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1. INTRODUCTION

While the solution of problems of thermal stresses for isotropic and transversely
isotropic bodies has been considered by several research workers in great details,
comparatively little work has been done on similar problems when the body is
initially stressed. GREEN, RIVLIN and SHIELD (1) and Green and ZERNA [2] consider-
ed small deformations superposed on large deformations, all at a constant temper-
ature. By an extension of the above work ENGLAND and Green [3] obtained the
general solution of the equations for the small superposed deformation and a steady-
state-temperature distribution in a compressible as well as incompressible body
in terms of three stress functions. They considered the body to be initially isotropic
and small deformations were assumed to be superposed on large deformations,
at constant temperature, and obtained the general solutions in the special case when
two extension ratios parallel to two rectangular certesian coordinates are equal.

The object of the present paper, though a similar type of problem for an aeolotropic
materials has been considered by Das [5], is to find the thermal stresses when the
isotropic finite cylinder is initially stressed. The curved lateral surface of the finite
cylinder is enclosed in a smooth rigid insulating cover while the plane ends have
a prescribed distribution of temperature. Numerical results for the stress (tg),=1
on the curved surface of the cylinder have been obtained for the particular material
known as Mooney-type material when the temperature distributions on the plane
ends are either constant or paraboloidal.

2. METHODS OF SOLUTION:
INCOMPRESSIBLE CASE:

We consider the deformation of the body which is such that the state of stress,
strain and temperature differs slightly from the state in a known finite deformation
of uniform extensions parallel to a set of rectangular cartesian co-ordinate axes.
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We suppose that the displacement vector, the stress components and the temperature
have the forms

V' +eV, T +eT, t;+ et

where V"’ is the displacement vector, t;; are the stress components of the known large
deformation, 7' is the temperature corresponding to that, ¢ is a constant small
enough for square and higher powers to be neglected; and V, T, t;; are the corre-
sponding vector quantities defining the superposed small deformations. The stress
strain relations obtained by Green and England (1961) and Green and Zerna (1954)
in the special case where the initial deformation has two equal extension ratios
Ay = A,, the other 15 and the body is incompressible, are given by

\ d 0 9 P
® tu=P'+a—u+b—g+w1T, t12=%(a_b),'i+_'i’
‘ 0x dy dy 0x

Ju ov ov aw
th=p +b— +a—+ o,T, tyy =dys— + dss — ,
2=7P ox dy ! 2 s Ssay

0 0 0
t33=P'+C—W+w3T, t31=d44—£+d55l,

0z oz ox

where a, b, c, ... are functions of t;;, extension ratios, Wand I;, and p’ is an arbitrary
scalar function. The functions are given by the relations

()  a=21, — 2%} - 2p + 225(AF — A3) {4 + BA(A} + A3) + F(22} + A3)},
b =22}(27 — A3){¥ + 4 + BA(A] + A3) + F(2A} + A3)},
¢ =2ty — 2WAIA — 2p + 2A5(A3 — 23) {4 + 2Bi} + 3FA}),
deg = 23(D + A1P); dss = A1(D + A}YP),
oy = LA} + MA(A] + 23); s = LAJ + 2MA3AT .

We also know that, for a material for which the Helmholtz’s free-energy function
is given by

(4) W=W(I,I,I,T).

where T is the temperature and I,, I,, I are the three strain invariants, 4, B, F, ...
s ®, Y, ..., 1, ... are given by

) o= 2 W, y_2 W
N/ VI, oI,
a2 ew g 2w 2 W
JI; o’ JI; o2’ N/ ) A
_2@w 2 PW
JI; 9T o1, JIs 0T o,
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with Iy = 1 for an incompressible body in all above relations. Also
(6) thy = QA + YA(AT + A3) + p, thy = DA + 2¥A3A; + p,

where p is an arbitrary scalar representing a hydrostatic tension.

Since the deformated body is assumed to be in equilibrium under a steady — state
distribution of temperature, the temperature equation is given by

0* 0*

02T
Migzo,vﬁ—

7 VT + = — )
9 ' 0z oxt oy

where k = \/(y3/71), 71, 73 are functions of the extension ratios and strain invariants.
When the body is incompressible with two equal extension ratios, we have

(8) My =1 and @+93+6—W=0
ox 0dy 0z

and in this case the general solutions are known to be (cf. 0)

0 - 0 -
©) ”=:*(‘P1+‘/’2+T)§ v="—(¢y + ¢+ T),
0x Jdy

0 — , 0?
w=— (nipy + n3p, + KT); p' = 2 (101 + 12g2) + 4T,
z yA
where ¢, ¢, are the solutions of
62
(10) Vitni—)ei=0 (i=12),
0z>
n?, n? being the roots of the quadratic equation,
(11) n*dss + n*(dgq + dss — a — ¢) + dyy = 0.
Also 1, I, are the roots of the quadratic equation,
(12) Pdss + I[dgs — ¢ — (a — dss)® + 2d,44dss]| +
+ d44[d44 —-c+ d44d55] =0.

All the above results have been obtained under the assumption that there is an
axisymmetric temperature distribution.

Let us consider a finite cylinder which was initially isotropic and let the plane
faces be defined by z = +h, the curved lateral surface defined by r = a; being
enclosed in a smooth rigid insulating cover while the plane ends have a prescribed
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temperature distribution. The axis of Z being the axis of symmetry, the position
of a typical point may be expressed in terms of cylindrical coordinates (r, 0, Z)
and in the case of axis symmetry, the displacement vectors have components (u, o, w)
and the non-vanishing components of the stress-tensor will be ¢,,, ty, 1, and t,, which
are given by

2 . ')2
13) tn=(al b (@ 40+ T+ L (10, + Ldy) + (00 + 1) T,
or? r or 0z*
0% 10 — 0*
lgg = (bTZ +a- _) (o + @2+ T) + T (1,9 + 1,P,) + (0 +1) T,
ar ror 0z

0? _
te = 2 {(en? + 1) ¢y + (cns + L) ¢y + T} + (w3 + ) T,

o2 - &2 _
or 0= ((Px + ¢y + T) + dss m; (nfq), + nip, + sz) .

trz = d44

In the case of axis symmetry, the temperature T = T(r, z) which satisfies the differen-
tial equation (7) can be assumed to be in the form .

oy
- ch 7‘ V4
(14) T= Z An" - JO(anr)a
n=1 oA,
ch =
k

having the following boundary conditions for T

(19)

T_ f(r) when 0 <r<b,, z==h,
0 when b, <r<a,, z= +h,

?I=0 when r = a,
or

where b, denotes the radius of the circle of the heat exposure on z = +h.

The constants A, in (14) are the expression coefficients of the function f(r) in
a series of Bessel functions of zero order defined by

(16) 70 =”§1A,, Joou)

assuming that the quantities o,a, are the roots of the equation

(17) Jy(o,a,) = 0.
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Let us take

o,
ch-=z

(18) T = 21,4,, Fi(s) Jo(or) s

ch ¥ p
k

where Fy(a,) is an arbitrary function of a, given by

k(w; — ;)

(19) % E) = o e )

= const = E’ (say)

and correspondingly

_ 01K?[(c — d4q) — K?dss] + o3[k*(a — dss) — daa
dss(nf - kz) (ng - k2)

(20)

The solutions of equations (10) are taken in the form

1) or=3 4, [Cl(an) ch ™ 2 4 D,(a) sh * z:l To(ar)
n=1 n n

1 1

0= A, [Ml(a,,) ch® 2+ Ni(,) sh &n z:| Jo(or)
n=1 nj n,

where Cy(a,), Dy(a,), M,(o,) and N,(a,) are functions of o, to be determined from
the consideration that the plane faces Z = +h should be stress free and, since the
curved lateral surface is enclosed by a smooth rigid cover, the tangential stress ¢,,
must vanish on r = a,. Thus the above constants are determined from the boundary

conditions,
(22) t,=1t,=0 when z= +h,
(23) t,,=u =0 when r=uaq,.

Inserting T, T from (14) and (18) and ¢, ¢, from (21) into (13) we have

(249) t, =Y {(a-b) Clchglz+D1sh-o—"iz+MlchE"—z+
n=1 ny ng n,

o
ch-2z

+N1sha—"z+F1 %Jl(zx,,r)+
ny o, r

ch-"h
k
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+ o? (112 —a)(Clchg’lz+D1shg'lz>+

ny ny ny

a'l
ch—z
12 An %y
+ 5 —a Mlch;—z+lehﬁz — aF, Jo(et,r) +
2 2 "2 ch & h
k
ch % ;
+ @1+ 1) —— s,
ch-h
k
had o, oy Ay
tao =), As3(b — a)| Cich—"z + Dysh—"z + M;ch = z +
n=1 ny ny n,
cha—l:z
+N1sh°c—"z+F1 %Jl(oc,,r)+
"2 ch % p
+ o? (l—;—— )(Clcha—"z+Dlsha—"z)+
nj n ny
ch %,
12 an an
+(2 - M ch 2z 4+ N,sh-"2z) — bF, Jo(o,r) +
n; n, n, ch®h
k
ch ¥z
+ (o) + 1) . To(@r)y .
ch—"h
k

© 2
t,, = ZA,, o? (cnl _2*_ l‘) (Cl ch X% 4 D, shﬁ) +

ny ny ny
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w =

% A 31, <c, ch

) ch =
+ (C"—ZJ}I—Z) <M1 ch ™% 4 N, sh E) bR — Ky
n; ny ny ch %
k
ch %%
+ (@5 + p) Jo(or) -
an
ch -
k

o0 2
- Y A4, ]a? <(—Iﬁ—i_~%§><c, chgiz+Dlshaiz>+

ny ny ny

d 24
+ <_f_"_ M, ch %% 4+ N, sh %@7) 4
n, n, n,

+

a"
dyq + K2 s
( 44 p 55) F, . Jl(anr) ,
ch & p

-3 A0, Clchz'f-lesh + M, ch + N, sh
n=1 ny ny n, n,

o,z o,z o,z

o,z

ny ny n,

o
sh 2 z

+ kF,

Jo(,r) .
ch ¥
k

-+

+ Dy sh%> + n, (M1 ch %% + N; sh

o,z
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The boundary conditions (23) are satisfied identically, and the conditions (22) are
satisfied if

(25) D,=N,=0

and
Tl h 2

(26) (C—nlz—h)clchg"—+<w>M10hﬁ'ﬁ+cF1+co3+u=0,
1 ny n, | ny

2 2
<d44 + nIdSS) C, ch o,h " <d44 + "2d55> M, ch Q‘nﬁ n

ny ny n, n,
2
(et 5,
k k

Equations (26) determine c¢y(a,) and M (a,).

3. TEMPERATURE DISTRIBUTION

i) Let us consider the particular case of constant temperature distribution charac-
terised by
flr)=Ty, 0 <r<by,

=0, b<r<a,.

By virtue of relations (16) and (17) we have

_ 2Tyby J(a,by)

27 A,
27) o, atJg(e,q)

(ii) As the second case we consider the paraboloidal distribution of temperature
characterised by

r2
T=T0<1——5), 0 <r<b,,
1

=0, by<r<ay.

Applying Fourier Bessel integral and using relations (16) and (17) we have

(28) A, = 4T [ 2 Ji(e,by) — Jo(oc"bl):'.

ozf,af J(:(OC"GI) (anbl)
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4. NUMERICAL RESULTS

For a Mooney type material, the Helmholtz’s free energy function W is given
be the relation

W= AITI(II - 3) + A2T1(12 - 3) ’

where A; and A4, are known constants and T is a constant temperature.

From relations (3) and (5), we have

& =24,T,, ¥ =24,T,, A=B=F=0,
L =24,, M=24,,

= 2ds5 = 42}(A; + A,20) Ty,

= 44,T, }*f(ﬁ - ﬂ-g) ’

= 2d,, = 4A3(A, + A,A) Ty,

w; = 24,27 + 24,2500} + 13),

w3 = 24,45 + 44,45 .

St Q

o

By means of these relations, equation (11) reduces to
(n* = 1) (ndss — dyg) = 0
giving two roots n? and n% which are respectively

2
2 _ 1 2 _ daa _ 43
np=1, np=—=-.
dss Ay

Again, from the graph (fig. 10-5) p. 298, in [4] the value of A, and 4, may be assumed
to be respectively
Ay =19 and A4, =-2378.

Let us assume A; = -25 so that 1; = 16 and the body was initially at a temperature
of 300 °K so that T; = 300 °K.

Under these assumptions we have

ng = 1, n, = 64,

a = 1436147, b = —4554-6131,
¢ = 58824576, d,. = 294121-88,
dss = 71-8073,

0, = 7-8489, w; = 988-0192 ,
L = 38, M = 4756 .
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Further assuming k? = 0-5 we get
El
I

00334, pu — 1968-196 ,
—15199-7, l, = =577070-1.

Il
Il

i

Taking a; = 1, h = 1 and by = -5, the variation of the stress [tg],~1» has been
tabulated. Table I gives [],—1 When the temperature distribution is constant on the
plane ends. Table II gives [fg],~; When the temperature distribution is paraboloidal
on the plane ends.

Table 1
VA 0 -2 4 5 6
(tg0)r =1
T— 139:1717 126-4025 89-2428 44-0817 —40-4093
0
Table 2
Z 0 2 4 5 6
(top)r =1
T 600-6341 534-4405 290-7204 18-3066 |-—442-8808
0
IO-3 L{:e.]hl
1 [too]p, T
TN ¢
‘5
2r 4

% kg
< |13 z e b z
S -2 F
-3 b
-2t 4t
b
il
Fig. 1. Fig. 2.
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The variation of the stress [fgy],=1 . 107%/T, is shown in Fig. 1 and Fig. 2 for
different values of Z in the above two cases.

The author is grateful to Dr. P. CHOUDHURY for his kind interest in the work.
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Souhrn

TEPELNE NAPETI PREDPJATEHO ROTACNIHO VALCE
S HLADKYM TUHYM ISOLACNIM OBALEM PLASTE

SuBHASH CHANDRA GHOSH

V ¢ldnku jsou uvedeny vzorce pro tepelné napéti predpjatého isotropniho koneg-
ného vdlce s hladkym tuhym isolaénim obalem pldsté, je-li ddno rozloZeni teploty
na podstavcich. Jsou odvozeny numerické vysledky popisujici pribéh [fg],— pro
specidlni materidl zndmy jako materidl Mooneyova typu, jestlize rozloZeni teploty
na podstavcich valce je bud konstantni nebo parabolické.
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