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SVAZEK 13 (1968) APLIKACE MATEMATIKY ČÍSLO 1 

A SURVEY OF ERROR ANALYSIS O F MATRIX ALGORITHMS 

JAMES HARDY WILKINSON 

1. INTODUCTION 

Since the advent of high-speed digital computers enormous progress has been 
made in the solution of matrix problems. This is most marked in connexion with 
the algebraic eigenvalue problem. Up until 1950 surprisingly few problems involving 
matrices of orders greater than (say) six had been solved. Now on a modern high 
speed computer all the eigenvalues (real or complex) of a real matrix of order 50 can 
be found in less than a minute and rigorous bounds can be determined for the errors 
in the computed eigensystem if these are required. 

Part of this advance has, of course, sprung directly from the very high speed 
of modern computers but at the same time a remarkable improvement has taken 
place in the algorithms themselves. It is interesting to note that since the latest 
computer was installed at the National Physical Laboratory almost all eigenvalue 
problems have been solved using algorithms which were unknown in 1950. 

As long as the limitations of computing machines restricted the size of matrix 
that could be dealt with to order five or six, most of the algorithms that had been 
developed over the last hundred years could safely be used; these algorithms had 
mainly been developed in a purely theoretical context. Since the algebraic eigenvalue 
problem is theoretically equivalent to the calculation of the zeros of the characteristic 
polynomial it is at first sight attractive to compute the latter explicitly and then to use 
an algorithm designed specifically for the polynomial form. Most of the algorithms 
which were discussed in the early years of the electronic computer were of this type. 

Experience with matrices, even of quite moderate orders brought into sharp relief 
the fact that problems which are mathematically equivalent may be very different 
from the point of view of numerical computation. This in turn led to a detailed 
consideration of the sensitivity of the eigensystem of a matrix with respect to perturb
ations of its elements and to a search for algorithms, based on transformations 
of the original matrix, which could be guaranteed to lead to matrices which were 
not more sensitive than the original. It is these considerations which have led to the 
development of the more successful algorithm now in use. 
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2. SENSITIVITY OF THE INVERSE OF A MATRIX AND OF ITS EIGENSYSTEM 

The sensitivity of the inverse of a matrix with respect to changes in its elements 
is quite easy to determine. In fact if neither A + E or A is singular we have 

(2.1) (A + F)"1 - A"1 = -A~X(E - EA"1E + EA'1EA'1E - . . . ) A - 1 

giving 

(2.2) ||(A + £)-- - A-1/IA-1 < - ^ ' ' jJ i f ,1 ' , 
1 - | | A *\\ HEII 

provided | |A_ 1 | | | E | < 1. If we assume ||E|| = a||A|| we have 

(2.3) l{A + Ey^-A-^l\\A-^^-^L 

where 

(2.4) x(A) = ||A|| | |A"11| . 

Relations (2.3) and (2.4) give us a bound for the relative error in the norm. If we 
use the l2 norm we have ||6-4||2 = ||-4||2 and KQA l )"1^ = HA"1]^ for any unitary 
matrix. The sensitivity of the inverse measured in the l2 norm is therefore invariant 
with respect to unitary transformations. 

Turning to the eigenproblem we consider only diagonalizable matrices. We define X 
to be the non-singular matrix such that 

(2.5) X~lAX = d i a g ( ^ ) . 

Then if B — A + F and the eigenvalues of A are denoted by Xt the Bauer-Fike 
theorem [1960] states that the eigenvalues of B lies in the discs with centres lt and 
radii equal to x(X) ||F||. The overall sensitivity of the eigenvalues therefore depends 
on x(X). Since X is not unique we can clearly use the minimum value of x(X) for 
all permissible X. 

This result suffers from the disadvantage that if any eigenvalue is sensitive then 
x(X) must be large and the bound for all perturbations are accordingly affected. 
If we consider perturbations A + eF for small values of e, then as e tends to zero 
A + eF has an eigenvalue X\ such that 

(2.6) Xl-Xi-syfExJyfxi, 

where yt and xt are normalized left-hand and right-hand eigenvectors corresponding 
to X{. Since |yfFx£| g |F | | 2 the sensitivities of the individual eigenvalues depend 
primarily upon the quantities l/yfx. 
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When A is normal yt — xt and hence the eigenvalues are always well determined. 
For hermitian matrices satisfying 

(2.7) B = A + C 

if the eigenvalues of A, B, and C are ah f$h and yh each arranged in decreasing order, 
then Weyl's theorem [1912] gives 

(2.8) yn S Pi - *iS 7i 

or 

(2.9) \Pi~4^ llcl|2-

If B and A are normal matrices and satisfy (2.8) then the Hoffman-Wielandt theorem 
[1953] gives 

(2.io) (m - 42Y11 ^ \C\F 
where \\C\\F is the Frobenius norm. If A and B are hermitian the result (2.10) is true 
when the a{ and pt are arranged in decreasing order. 

3. ALGORITHMS BASED ON ELEMENTARY TRANSFORMATIONS 

A number of algorithms for inverting matrices, solving linear equations and comput
ing eigensystems depend on the use of a sequence of transformations which reduce the 
original matrix to some condensed form, the solution of the problem for the original 
matrix being deducible from that for the transformed matrix. For matrix inversion 
and the solution of linear equations equivalence transformations are used, while 
for the calculation of eigensystems it is similarity transformations which are relevant. 

For inversion, reduction to triangular form is adequate, though some algorithms 
give a complete reduction to diagonal form. For the eigenproblem, reduction to 
triangular or diagonal form (the latter may not exist) gives the solution immediately 
but the fundamental theorem of algebra shows that, in general, an infinite number 
of steps are required. In practice one continues until the matrix has negligible sub-
diagonal (or off-diagonal) elements. Reduction to Hessenberg form H (i.e. htj = 0, 
4 > j + 1) can be achieved in a finite number of steps and gives a considerable 
simplification. 

Two types of transformation matrix are in common use. The first type are the 
unitary transformations, and the matrices in question are either plane rotations 
or of the type I-2wwH where ||w||2 = V Transformations with unitary matrices have 
the advantages (i) the sensitivities of the matrix with respect to inversion (measured 
in the l2 norm) and to the eigenvalue problem are invariant. We cannot therefore 
have a severe increase in the sensitivity as the reduction proceeds, (ii) In the case of 
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the eigenproblem the hermitian property is retained by unitary similarity trans
formations and hence at all stages one can work with only half the matrix, the 
super-diagonal or sub-diagonal half as proves convenient. 

The second type of transformation is based on the use of elementary matrices 
of the type I-ueJ and I-eru

T where er is the rth column of the identity matrix. Trans
formations of this type are simpler than those based on the use of unitary matrices; 
they include all the algorithms usually referred to as elimination methods. If used 
in a straightforward manner the elements of u can be unbounded and the trans
formed matrices may be arbitrarily more sensitive than the original. However, when 
there is a related algorithm based on unitary transformations, elementary matrices 
of the type I-ueJ may be used in combination with elementary permutation matrices 
(i.e. simple substitutions) to give algorithms in which the elements of u are bounded 
by unity. Such algorithms are usually said to include "pivoting" and the transform
ations have been called stabilized elementary transformations. (WILKINSON [1965]). 
It is worth commenting that although elementary transformations may lead to 
matrices with greater sensitivity than the original (even if stabilized) there is the 
possibility of reducing the sensitivity, whereas this cannot be done with unitary 
transformations. If for example we start with a non-normal but diagonalizable 
matrix having a very sensitive eigenvalue problem it can be reduced to diagonal 
form by elementary transformations (i.e. to an insensitive form) but not by unitary 
transformations. 

4. ERROR ANALYSIS OF TRANSFORMATION ALGORITHMS 

If a transformation type algorithm is used in practice, then because of rounding 
errors the computed sequence of transformed matrices A2, A3,... differs from the 
sequence A2, A3, ... which would have resulted from exact computation. It might 
be felt that for a stable algorithm satisfactory bounds could be obtained for \\AS — As\\ 
but this is not so. In fact many of the more stable algorithms can produce an As such 
that | |As — AJ is of the same order of magnitude as ||-4i||. 

For the sake of definiteness we shall concentrate on similarity transformation and 
consider an algorithm which defines sequences of matrices Ar and Pr satisfying the 
relations 

(4.1) A, = P.--V4,- i P , - i 

where the final As is of some simple form. 

A profitable line of approach is the following. At the (r — l)th stage the algorithm 
defines an exact transformation matrix Qr-\ corresponding to the computed Afr_i. 
In the error analysis we attempt to obtain a bound for the difference between the 
computed Ar and the exact transform Q7-iA~iQr-i defined by the algorithm for the 
computed Ar„v The computed Ar differs from Qr~-\Ar_lQr_1 for two independent 
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reasons. First errors are made in computing Qr-i and as a result Qr_1 is obtained 
instead. In general it is compartively easy to find bounds for \Qr-_ ~ Qr-i||- Then 
errors are made in computing Q~_}1Ar_1Qr^i using the computed Q--1- With stable 
algorithms it is possible to find a satisfactory bound for | |A r — Qr_1Ar_1Qr_1\\. 
Combining these two results a bound is obtained for | |A r — Q~_1

1Ar_1Qr_1||. If we 
write 

(4.2) Ar- Q^AUiQ,.,! = Fr 

then combining relations of the type (4.2) for r = 2, 3, ... we have 

(4.3) Ar = Fr + s ; } ^ ^ . , + S;_1
2Fr-2Sr_2 + ... + S^F.S, + S^AtS_ , 

where 

(4.4) Q,Qfc+i...Qr-i = Sfc. 

This may be written in the form 

(4.5) Ar = Gr + S^A.S, 

where 

(4.6) Gr = Fr + S^F^S^ + .. . + S_71F2S2 

showing that Ar differs from an exact similarity transformation of A x by the matrix Gr. 
In practice a bound for Gr is required. 

Equation (4.5) may be written in the alternative form 

(4.7) Ar = S^(A_ + S.G^1) Sx = S^{A_ + # i ) Sx 

showing that the eigenvalues of Ar are exactly those of At + H1. If we can obtain 
a bound for Hl we have a bound for the perturbation of Ax which gives the same 
affect as the errors made in the course of the computation. The derivation of a bound 
for H! is usually referred to as a backward error analysis (WILKINSON [1965]). It has 
the advantage of putting the errors made in the course of the solution on the same 
footing as errors in the data. 

5. ERROR BOUNDS FOR UNITARY TRANSFORMATIONS 

General a priori error bounds for Gr and Hx have been found for quite large 
classes of transformations based on the use of unitary transformations. For these 
algorithms the Qt are exactly unitary since they are the exact transformations defined 
by the algorithms for the computed Av From (4.4) we see that the Sk are exactly 
unitary and hence ||Hij| = ||Gr|| for either the l2 or the Frobenius norm, since these 
are unitarily invariant. Further we have from (4.6) 

(5-1) | |G P «g | |F P l + | |F r_1 | | + . . . + | | F 2 | | , 

so that the effect of successive rounding errors is no more than additive. 
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In the case when the transformations are plane rotations it is comparatively 
trivial to show for a large class of algorithms that, using floating point computation 
with a l-digit mantissa, 

(5.2) \\Qr- Qr|| ^ a . 2 - ' , 

where a is a constant of order unity which depends on the rounding procedure. 
The computation of Ar+l from Ar takes place in two steps 

(5.3) Br+i=fl(Q?Ar) 

and 

(5-4) Ar+1=fl(5r + 15 r) 

where the notation f 1 ( ) means that the right-hand side is computed using floating
point arithmetic. Again it is easy to show that 

(5.5) Br+l = Q»Ar + Kr, \\Kr\\ =g fi . 2-'||Ar|| 

(5.6) Ar+1 = Br+lQr + Lr, \\Lr\\ ̂  p.2-'\\Br+1\\ 

where again P is of order unity. This gives 

(5.7) | |5 r + 1 | | g He"! |Ar | | + \\Kr\\ ^ (1 + (a + /J) 2"0 | A r | 
= (1 + y . 2-') ||Ar|| 

and similarly 

(5.8) ||Ar+1|| ^ (1 + y .2~') ||Br+1 | | ^ (1 + y . 2 -0 2 |Ar|| . 

Similarly 

(5-9) | | A r + 1 | | ^ ( l - y . 2 - ' ) 2 | | A r | | . 

Equations (5.8) and (5.9) reveal an essential feature of algorithms based on plane 
rotations. Clearly we have 

(5.10) (1 - y. 2-<)2' IKfl = ||Ar+1|| ^ (1 + y . 2~T \At\ , 

showing that the norm of successive Ar+1 can vary only slowly. Combining the above 
bounds for successive values of r we have 

(5.11) ||ff.| = ||Gr|| g y ^ - ' H A . K l +(1 + y . 2 - ' ) + ... + (1 + r . 2 - 0 2 - 1 ) 

giving certainly 

(5.12) |ff. I = ||Gr|| = 2ry . 2-<|A1|| (l + y . 2"')2 r"2 . 
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Typical of algorithms covered by this analysis are Given's algorithms for the reduction 
of a general matrix to Hessenberg form or of a real symmetric matrix to tri-diagonal 
form. For these r = ^{n — 1) (n —• 2) and hence we have certainly 

(5.13) flH.fl = ||Gf|| S yn2 . 2 - fl/i.fl (1 + y . 2 - / 2 . 

By more sophisticated arguments the factor n2 in the above bound can be reduced 
to n3/2. More recently VOYEVODIN has shown that by simple modifications of algor
ithms of this type the n2 factor may be further reduced. However these refinements 
should not be allowed to obscure the essential simplicity of the arguments. 

In a similar manner it can be shown that for many algorithms based on the use 
of matrices of the type I — 2wwH one can obtain bounds of the form 

(5.14) fllf.fl = ||Gr|| = 2 n 5 . 2 - | | 4 1 | | ( l + 5 .2- ' ) 2 '~ 2 

provided inner-products are accumulated in double-precision and rounded on 
completion. Typical of algorithms covered by this analysis are Householder's algo
rithms for the reduction of a general matrix to Hessenberg form and of a real sym
metric matrix to tri-diagonal form. For these r — n — 2 and hence we have certainly 

(5.15) flff. || = ||Gr|| g 2dn . 2-flA!|| (1 + S . 2- ) 2 ». 

When A! is normal the Wielandt-Hoffman theorem immediately gives a priori 
bounds for the errors in the eigenvalues themselves. When Ax is hermitian either the 
Wielandt-Hoffman theorem or the Weyl theorem may be used to give a priori 
bounds for the errors in the eigenvalues. For non-normal matrices bounds for the 
errors in the eigenvalues depend on their sensitivities, as they must. 

6. ALGORITHMS BASED ON ELEMENTARY TRANSFORMATIONS 

It is a remarkable fact that for no algorithms based on elementary transformations 
have useful a priori bounds been found when A is a general matrix. For specialised 
matrices however there are stable algorithms using elementary transformations. We 
may mention in particular Gaussian elimination without pivoting for the inversion 
of positive definite matrices and Hyman's algorithm for the evaluation of deter
minants of Hessenberg matrices. It is interesting that pivoting is unnecessary with 
either of these algorithms and both of them are scaling invariant. 

1. A POSTERIORI ERROR BOUNDS 

The main purpose of a priori error analyses is to reveal the basic weaknesses 
of an algorithm and to gain some idea of its fundamental limitations. In practice 
the determination of a posteriori bounds is of much more value. 
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For matrix inversion this is trivial since from a computed inverse X we can determ
ine E defined by 

(7.1) E = I-AX 

and we have if ||E|| < 1 then 

(7-2) \A-1-X\1\A-*\Z\R\ 

and 

(7.3) \\A^-X\\s\\X\\\\E\\j(l-\\E\\). 

To obtain reliable information it is essential that E should be determined using 
accumulation of inner-products or the error made in determining E may be longer 
than its true value. 

For hermitian matrices an error bound for an eigenvalue may be determined 
from any alleged eigenvector. For if 

(7.4) Ax-Xx = r, \\x\\2 = 1 , ||r||2 = e 

then there is at least one eigenvalue of A in the disc with centre X and radius e. If 
further it is known that there is only one eigenvalue (possibly multiple) in this disc 
and ail distinct eigenvalues are outside a disc with centre X and radius a, then provided 
X is the Rayleigh value corresponding to x there is at least one eigenvalue in the disc 
with centre X and radius e2/a. Again to obtain the full benefit of this result r must 
be computed accurately. When a complete eigensystem has been determined then 
these results enable us to place each of the n eigenvalues in a separate disc provided 
no two discs overlap. When discs overlap the information given by the above inclusion 
theorem is incomplete. Wilkinson [1965] has shown that if xl9 x29..., xs are ortho-
normal vectors and 

(7.5) Axt - XtXi = ri9 ||r.||2 = e., i = l, ..., s 

then there are 5 eigenvalues [il9 \il9 ..., fis of A satisfying the relation 

(7.6) Q p ; - ri2)1'2 = 21/2(2>?}1/2. 

More recently KAHAN has shown that the factor 2 1 / 2 is unnecessary. 

When A is non-hermitian it is not easy to obtain precise information from a partial 
eigensystem. However if X is a complete set of computed eigenvectors and diag (Xt) 
a complete set of eigenvalues we can proceed as follows. First compute R defined by 

(7.7) AX - XA = R. 

This residual matrix must be computed accurately and an error bound determined 
for the computed R. Then X"1^ is determined and error bounds for this matrix. 
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We then have 

(7.8) X~lAX - A = S + F 

where F is the total error bound for computed X~lR. Here S is obtained explicitly but E 
is merely a set of bounds, in practice comprising a matrix which is far smaller than E 
which is itself smaller than A. The eigenvalues of A are then those of A + S + E 
and this is almost diagonal. Gerschgorin's theorem may be used to obtain improved 
eigenvalues and rigorous bounds for their errors. 

8. LIMITATIONS OF CURRENT ERROR ANALYSIS 

The a priori error analysis have been discussed in connexion with obtaining 
a bound for a norm of the equivalent perturbation of the original matrix and the l2 

and Frobenius norms have been widely used. Though this is often satisfactory it is not 
invariably so and sometimes a very different norm may be appropriate. 

As far as inversion is concerned we can deduce the inverse of A from the inverse 
of D1AD2 where Dt and D2 are any non singular diagonal matrices. The condition 
number x(DxAD2) will in general be different from x(A) and there is much to be 
said for choosing Dt and D2 so as to make x(D!AD2) a minimum. This problem 
has been discussed by FORSYTHE and STRAUS [1955] and by BAUER [1963] for a number 

of different norms. In practice a useful stratagem is to scale all rows of A so that the 
scaled A has all its row sums equal. This is a justifiable strategy if A is inverted 
(or linear equations solved) using Householder's triangularization [1963] or Gaussian 
triangularization with partial pivoting (Wilkinson [1963]). In practice one need scale 
only by powers of two (or ten) chosen so as to make the row sums as nearly equal 
as possible. 

For the eigenproblem one could work with D~1AD where D is any non-singular 
diagonal matrix. It would appear to be advantageous to choose D so that D_1AD 
has a matrix of eigenvectors X with minimum condition number K{X). Since X 
is not known ah initio there would appear to be little chance of doing this. However, 
we can choose D so as to minimise some norm of A. The relationship of such a 
preliminary scaling to that which gives a minimum x{X) is a little obscure. The 
problem has been discussed by OSBORNE [I960]. At NPL we have scaled so that 
XE | a u l *s a minimum for the scaled matrix, or at least as near the minimum as can 
be achieved using powers of two. For many eigenproblems this preliminary scaling 
is vital. 

There are also eigenproblems in which it is important to obtain small eigenvalues 
with a low relative error and not with a low error relative to ||-4||2. Small eigenvalues 
can sometimes be extremely insensitive to small relative variations in the elements 
of A. For the matrix of order 10 with 

aH = (11 — f)12 , ai>i + i = ai+li = 1 , a{j = 0 otherwise 
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the smallest eigenvalue is of order unity. It is fantastically insensitive to varia

tions in alx for example. This element can take any value such that \au \ ^ 3 without 

affecting the smallest eigenvalue by more than 2/(9 ! ) 2 4 . Further study of the factors 

affecting the sensitivity of such small eigenvalues is very important. 
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