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SVAZEK 16 (1971) A P L I K A C E M A T E M A T I K Y ČÍSLO 5 

STAGING IN BALAS' ALGORITHM 

JAROSLAV HROUDA 

(Received June 26, 1970) 

INTRODUCTION 

In this article the following idea is developed: to break up an enumeration process 
into parts, not horizontally like a decomposition, but vertically in a sense of stratifying 
the enumeration process. Such partitioning (staging) arises: (1) when one attempts 
to bound by trial the minimal value of the objective function in a problem of zero-one 
integer programming, (la) when all suboptimal solutions in a given zone of values 
of the objective function are wanted, (2) when the right-hand sides of the problem 
depend linearly on a discrete parameter. 

Our approach to the solution of such partitioned problems can be characterized 
as an extended use of Glover's bookkeeping of the enumeration process B (see [1]). 
This is now recorded in a "long" sequence containing, in addition, indications about 
process interruptions caused by staging. The sequence currently discards the elements 
needless for subsequent stages. Thus we may interpret this idea as a recording 
methodology — the staged enumeration process BG — which allows of more general 
use than a simple enumeration process does (particularly, it makes possible a para
meterization in the zero-one integer programming problem). 

Now we briefly mention the contents of the individual paragraphs. In § 1 the 
principle of the staged enumeration process BG (abbreviated as SBG) is explained, 
its motivation given, and a terminology built up. Then some special problems are 
formulated corresponding to (1), (la), and (2) above. In § 2 an algorithm realizing 
the process SBG is described (referred to as Algorithm SBG) and its adaptations for 
the solution of the special problems are given. It fairly exploits the components of 
Algorithm BG from [1]. In § 3 Algorithm SBG is justified by reducing it to the con
ceptually and mathematically simpler Algorithm BG. In § 4 some recommendations 
are given concerning the realization of Algorithm SBG in a computer. 

N o t i c e . This article very closely relates to the previous paper [1] whose knowledge 
(at least §§ 1 and 2) is therefore urgently demanded. 
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§ 1. ENUMERATION PROCESS SBG 

We shall use the notation Jt = {0, 1, ..., m}, Jf = ( l , ..., n} and a term4 zero-one 
vector' for a vector with components zero or one. The basic task before us is to solve 

Problem T. Find all zero-one vectors x = (xu ..., xn) satisfying 

(1.1) £ aijXj S bt + tdt (dt £ 0, i e Jt) 
1=i 

successively for t = t1 < t2 < ... < ^. 

We shall call these vectors t-feasible solutions. The corresponding {j e */V | Xj = 1} 
are t-feasible combinations. The k-th part of Problem T, i.e. the determination of all 
tfc-feasible solutions, will be referred to as Problem 7(k); its solution constitutes the 
k-th stage in the solution of T. 

To solve Problem T, we may use the enumeration process B (Process B) at least 
in two ways: 

(1) Solve Problems T (1), T (2), . . . successively as Problems U. 

(2) Make use of the fact that each lfe_1-feasible combination is at the same time 
t/c-feasible, and no t^-infeasible combination is tk„x-feasible (1 < k g g). Then solve 
Problem T(g) examining each t^-feasible combination on its tg-l9 tg-2> ••• UP t o 

possibly tj-feasibility. 

The way (1) seems, at a glance, to be uneconomical one. But it could be profitable 
when the number of stages really performed is less than the number initially intended 
(owing to lack of a priori information). It surpasses the way (2) also in leaving more 
freedom when the problem is being stated — the values of parameter t may be specified 
even during the computation (with regard to intermediate results). 

We are going to try to increase efficiency of the way (1) by modifying Process B — 
in its form BG — so as to make use, in each stage, of an information about the process 
from the preceding stages. An economical coding of this information and a suitable 
linking of separate stages is the purpose of this modification, which we shall call 
staged enumeration process BG, or briefly, Process SBG. Here is an outline of it. 

We distinguish two types of DBL (at the k-th stage of the process): 

(Pi) CDBL (closed DBL): further IBL is impossible or immaterial with respect 
to solving Problems T(ft), h ^ k. 

(P2) ODBL (open DBL): further IBL is impossible or immaterial with respect to 
solving Problem T(fc), but not Tih\ h > k. 

Particularly it follows that for T(d) only CDBL can take place. In correspondence 
to the two types of DBL we may speak about closed or open branches; the distinction 
between them consists in whether during their creation none or at least one ODBL 
appeared. 
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The run of the enumeration process, considered as a sequence of operations IBL 
and DBL, is recorded by means of a sequence <P = {(pr) the elements of which have 
the following meaning: 

0 < cpr :g n: add an element cpr to a combination; 
— n ^ cpr < 0: drop out \cpr\ elements which were added last to a combination. 

The part of the sequence <P corresponding to a branch (including appropriate "back" 
elements cpr < 0) is called a loop. This may be closed or open according to whether 
the corresponding branch is closed or open. A pair of elements (cpn cpr+1 < 0) where 
(pr+i was produced by ODBL is a gap. An open loop contains at least one gap, a 
closed one none. 

Let us assume that Problems T (1), ..., T ( fc_1) (1 < k ^ g) have been solved and 
a sequence ^>(k-1) registering the last executed enumeration process is available. Now 
Problem T(fc) is to be solved. Obviously, it is sufficient to find only "new" lfc-feasible 
solutions (which are not tk_x-feasible); then these will be added to the feasible solu
tions available from the preceding stages so that we may obtain a complete set of 
feasible solutions of T(fc). For the sake of brevity, we shall use the term tq~p-feasible 
solution (q > p) for a t^-feasible solution which is not t^-feasible. 

For the solution of Problem T(fc) it is necessary that all open branches of the pre
ceding process should be "extended" as far as the constraints of T(/c) permit, i.e. as 
long loops as possible should be built upon all gaps of the sequence cp(fc""1). We shall 
reach the gaps successively, forming a sequence F by means of elements from $ ( fc"1) 

and examining combinations thus formed on their tfc_(fc_j ^feasibility. So when 
"passing through" ^ ( k - 1 ) we avoid any testing as well as selecting elements for IBL. 
Moreover, we may omit all closed loops unless they contain a r^_(fc_ ^-feasible com
bination; such loops are called removable (so are the corresponding branches). 

Simply, we eliminate each removable loop as early as it appears. However, it is 
desirable that the process should remain redundant even with regard to the eliminated 
loops (branches). For this purpose we "remember" in # each eliminated loop by an 
element cpr = n + <pr where cpr is the first element of the loop (the outset of the 
branch). These elements then participate in the construction of the sequence F. 
Finally, the fact that a loop contains a tg_(k_1 ̂ feasible combination is coded by 
inserting an element (pr — 0 at a point where the feasibility has appeared. 

From this outline it may now be obvious what we consider to be the advantage of 
Process SBG: That part of it which reproduces the results of preceding stages by 
means of the sequence <£ will be quite economical computationally — it requires 
minimum of vector operations (testing and selecting for IBL being avoided) and the 
reproduction of preceding stages is performed in a shorter way due to the omission 
of removable closed loops. This is an optimistic view, of course. A pessimist, on the 
other hand, will rather emphasize how the preparation of the sequence $ as well as 
its analysis and storing in an external memory of a computer is laborious. The final 
effect will certainly depend on the nature of the problem solved and the tests used, 
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i.e. on the efficiency of the tests in the realization of ODBL: whether it is true that 
*fc_(fc_ ^-feasible solutions are mostly or completely obtained just in the k-th stage 
(not sooner which would require their recording into $>); we call such process well 
or perfectly stratified, respectively. 

Now we shall formulate some special cases of Problem T which are of practical 
importance. In all of them a particular role is played by the 0-th function in (1.1), the 
so called objective function, which is to be minimized. We use in this connexion a 
common term optimal solution. Let us denote Jtt = {i e Jt | di > 0}, z(x) = 

n n n 

= £ a0jxj, w = X max {aoj, 0}, v = w - £ |a0j.|. 
j=i j = i i = i 

Problem Tl . Setting 

n 

|min (z(x) | £ a^Xj ^ b( (i e Jt — {0}), Xj = 0 Or 1} 
x j=l 

[w if the minimum does not exist 

and limiting Problem T by the conditions 

Jtt = {0} , ti > 0 , tg = 1 , b0 = v , d0 ^ z* — v (trivially d0 _ w — v) , 

determine all its solutions satisfying z(x) = z*. 
But this is the zero-one linear programming problem with a specific way of obtain

ing the optimal solutions. It is sufficient to proceed only until in some k-th stage 
tfc-feasible solutions are found. If it is required to find only one optimal solution, we 
shall speak about Problem Tl ' . 

Problem T i l . Solve ProblemT. After an optimal solution has been found repeat 
the last, say k-th stage, with the modification 

d0 = z* + S\z*\ ~ v , tk = 1 

and score all tk-feasible solutions. Here S > 0 is a given value. 

Hence, all suboptimal solutions to the zero-one linear programming problem over 
a given range of z are required. 

Problem T2. Let z^fc) stand either for the minimal value of the objective function 
in Problem T(k) or for w ifT(fc) has no feasible solution. Let ProblemT be subjected 
to the conditions: 

Jtt £ Jt - {0} , Jtt 4= 0 , b0 ^ 4 1 } (trivially b0 = w) . 

In the k-th stage (k = 1, 2, ...) determine all tk-feasible solutions to minimize the 
objective function. (The bound b0 may be adjusted to z^^ for k > 1.) 
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This problem is a discrete analogy to the parametric right-hand side linear program
ming problem, which by itself determines its practical applicability.1) Let us point 
out that here a nonincreasing sequence {z J*} may be systematically used to reduce the 
enumeration process, which is not possible if the way (2) mentioned at the beginning 
of this paragraph is used. When at most one of optimal lfe-feasible solutions is required 
we shall refer to the problem as T2'. 

§ 2. ALGORITHM SBG 

We are going to describe an algorithm for the solution of Problem T from § 1 based 
on the idea of Process SBG.2) The algorithm has a three-level cyclic structure. On the 
highest level the computation is divided into stages (index k). The second level is that 
of a basic cycle of the k-th stage, called (p-cycle (index r), which proceeds upon the 
elements of the sequence ^ (k~1} . Finally, at the third level we have i/>-cycles (index s) 
that modify the sequence $ ( k~1 ) . The notation relates to the fact that the modified 
form of $ ( f c _ 1 ) is read as W until it obtains the definite name $(fc) at the end of the 
stage. Before we begin the description itself let us present two remarks about the 
formalism: 

Operation S u {j} where S stands for a sequence preserves the ordering as indicated 
— the element; is appended at the end of S. 

The change of the iteration index (r or s) will always concern all sets and quantities 
even if some of them may remain unchanged at the beginning of the new iteration. 

Preparation of computation. Set 4>(0) = { — (n + 1)}. 

The k-th stage. A sequence &k~l) = {^^_1)} (u = 1, 1 ^ k = g) is given.3) 

q> -cycle. 

P r e p a r a t i o n pa r t . Set r = 0, l° = 0, F° = 0, y* = bt + tgdt (i e Ji). 

I t e r a t i o n p a r t (r-th iteration). Given sequences W = {\J/r
v ..., i/Tp},4) Fr, and 

numbers lr, y\ (i s Ji). Let us denote y\ = y\ ~ (tg - tk) dt (i e Ji). Considering an 
element (pr + 1 e cp^"1^ distinguish the following four cases: 

(1) 0 < (Pr+i g n. Increase the branching level: 

r+1 = ru{(Pr+1}, yPl\ = q>r+1, 
jr + 1 ir , 1 . ,,r+l F*1 = V+\; yr+1 = y\ - ai<fr+l{i e. 

1) Discretness of the parameter t means no restriction; rather the requirement d. J> 0 does. 
2) First published in a somewhat simpler form as ^-algori thm in [3]. 

) The stage number will not be quoted in indexing, as a rule. 
4 ) p depends on r. Let W° = 0 by definition. 
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and continue in the <p-cycle by the next iteration. 
(2) cpr+1 > n. Register the eliminated loop: 

r+1 = rru{n-<fjr+1}, yp
+

+\-=cpr+i9 

r + i = r9 y\
+1 = y\{ieJt) 

and continue in the 9-cycle by the next iteration. 

(3) — n S <Pr+i = 0- Examine inequalities y\ = 0 (i e Ji). 
(3a) If they hold, then score tk-feasible solution and 
(3a t) if <pr+1 = 0, continue in the <p-cycle by the next iteration; 
(3a2) if cpr+i < 0, enter the i/t-cycle. 
(3b) If some of the inequalities does not hold, then put $r+

+\ = <pr+1 and 
( 3 ^ ) if <pr+1 = 0, continue in the <p-cycle by the next iteration; 
(3b2) if \<pr+\\ > lr, finish the fc-th stage (the sequence <^(fc™1) has been exhausted); 

if now *Pr+1 = 0? then the solution of the whole problem is finished; otherwise put 
<p(k) _ ipr+l a n c i g ( ) o n t ( ) t n e ^ + jy s t s t a g e ; 

(3b3) if 0 < |<p r + 1 | = /r, decrease the branching level, i.e. leave out the elements 
of Fr from the end through |<pr+1| positive ones, prefix the sign 'minus' to the last of 
them to obtain the sequence Fr+1, and put 

lr+1 = lr~ \<Pr+i\ , y\+1 =yr+l aijx (ieJt) 
j*>0 

where the summation is considered over the positive elements j x left out from Fr; 
continue in the <p-cycle by the next iteration. 

(4) <pr+1 < — n. Enter the i/y-cycle. 

RETURN from the ^-cycle has two alternatives: (a) Either the sequence 
^p(fc-i) n a s | 3 e e n exhausted. Then finish the k-th stage; if Wr+1 = 0, the problem is 
solved; else put <P{k) = Wr+1 and go on to the (k + l)-st stage, (b) Or the sequence 
^ ( k~ 1 } has not yet been exhausted. Then continue in the <p-cycle by the next iteration. 

^-cycle. 

P r e p a r a t i o n par t . Set 5 = 0, <Fr0 = Wr, lr0 = F, Fr0 = Fr, yr0 = y\ (ieJt\ 

(2.1) vr0 = vr0=\cpr+l\(n) 

where the symbol on the right in (2A) means |<pr+1| modulo n. If — n — <pr+1 < 0, 
then go to CDBL (see below). 

I t e r a t i o n p a r t (s-th iteration). Given sequences !Prs = {i//", ..., i/Jrs}, 5) Frs, 

numbers Vs = /, y\s (i e Ji\ and sets {v rs,..., vrs}, {vrs, ..., vrs}. Let us denote yrs = 

5) a depends on r and s. 
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= y? - (tg - tk) d( (i e J/). For the sake of simplicity, we shall omit the index r. 
If ft = 0 for all i e Jt and if either k = 1, s = 0 or IBL preceded, then score 

a tk-feasible solution J\ = {j e Fs | j > 0}. 

In any case, go on deriving from Fs the sets of elements 1 = j ^ n 

(2.2) n = { j | y e r or -jeT}, r2 = {j\-(n+j)er} 

and forming two sets of "free" elements 

(2.3) Ns = jr - r\, Ns = ̂ r - (r\ u Fs). 
If Ns = 0, go to CDBL. If Ns = 0, then go to ODBL (see below). Otherwise tests are 
to be applied. We can use here any of the tests known from Balasian algorithms, but 
we apply them in two modes: 

1-st mode — read the quantities ys and the set Ns as input information. When some 
test succeeds CDBL follows. Otherwise two possibilities arise: if j ; s = y\ (i e Jt), 
then go to IBL; if not, repeat the tests in 

2-nd mode — read ys and Ns on input. In case some test succeeds, ODBL follows; 
otherwise go to 

IBL: Let 

(2-4) Fs = {ju ..., jQ} , Fs = Fs u {jQ+u .. .J,} , 

Gs = { k 1 , . . . , k , } , Gs = G s u { k ( T + 1 , . . . , k J 

be sets which have the following meaning: 

Fs contains elements which must be present in every combination J D J ] so that 
it may be ^-feasible (Fs c Ns); 

Fs analogously for ^-feasibility to be guaranteed (Fs — Fs c Ns); 
Gs contains elements which must not be present in any combination J ZD Js so that 

it may be t^-feasible (Gs c Ns); 
Gs analogously for ^-feasibility to be guaranteed (Gs — Gs c Ns). 6) 
We suppose that the reduction possibilities which might follow from the extent of 
these sets (e.g. Ns — Gs = 0) have been used in the tests. 

(a) If Fs * 0, then put 

(2.5) Fs+1 = Fs u { - k „ ..., -K} u {ju ...JQ} u 

u {-(n + ka+1), ..., -(n + kf)} u {jQ+u...Js}, 

(2.6) rq
+

+l=n + k„ (% = l , . . . , c / ) , 

6) These sets can be obtained e.g. by means of Test BF [1]. 
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(2.7) V9Vo+x=Jx (x = 1, •••, Q), 

(2.8) yV^y'-Y^ij (ieJ/), 
jeFs 

(2.9) ^ : i + ? + i = 0 if y 1 + 1 ^ 0 for a l l i e d 

and y s + 1 < 0 for at least one i e Ji, 

(2+0) v f 1 = vs + e , 

(2.11) v s + 1
+ x = l (X=1,...,Q-Q), 

(2.12) v s : | = vs + e , 

(2.13) P+ 1 = /s + e , 

and continue in the i/̂ -cycle by the next iteration, 
(b) If Fs = 0, then set Q = 0, Q - 1, define the element j t by the relation 

(2A4) fs-x = max vsj 
jeNs-Gs 

where 

DS. = X min (ys - a,., 0} , 

apply formulas (2.5)-(2.9), put 

(2.15) Vs:1 -= V s:1 =-. 1 , /*+1 = / * + 1 , 

and continue in the i/f-cycle by the next iteration. 
CDBL: Leave out the elements i/rs, \j/q-l9... until either 
(a) an element of the type ij/ <̂  0, say i^s_y (y ^ 0), is encountered. Then substitute 

(2-16) V*-\ = ^ - v - (v. - /«s) 

where fis is the number of elements 0 < \j/ ?g n left out before i^s_y has appeared 
(0 ^ iis < vs) and 

(a1 ; if / < vs, put wr+1 = Ws+1 and RETURN to the ^-cycle (the sequence 
^(fe-i) j s exhausted); 

(a2) if / *_ vs, leave out the elements of Fs from the end through vs positive ones, 
prefix the sign 'minus' to the last of them to get the sequence Fs+1, and put 

(2.17) Zs+1 = Is - v s , y*r = fi + E 0,,„ 0 6 . # ) 
J«>o 

where the summation is considered over the positive elements j x left out from Fs. 
If/S+1 < /r, then set Vr+1 = ws+\lr+1 = / s + 1 , tf+1 = y s + 1 ( i e <//) and RETURN 
to the <p-cycle; else continue in the i^-cycle by the next iteration; or 

(b) no element of the type \j/ ̂  0 is encountered, but 
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(bj) the sequence Ws is exhausted.7) In this case set *Pr+1 ~ 0 a n ( j RETURN to 
the (p-cycle (the sequence &k~X) has been exhausted); 

(b2) Vs; elements of the type 0 < VI <; n are left out; let the last of them be \jjq-8. 
Substitute 

(2.18) n~\ = n + r,-» 

and go on as in the case (a2) above. 

ODBL: Put 

(2.19) rq
+

+l = - ( * + v J . , + 0 for x = l , 2 , . . . until £ v ? . , ^ = vj . 

If / < vj, then set *Pr+1 = Ws+1 and RETURN to the <p-cycle (the sequence ^ ( f t~1 } 

has been exhausted). Otherwise proceed as in the case (a2) in CDBL replacing v] 
by vs. 

The description of Algorithm SBG is now complete; its adaptations for the solution 
of the special problems follow. 

An adaptation for Problem Tl — Algorithm SBG1. If in the k-th stage a lfc-feasible 
solution has been obtained (either in (3) of the cp-cycle or at the beginning of the 
i/t-cycle), substitute new values y0 = 0 or y0 = 0, 1k = 1 = tg and continue the 
iteration. The variable y0 or y0 is then to be modified in the same way whenever a 
feasible solution is reached. Also replace the set Ns by Ns where it concerns CDBL, 
i.e. in examining Ns = 0 after (2.3) and in the 1-st mode of tests. 

Concerning Problem TV the only difference is in the substitution which now reads 
y0 = — e or y0 = —e where e is a given positive number not exceeding the least 
possible variation of the value of the objective function. 

An adaptation for Problem T i l — Algorithm SBG1V Proceed as in Algorithm 
SBG1 until an optimal solution is reached. Then repeat the last, say the k-th stage,8) 
with y0 = z^° + <S|z(*}|, tk = 1 (now the quantity y0 will no longer be changed after 
obtaining a feasible solution). 

An adaptation for Problem T2 — Algorithm SBG2. The section (3b) of the 
<p-cycle is to be modified as follows: If y0 < 0,9) thenproceed as in (3a); else let it in 
the original reading. In the k-th stage (k > 1) set y0 = z^""1} in Preparation part of 
the 9-cycle. Substitute a new value y0 = 0 or y0 = 0 always after a ^-feasible solu
tion is obtained. For Problem T2' again with the change: yr

0 = —a, y0 = — e. 

The purpose of the modification of (3b) is this: It could happen that some tfc-feasible 
solutions, having been registered in the sequence $ on early stages, yield y0 < 0 
when their "turn" comes in the k-th stage. If it were not for this modification, they 

7) This covers also the trivial case Ws = 0 (at the beginning of the process). 
8) On the basis of # ( /c~ 1>, of course. 
9) Be aware of y0 == yrQ because of d0 = 0. 
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would remain in the sequence till the end of the computation preventing the sequence 
from being shortened by the mechanism CDBL. 

Summarizing our knowledge about the end of the algorithms, we can distinguish: 

(a) normal end when the last stage runs throughout with y\ = y\ (ieJl). It 
occurs — if the singular case d{ = 0 (i e Ji) is neglected - for k = g in one-staged 
Problem T1, multi-staged T1 with no feasible solutions, T11 (the repeated stage), 
or T2. There is always ^Fr+1 -= 0. 

(b) abnormal end when the last stage begins with y\ < y\ for some i e Jt. This is 
the case of Problems Tl and T11. The resulting sequence !P r + 1 then may contain 
a reminder from the beginning phase of the last stage. 

Finally, we shall summarize the measures which prevent Algorithm SBG from 
multiple occurence of tfc-feasible solutions: 

In the <p-cycle, the registration of a tfc-feasible solution is deleted when unnecessary: 
in the case (3a t) the element (pr+1 = 0 does not enter the new sequence <P(k\ in the 
case (3a2) (pr+1 = 0 is eliminated by means of the mechanism CDBL. 

In the i/^-cycle, (1) the nonredundant nature of the enumeration process shows, 
(2) tfc-feas'ble solut'ons are accepted after 1BL only, (3) solely t^_fc-feasible solutions 
are registered in <2>(/c) (see formula (2.9)). Measure (2) is meant word for word, thus 
excluding scoring a tfc-feasible solution also in the 0-th iteration of the i/̂ -cycle 
(except for the 1-st stage). Thereby it is impossible that the scoring could be repe
ated at the beg!nning of the i/̂ -cycle even in such rather unlikely situations: (a) Just 
before entering the i/f-cycle a tfc-feasible solution is indicated in the section (3) of the 
cp-cycle. (b) A t/rfeasible solution was scored in the Zi-th stage (h < k) immediately 
before creating a gap (ODBL) in the i/^-cycle. When this configuration, later registered 
in the sequences <3>, remains unchanged up to the k-th stage and (in the case of SBG2) 
y0 is not nullified, then the very same combination meets successively as th+u ..., tfc-
feasible at the beg'nning of the i/j-cycle. 

§ 3. JUSTIFICATION OF THE ALGORITHM 

We shall concede Algorithm SBG to be justified enough if we express it in terms of 
Process B and Algorithm BG. In the k-th stage Algorithm SBG produces a sequence 
<P(k) on the basis of <£(fc-1). We are going to prove10) about it a 

Lemma. The sequence <P(k)(l — k = o) registers Process B for Problem T(k) so 

that 
1. elements 0 < (pr+1 ^ n represent IBL — see the case (1) in the (p-cycle: 
2. elements (pr+\ > n indicate eliminated closed branches — see the case (2); 
3. elements (pr+\ < 0 represent DBL; among them 

10) The proof is also intended to serve as an explanation to the algorithm. 
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a) elements —n^ cpr+i < 0 indicate CDBL following after a recorded tg_k-
feasible solution — see the case (3). The quantity |<Dr+i| states how much the 
branching level is to be decreased; 

b) elements (pr+1 < —n indicate ODBL — see the case (4). The quantity 
\(pr+1 + n\ states how much the branching level is to be decreased; 

4. elements (pr + 1 — 0 record tg„k-feasible solutions — see the case (3); 
5. all removable closed branches are eliminated. 

Proof. We shall proceed using mathematical induction. Let us assume that the 
assertion of Lemma holds for the sequence $ ( f c _ 1 ) (k > 1). Process B for Problem 
T(k) can be derived from the process for T(fc~1) by its extending at the points where it 
was interrupted because of the conditions on T(fc_1) (ODBL). The mutual relation 
of the problems makes it possible. 

In the (p-cycle we realize Process B on the basis of the sequence # ( fc_1) examining 
its elements cpr+1 for r = 0, 1, .... At the r-th iteration the following sets and quanti
ties are available: a sequence Fr, a combination Jr consisting of the positive elements 
of Fr, a branching level V (i.e. the number of elements taken in the combination Jr), 
and 'slack' variables 

ft = bt + t
9

di " I au > ft = bt + hdt - I au (i e Jt) . 
jeJr jeJr 

These all are adjusted in (l), (2), and (3b3) in the way known from Algorithm BG. 
At the same time a new sequence <P{k) is constructed; its intermediate state is referred 
to, for formal reasons, by xFr. 

In the cases (1), (2), and (3b) the element cpr+1 is kept for the future stage, i.e. 
*Pr+1 = Vrv{cpr + 1}. 

In the case (3b2) the inequality \cpr+1\ > V signals the end of Process B for 
Problem T ( k _ 1 ) at this point — thus (pr+1 must be the last element of ^(k™1). 

In the case (3ax) when a tfc~feasible solution has been identified there is no need to 
keep it further, therefore cpr+1 is suppressed, i.e. Wr + 1 = W. 

The cases (4) and (3a2) lead to the i/y-cycle - the part of the algorithm where the 
sequence lPr is substantially modified: either extended by "drawing out" Process B 
or reduced by eliminatng removable closed loops. Here are some more details: 

We shall use the index s = 0, 1, . . . to number the iterations of the "new" part of 
Process B upon a gap (the index r wi 1 not be written provided that no confusion 
arises). After s iterations have been executed the state of Process B is determined by 
the set Fs (Js) and by the quantities /s, ys

t, y] (i e J/). We shall present only a few 
explanating remarks concerning those parts of the i^-cycle which are obviously de
rived from Algorithm BG. 

The sequence Fs is developed mainly in the section IBL. Formula (2.5) appends to 
it elements of three types: j from the set Fs, — j for j e Gs, and — (n + j) for j e 
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e Gs - Gs. Decreasing of branching level causes a reduction of the sequence from the 
end; the last element left turns to the type — j . 

Rather peculiar role of the elements —{n + j) arises from the fact that they cannot 
be present in any t/£-feasible combination, but must be taken into account for tg-k-
feasible combinations. This stipulates the role of the set F5, for the distinction be
tween Ns and Ns - see (2.2), (2.3). 

The quantities v5, v\ control the manipulation with the groups of elements of Fs 

during DBL. The number v5 states by what the given level / is to be decreased in the 
case of CDBL; it is cumulated according to (2.10) if Fs 4= 0; "empty" value is 1. The 
number v\ has an analogous function with regard to Fs and ODBL. If Fs = 0, the 
element for branching is chosen according to the criterion (2.14) due to Balas. 

The registration of Process B in the i/t-cycle continues as a sequence W, now with 
indexing Wrs (briefly Ws). Let us assume that the sequence Ws has the properties de
clared by Lemma for <P(k). We shall prove that the same is true for the sequence 
Ws + 1. Let us concentrate on the branching mechanisms, which are those parts of the 
i/̂ -cycle that can influence our sequence: 

IBL: Here merely an extension of Ws may take place, namely in formula (2.6) 
where an obvious fact is utilized that elements of Gs function identically as indications 
of removed closed loops, further in formula (2.7) where elements for branching 
are recorded, and in formula (2.9) where a ty_fc-feasibility is registered. All is in accor
dance with the way of registration according to Lemma. 

CDBL: Here the sequence Ws is modified (reduced, as a rule). The branching level 
can be decreased by v5 and the ending part of Ws which represents a removable closed 
loop can be eliminated. Therefore positive elements starting from the end of Ws are 
omitted. Branching levels are counted on elements of the type 0 < \j/ :_ n. The 
algorithm treats differently two alternatives: 

(a) Dropping out the positive elements is stopped when an element of the type 
i/y <; 0 occurs. According to the assumption about Ws the quantity |i//s„y|(?l) pre
scribes the number of levels to be decreased (in the closed way when —n^ij/^0, 
and open way when \j/ < —n). After an adjustment according to equation (2.16) it 
will have the same meaning. Really, since only / / < vs

t levels were accompanied with 
elimination when decreased, there will be no other branching on the level Is — / / in 
the next stage; therefore the eliminating of a loop need not be indicated and the re
mainder Vs- — /is, "unused" for elimination, can be added to the element i/Js_r 

Notice that after we apply formula (2.16) the element xjjs
q-y = 0 becomes an element 

of the type — n ;g i/J < 0. A loop containing such element may be eliminated only 
after the combination marked by it has been recognized as tfc-feasible in (3a2) of the 
cp-cycte. CDBL is initiated for that in Preparation part of the i/J-cycle. 

The natire of Process B implies that if it were v\? = 0, then for some s' _• 0 it 
would be Is'+ 1 = V and DBL would take place in the s'-th iteration of the (//-cycle. 
Were it CDBL, one would re-enter the sequence <P{k~u, decrease the branching level 
by \cpr^x!(,.), and eliminate. But to this aim, as our algorithm actually does it, one can 
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make use of the elimination mechanism of the ^-cycle as well as the formal identity 
of both the new and the old parts of the sequence <P, here unified under the notation 
W. Moreover, (2A) makes it possible to link together the old and the new parts so that 
the quantity vrl can be accumulated on vr0 (then /s' > /r, Is'+ 1 < Zr) and the remainder 
vs' — if from the last decrease can be added to i/ys'_y (the element cpr+l is no longer 
considered). Now, after RETURN to the (p-cycle the r-indexing again continues: 
<Pr+1 = yr»s ' + 1. The next element of ^ ( f e _ 1 ) to be examined is <pr+2-

Parallelly to the modification of Ws, the sequence Fs along with the appropriate 
quantities are modified according to the rule of decreasing a branching level by vs

t in 
Algorithm BG - see formula (2.17). Exhausting Fs indicates that Process B for 
Problem T(fc) came to an end - see the case (a t). Then <pr+1 is the last element of 
^(/£~1). Indeed, the inequality vs > / implies11) |<pr+i|(„) > F s o t n a t ^r+i must have 
completed the preceding stage. 

(b) The elimination of a loop proceeds as far as possible — through all vs
t levels. 

The element i/^t*, formed according to formula (2.18) indicates the removed loop 
in accordance with the assertion of Lemma. The extreme situations ( b ^ and / s + 1 < V 
can be treated similarly to the case (a): either as the exhausting of Fs — compare 
(a t) , or RETURN to 9-cycle — compare (a2). 

Since Ws does not contain any removable closed loops and each newly obtained 
such loop is, as shown above, immediately eliminated in the greatest possible mea
sure, neither Ws + 1 wi1l contain such loops. 

ODBL: Here the sequence Ws is extended. The branching level can be decreased 
by vs

t, but it is necessary that all the intermediate levels on which in succeeding stages 
another branching can take place be recorded. Clearly, formula (2,19) meets this 
demand. The extreme situations / < v, and / s + 1 < V are again analogous to those in 
section CDBL. 

Now we can proceed to the conclusion. Since Wr0 = Wr and the assertion of 
Lemma about Wr holds when the i/f-cycle appears for the first time (recall the analysis 
of the (/>cycle), the assertion is thereby proved for the whole #(fc) as well. And, con
cerning the completion of our induction: The sequence $ ( 1 ) is totally built in the 
j/r-cycle (# ( 0 ) is merely a formal tool of initiating the staged process12)). To prove the 
validity of Lemma for it, we may use the previous analysis of the i/̂ -cycle observing 
that in the 0-th iteration one of the following possibilities can take place: 

IBL — the assertion certainly holds; 
CDBL - the process finishes via (bi);13) 
ODBL - there is \j/\ = -{n + 1), i.e. <2>(1) = <l>(0). 

n ) Compare (2.1), (2.10), (2.H), (2-13), and (2.17). 
1 2) However, the choice O(i0) = - < » + D i s n o t a rbitrary; it guarantees the setting v°0 - v°0 = 

= 1 by means of (2.1). 
1 3) Seefootnote 7 in § 2. 
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The proof of Lemma is now completed. Let us append a few words about the 
termination of the algorithm. This happens after finishing that k-th stage in which all 
registered ^-feasible solutions were identified as ^-feasible and no ODBL took place, 
i.e. the resulting sequence *Pr+1 does not contain any elements i/J <I 0. But then all 
loops of this sequence have been removed (see Lemma). The only possible termina
tion of this kind is that in the section CDBL, case (bx) — hence ¥""+1 = 0. 

Remark . In a perfectly stratified process SBG no elements of type -n <I cp ^ 0 
are generated. 

An explanation to the adaptations of Algor'thm SBG remains to be added. In ail 
of them a conception introduced in [1] is used: The objective function is considered 
a constraint — including the use of the term 'feasibility' — however with a variable 
right-hand side which is represented by the current minimal value of the objective 
function. 

Let us have the 5-th iteration of the i/J-cycle in Algorithm SBG1 and denote 
zs = ~~ a0j so that ys

0 = b0 + d0 — zs. 14) If Js is trfeasible, the adjustment ys
0 = 0 

jeJs 

can be interpreted as a definition of a new d0 = zs — b0 and lk = 1 as g = k. Then 

in the succeeding iterations a combination J" will be recorded as fr feasible only if 

it satisfies 

yu
0 = yu

0 = 0, i.e. zu ^ b0 + d0 = zs; 

but this is enough with respect to the purpose of Problem T1 . This justifies, at the 
same time, the adjustment of the algorithm concerning the sets Ns and Ns. (Such ad
justment is useful because of the possib:hty of iVs 4= Ns in this case.) 

To Algorithm SBG2: Setting y0 = z (^_ 1 ) may be regarded as a redefinition b0 = 
= z^fc_1). In this way all combinations giving ys

0 = z(
Ht

fc_1) — zs < 0 are suppressed 
as infeasible ones, beginning from the k-th stag?. The modification of section (3b) in 
the <p-cycle makes it possible to remove these in feasible solutions even from the se
quence <P as soon as possible. The measure after obtaining a trfeasible solution can be 
considered a restatement b0 = zs. In succeeding iterations then y0 = 0 implies 
zu

 = b0 = zs. 14) 

§ 4. REALIZATION OF THE ALGORITHM 

Algorithm SBG together with the adaptations was programmed experimentally on 
IBM/360 (in PL/I). Here we present some remarks regarding this particular realiza
tion. 

1. Test BF [1] is used both for testing and for preparing the sets (2.4). The second 
mode of the test starts from the terminal state of the first one. Both modes are inter-

1 4) Similarly for the r-th iteration of the ^-cycle. 
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preted for a great part by one sequence of instructions (see [2]). 

2. We mentioned in § 1 a good stratifying of the staged enumeration process as 
a condition of its efficiency. Test BF makes it possible that even the perfect stratifying 
can be achieved by means of only a formal adjustment of a problem — by the trans
formation Xj = 1 — Xj. It can always be done in Problem Tl or T11 because it suf
fices to guarantee aoj = 0 (j e Jr). Similarly in Problem T2 provided that the coeffi
cients atj (i e */#,) have the same sign for each j e Jf. 

3. The sequences $> and W cannot be handled without using external storage de
vices. Therefore we assign themf/cs FI and PSI. File FI is processed sequentially, but 
on PSI reading and writing alternate all the time (IBL, CDBL, ODBL), which sug
gests operations to be organized in the following way: Let PSIW identify the working 
area (buffer) reserved for items of PSI in the core storage. Each time PSIW has 
been filled up or empted we transfer the front of file PSI to the middle of the working 
area. Thereby we reduce the danger that oscillations of the front of PSI will cause 
too frequent exchange of information between internal and external devices. The 
sequence # ( / c - 1 ) is replaced by Wr+1 = &k) simply by overnaming the appropriate 
files. 

Continual checking is necessary to avoid the possibility that a reserved storage 
capacity is not sufficient for the storing of file PSI. Let p be a current number of 
elements of a sequence W and N the capacity available. If p = N — n, then for 
Problem Tl (Ti l ) : Set tk = 1 and continue in iterations. Thereafter only IBL and 
CDBL may occur so that the number of elements of PSI will never exceed p + n = N. 
For Problem T2: terminate. Thus, lack of storage does not lead, at any case, to the 
loss of the computation, but only in case Tl staging is suppressed, and in case T2 an 
intermediate result is obtained (which might be completed later by a new computa
tion). 

4. The classical method of linear programming (with the "continuous" condition 
0 <; Xj: = 1) can serve as a useful tool for the formulation of our problems. Parti
cularly, for Problem Tl it gives a necessary condition of its solvability and if z* is 
the optimal objective function value for the "continuous" problem, then tt should be 
determined to satisfy 

b0 + t^Q = Z* 

and a constraint 

n 

1=1 

may be appended. For Problem T2 the parametric technique could help to prepare tt 

and tg with respect to the solvability of the problem. 
Some numerical experiments with Algorithms SBG are quoted in [2]. So far there 

have been few of them to allow more general conclusions. In addition, it appears 
necessary that for practical use the algorithms should be equipped with more means 
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of reduction. The paper [1, § 3] suggests some possibilities in this respect, others 

arise from Glover's and Geoffrion's idea of surrogate constraints (see [1] for re

ferences). 
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S o u h r n 

ETAPIZACE V BALASOVĚ ALGORITMU 

JAROSLAV HROUDA 

V článku je rozvinuta myšlenka: rozčlenit enumerační proces na části, nikoliv ve 
smyslu horizontálním — dekomposice úlohy, nýbrž ve smyslu vertikálním — roz
vrstvení enumsračnírio procesu. Takové členění (etapizace) vzniká: (1) při zkusmém 
omezování minimální hodnoty účelové funkce v úloze bivalentního lineárního progra
mování, (la) jsou-li žádána všechna suboptimální řešení v daném pásmu hodnot úče
lové funkce, (2) při zavedení diskrétního parametru do pravých stran. 

Náš způsob řešení takto členěných úloh lze charakterizovat jako rozšířené použití 
Gloverovy evidence enumeračního procesu B [ l ] . Ta se nyní zaznamenává do 
„dlouhé" posloupnosti, v níž jsou navíc registrovány údaje o přerušeních procesu 
z důvodu etapizace. Posloupnost se samočinně zbavuje úseků, které pro pozdější 
etapy nemají význam. Na tuto ideu můžeme tedy pohlížet jako na záznamovou me
todiku — etapový enumerační proces BG — dovolující obecnější použití než prostý 
enumerační proces (především možnost parametrizace v úloze bivalentního lineárního 
programování). 

V § 1 je vysvětlen princip etapového procesu BG (zkráceně: proces SBG); uvádí se 
jeho motivace, buduje terminologie a formulují speciální úlohy (viz (1), (1a) a (2) 
výše). V § 2 je detailně popsán algoritmus zvaný SBG, který uskutečňuje proces SBG, 
a jeho úpravy pro jednotlivé speciální úlohy. Ideově i formálně je poplatný algoritmu 
BG z [1] . V § 3 je algoritmus SBG odůvodněn tak, že je převeden k matematicky 
jednoduššímu algoritmu BG. V § 4 jsou dána některá doporučení stran realizace algo
ritmu. 

Authoťs address: Jaroslav Hrouda, prom. mat., Výzkumný ústav technicko-ekonomický che
mického průmyslu, Štěpánská 15, Praha 2. 
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