.1,
TP"M is now diffeomorphic to T?7"G/T?"H. From (5.10) and Proposition 5.3 there
exists a regular s-structure {s;.} on T?"M such that

(5.11) Si, = S0 = TP"s
From (5.6) and (5.11) for a point x = &x, of M we have X = &X, and

Sg=CEosg ol = TPTECTP s, 0 TPE! = TP, .
Now, combining the results of Theorem 5.1, Theorem 5.2, Proposition 4.7 and

Theorem 4.9 we obtain Proposition 5.4. [
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Let (M, g) be a pseudometric space. A regular s-structure {s,} on M is called
a Riemann s-structure if each symmetry s.: M — M is an isometry of (M, g). In the
case p = 1, we can consider the complete lift g of g to T"M = T'"M. g given
by the formula (4.7) is a pseudometric on T"M.

We can state the following theorem.

Theorem 5.6. If {s.} is a Riemann s-structure on a connected pseudometric space
(M. g), then there exists a Riemann s-structure {s;.} on (T"M, g) such that for
every point x of M

(5.12) st = T's,,

where g is the complete lift of g to T"M and X is the r-jet at 0 of the constant
mapping R3 u — x € M. The canonical connection on T"M is the complete lift of
the canonical connection on M. Furthermore

(5.13) T(Tr(M, g, {s,})) = Tr(T"M, g, {s3}) .

Proof. We fix a point x, of M. Let Aut(M, g, {s,}) denote the group of isometries ¢
of (M. g) such that (5.5) holds. Since s, belongs to Aut(M, g, {s.}) for every x e M,
then from Lemma 0.3 in [7] Aut(M, g, {s,}) is a transitive Lie group of transforma-
tions of M. If G is the identity component of (M, G, {s,}) and H the isotropy sub-
group pf G at x,, then using the same arguments as in the proof of Theorem 5.4,
we show that (5.12) holds for each point x of M. Since the pseudometric g is G-
invariant, Proposition 2.7 implies that g*) is T"G-invariant, which means that s, is
an isometry of (T"M, g®), and hence, {s..} is a Riemann s-structure on T'M.
Theorem 5.4 implies that the canonical connection of (T"M, {s..}) is the complete
lift of the canonical connection of (M, {s.}). From Theorems 4.9 and 5.2 we obtain
(5.13). The proof is done. [

Theorems 5.4 and 5.6 were proved by M. Sekizawa in the case p = r = 1 (see
[L1]). In this general case we have used the same arguments as M. Sekizawa.
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