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SVAZEK 18 (1973) A P L I K A C E M A T E M A T I K Y ČÍSLO 2 

ON INTERACTIONS IN CONTINGENCY TABLES 

JlRI ANDEL 

(Received June 15, 1972) 

The concept of a generalized logarithmic interaction is introduced. Sidak's method 
for multiple comparisons of the logarithmic interactions is considered. The proposed 
procedures are applied to Simpson's example. Finally, the logarithmic interactions 
are proposed for comparing 2 x 2 contingency tables. 

1. INTRODUCTION 

Statistical methods based on contingency tables are frequently used in practice. 
The classical x2-test and Fisher's factorial test for independence have been for a long 
time the main tools for detecting an association. In the present time the following 
methods are used besides them: 

(a) The method based on maximal likelihood (see [8]). 

(b) The method based on the information theory (see [6]). 

(c) The Bayes method (see [7]). 

(d) The method based on logarithmic models (which uses the analysis of variance). 

(e) The method based on interactions. 

The concept of the interaction was introduced by Bartlett [1] in 1935. Fisher's 
paper [3] initiated the investigation of the statistical properties of the interactions. 
Especially, Goodman's papers play an important role in the development of the 
theory of interactions during the last ten years. Some of them are the basis for the 
present paper. 

We shall investigate contingency tables where no marginal total are fixed. Let 
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us explain the basic concepts on a two-dimensional contingency table 

(0 

" 1 1 

n21 

n12 . 
n22 . 

• nlc 

• П2c 

nu 

n2. 

nr. ПГ1 nr2 . • nrc 

nu 

n2. 

nr. 

П.í П.2 • • n.c 
n 

where 

"/. = IZ nu . ПJ = T nu > " = I ni- = I ".; • 
j = i І = I І = I j = i 

In the sequel we shall assume that n(j > 0 for all i,j. 
For r = c = 2 we have a 2 x 2 table 

(2) 

The number 

(3) 

П 9 1 Иl 

= nlxn22nl2n2ì 

will be called the interaction in a 2 x 2 table (some authors call it "cross-product 
ratio"). Edwards [2] proved that under reasonable assumptions any measure of 
association in a 2 x 2 table must be a function of b. A good interpretation of the 
interaction b is the ratio of chances (nlx : n21)j{n12 : n22). 

r 

Generally, let us have a matrix a = {ai^)r
i = 1

 c
j = 1, where a 4= 0, £ atj = 0 for 

j = 1, 2, 
c, ]Г QCU = 0 for i = 1, 2, ..., г. 

i = i 

Define 

(4) 

and 

(5) 

4 a E I a o - l n ( « І » 
І = I j = i 

Ьa = exp { 4 

Obviously, d = £ £ al7 In n^-, which is more appropriate for calculations. 
i = i j = i 

Then 6a is the interaction (corresponding to the matrix a) and da the logarithmic 
interaction. (We differ somewhat from the terminology used in [5].) The special 
case for a 2 x 2 table arises, when 

1 - V 

1 1 
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Because the contingency table (1) is a sample of the size n from the multinomial 
distribution with the probabilities 

Pw P\i ••• Pic 

Pi\ P21 ••• Pic 

Pr\ Prl ••• Pre 

da is an estimate for the theoretical logarithmic interaction 

r c 
Sa = X Z ao- In p0. 

i = l i = l 

and ba is an estimate for the theoretical interaction 

Pa = exp {Sa} . 

2. G E N E R A L I Z E D L O G A R I T H M I C I N T E R A C T I O N S 

Let (wij...fh) be an h-dimensional contingency table with positive elements, cor
responding to the probabilities (p,-, .,.,•„), where i7-= 1,2, ..., fcy; j = 1,2, . . . , / i . 
Denote n = £ ... ^ n / l ( i i l V Let a = (a,-lt..,•,.) be such a system of real numbers that 

i i ih 

?-I««,...«fc = o. I -SK. . ,J>o . 
i l «h J l «h 

Then 
d« = I - -Z a i 1 . . .»h l n " / 1 . . . i ' h 

»i ih 

will be called the generalized logarithmic interaction and ba = exp {da} the generalized 
interaction. Analogously 

<5« = Z"- - I a n. . -h l n P / , . . .«h 
• i 'h 

will be the generalized theoretical logarithmic interaction and f$a = exp {Sa} the 
generalized theoretical interaction. If, in addition, ^a i l t p , fh = 0 for j = 1,2,... , /?, 

0 
then ba, /?a are called (normal) interactions and da, Sa (normal) logarithmic interactions 
without the adjective tcgeneralized,,; b^ and da are the sample values, pa and Sa 

the theoretical ones. 

Theorem 1. Let y2 b£ random variable having the chi-square distribution with t 
degrees of freedom. For p e (0, 1) define y2(p) by the formula 

P(X2 > X2(P)) = V • 
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Put 

si = I.-IK...J2K..,,. 
i 1 ih 

Then the probability that 

(6) K - 8.\IS*. = X,(p) 

holds for all logarithmic interactions (or generalized logarithmic interactions) 
simultaneously, converges to 1 — p for n -> oo. Here t = (kL — 1) (k2 — 1) . . . 
... (kh — l) for the logarithmic interactions and t = k!k2 ... kn — \ for the general
ized ones. 

Proof. All possible tables a = (ah ih) form a linear space of the dimension t 
(excluding the null-element). Take a basis 

a i = ( a L. iJ> •••> <*t = ( a i , . . . J 

and consider the corresponding O\, ..., <5r and du ..., d,. Denote O* = (O\, ..., O*f)', 
d = (du...,dty. Put 

ti ih 

<s = » I ••• K...;„«.,....>.,...*., 
ii 'h 

-^ = ( ^ q s ) q = l 5 = 1 ' ^ n = (aqs)q=l s = l • 

From the asymptotic normality of the multinomial distribution and theorem 6a.2 (III) 
in Rao's book [8] it follows that the random vector ni/2(d — 8) has asympto
tically the normal distribution Nf(0, A). Denote by Fn the distribution function of 
n1/2(d — 8) and by Hn that of the normal distribution Nt(0, An). From the fact that 

(7) lim sup \Fn - Hn\ = 0 
n~* co x i . . ,xt 

(see (6a.2.11) in [8]) we conclude that Hn converges to the distribution function 
of Nf(0, A) and n(d — 8)' A~l(d — 8) has asymptotically the chi-square distribution 
with t degrees of freedom provided An is regular. Now take v = (vu ..., v,)' 4= 0 
and denote 

t 

a;,.../h = l ¥ l . . ^ a o = (aii . . . ih)-
- 2 = 1 

Because a1? ..., af is a basis and v #= 0, we see that a0 4= 0. After elementary com
putation we get 

(s) *'An* = "j:-n^-iyi"u...ih>o-
i , ih 

Thus the matrix An is positive definite and, therefore, regular. 
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If v varies over the l-dimensional space (excluding the null-element) then v'd 
gives all logarithmic interactions (normal or generalized). 

It is well known that the events 

(9) n(d - S)'A;\d ~ S)tf(p) ^ I 

and 

(10) [v'(d - S)]2 ^ v'AnvX2(p)ln f o r a11 Y 

are equivalent. A geometric proof is in [9], Appendix III, but the equivalence can 
be proved very easily and shortly using the Schwarz inequality. The probability 
of (9) converges to 1 — p for n -> co according to our previous consideration. 
As for (10), J0 = v'd is a logarithmic interaction (normal or generalized) belonging 
to a0, S0 = v'd its theoretical value in the population and v'Anv\n = Sdo according 
to (8). The proof is finished. 

It happens that we consider a few logarithmic interactions only. Then the simult
aneous bounds for their theoretical values given in (6) could be rather wide. For 
such a case Goodman derived the following Theorem 2. 

Theorem 2. Let <P denote the distribution function of N(0, l) and u its inverse. 
Then the probability that the intervals 

(11) (dt - u(l - pjlw) Sdi, dt + u(l - p/2w) Sd) 

cover 5t for all i = 1, 2, ..., w simultaneously, is asymptotically at least 1 — p. 

Proof. See [5]. The proof is based on Tukey's theorem employing Bonferroni 
inequality (see [11], 10.5(a)). 

We give another theorem concerning this problem. 

Theorem 3. Put 

(12) c = u(\ + i(i - Pyw). 

Then the probability that the intervals 

(13) (di-cSdi,di + cSd) 

cover Si for all i = 1, 2, ..., w simultaneously, is asymptotically at least I — p. 

Proof. Denote 8 = (5l9..., 5W)', d = (dl9 ..., dw)'. Let dk and 8k correspond 
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to <xk = («•,...,„), k = 1, 2 , . . . , w. Put 

j'l ih 

A* __ (nn \w w 
Mn — \aqs)q=l s = l • 

Denote by F* the distribution function of n1/2(d - 5) and by H* that of Nw(0, A*). 
Similarly as (7) in the proof of Theorem 1 we obtain that 

(14) lim sup |F* - H*\ = 0 . 
n-> oo xi , . . . , J C W 

Let Y = (y l 5 . . . , yw)' have Nw(0, A*). Then, according to Sidak's theorem [10] 

pfly-J < c 1 ? . . . , |yw| < cw) = Pd^l < d ) . . . P ( | y w | < cw) 

holds. Denote var Yt = cr?, i = 1, 2, ..., w. (Obviously a] = nS^..) Then 

pfly-J < Co-,,..., |yw| < cdw) = P(|yi| < c ^ ) . . . P(|yw| < caw) = 1 - P . 

But (14) implies that 

P(|di - S-l < cSdl, ..., \dw - Sw\ < cSdJ - P(\Y,\ < cau ..., \YW\ < caw) 

converges to zero for n -> oo. This concludes the proof. 
It is easy to see that Theorem 2 and Theorem 3 hold for generalized logarithmic 

interactions, too. Moreover, both of them are valid even in the case when some 
logarithmic interactions are evaluated from marginal contingency tables. It suffices 
to notice that such a vector of logarithmic interactions has asymptotically a simul
taneous normal distribution. 

It is evident that both of the methods described in Theorem 2 and 3 hold for 
w = 1, too. 

In view of 

(15) w(l - pj2w) = i*(i + i ( l - p)1/w) , 0 < p < 1 , w = 1 , 

we see that Theorem 3 always gives better results compared to Theorem 2 (although 
the differences are small in practical cases). The inequality (15) can be proved either 
by a direct calculation or from the fact that Theorem 2 is essentially based on the 
Bonferroni inequality 

w 

P(\Y,\ < cu ..., \YW\ < c ) £ 1 - £ P ( | Y | ^ c,) , 
i = l 

but clearly the same inequality holds also for Pfly-J < Cj) . . . P(|yw| < cw) so that 
this last product of probabilities yields a closer lower bound for P^Y^ > cu . . . 
..-, \Yj[ < cw). 
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3. EXAMPLE 

Let us analyse the following tables: 

Male Female 

Treated Untreated Treated Untreated 

Alive 800 400 Alive 1200 200 
Dead 500 300 Dead 1500 300 

It is the classical Simpson's example (see [2]), only the frequencies were multiplied 
by 100. We have to do with 2 x 2 x 2 contingency table (suppose the case where 
no marginal totals are fixed). The "natural" interaction (800.300)/(400.500) evaluated 
from the first subtable using (3) appears to be the generalized interaction considered 
in the whole table corresponding to 

X = 
0 0 

0 0 

It is the main reason why the generalized interactions were introduced. They make 
it possible to consider all the interesting subtables separately. (Anotherapplication 
of the generalized interactions consists in the possibility to test the hypothesis that 
the probability that a treated male is living equals to 0.75, say.) Let us test the fol
lowing hypotheses on the usual 5% level of significance: 

(1) The survival of males does not depend on the treatment. 

(2) The survival of females does not depend on the treatment. 

(3) The survival of treated subjects does not depend on the sex. 

(4) The survival of untreated subjects does not depend on the sex. 

(5) The treatment of living subjects does not depend on the sex. 

(6) The treatment of dead subjects does not depend on the sex. 

Obviously, the answers may be based on the generalized logarithmic interactions. 
We have 

X7(0.05) = 3.755 ; u(l - 0.05/12) = 2.639 ; 

u(i + i . 0.951/6) = 2.633 . 

Thus, the method described in Theorem 3 is the most favourable and will be used. 
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For each hypothesis we shall write a, d, Confidence interval (c.i.) for d based on (13), 
and x2 calculated for the corresponding 2 x 2 table by the usual way. The values 
of x2 are mentioned for comparison only, they can't be used for simultaneous testing. 

w - U D - (::)•—• 
c.i. (-0.0686, 0.4332), X

2 = 3.663 . 

«> - ( : : ) • ( 1 1 ) ' — 
c.i. (-0.0788,0.4434), f = 3.386 . 

® ~ ( i : ) ' ( i : ) ' — • 
c.i. (0.5116, 0.8746), X

2 = 102.56 . 

« -CD'CI)' — 
c.i. (0.3797, 1.0065), x2 = 34.29 . 

w " -C1) ' (1J) ' d - - 1 0 9 8 6 ' 
c.i. (-1.3564, -0 .8408) , x2 = 132.06. 

c.i. (-1.3530, -0.8442) „ x2 = 135.42 . 

Our generalized logarithmic interactions are chosen in the present example in such 
a way that their theoretical values under independence are zeros. This always holds 
for non-generalized logarithmic interactions but it is not the general property of the 
generalized ones. 

As for the given example, we see that the hypotheses (3), (4), (5) and (6) should 
be rejected. 

Somebody could prefer the following complex of hypotheses: 

( l ' ) = ( l ) , (20 = (2) , (30 = ( 3 ) , (40 = 4 , 

(50 The treatment does not depend on the sex regardless to living. 
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(6') The degree of the association (measured by interaction) between treatment 

and living is the same for both male and female. 

We use Theorem 3 again. The above results (l) — (4) hold for (V) — (4'), too. 

The test of (5') is based on the marginal contingency table for which d = —1.07 

and the confidence interval (13) is (— 1.25, — 0.89). Under independence the theoretical 

value equals to zero. Thus the hypothesis (5') is rejected. 

Male Female 

Treated 
Untreated 

1300 
700 

2700 
500 

The test of (6') is based on the ratio of interactions the subtables 

, v 800.300/1200.300 

' 500.400/1500.200 

or on its logarithm. But (16) corresponds to 

i - i \ / - i i 

i v v i -1, 

and we get d = 0; the confidence interval is ( — 0.3621, 0.3621). 

4. ON A METHOD FOR COMPARING 2 x 2 CONTINGENCY TABLES 

Some methods for comparing contingency tables were considered in [4]. We 

propose a method based on logarithmic interactions. 

Let us have j contingency tables 

aг Ъx 

ci dx 

0* Ьk 

ck dк 

which can be considered as independent samples from h populations. We want to test 

the hypothesis that all the populations have the same interaction which (a) is supposed 

to be known and equal to S, (b) is not known. Denote dt, and St, the logarithmic 

interaction, and the theoretical logarithmic interaction in the 1-th table, respectively. 

The value Sj. is given in this special case by the formula S%t = \jat + l/bf + \\ct + 

+ \\d, 
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(a) Let k g: 1. From the asymptotic normality of di9 ..., dk (when a{ + bt + cx + 

+ dt -> oo for i = 1, 2, ..., k) and their independence it follows that 

T=i(dt-8)2IS2

dt 
i = l 

has asymptotically the chi-square distribution with k degrees of freedom. Therefore, 

if T > ll{p), we reject the hypothesis. (The case 3 = 0 can often occur.) 

(b) When 5 is not known, the test procedure is based on the following Theorem 4. 

Theorem 4. Put 

a-di/s,3.)-1!^. 
i = 1 i = 1 

If O\ = . . . = (5fc and a{ + b; + e; + d{ -» co for i = 1, 2, ..., k, then the random 

variable 

h#s asymptotically the chi-square distribution with k — 1 degrees of freedom. 

Proof. Let Xl5 ..., Xfc be independent random variables, where Xf has N(/I, O^), 

i= 1,2, ..., k. We assume that c j , ..., &l are known positive constants and \i 

is an unknown parameter. Remark that 

_2\-l V \^ / .̂2 

A-diMrz-fK 
i = i i = i 

is the best linear unbiassed estimator for /i. Applying theorem 3b.4(11) in [8] we can 

prove that the random variable 

i = i 

has the chi-square distribution with k — 1 degrees of freedom. The rest of the proof 

follows from the asymptotic normality of the random variables dl9 ..., dk. 
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S o u h r n 

O INTERAKCÍCH V KONTINGENČNÍCH TABULKÁCH 

JIŘÍ ANDĚL 

Budiž (nh ih) h-rozměrná kontingenční tabulka s kladnými četnostmi a a = 
= (a/1...íh) h-rozměrná tabulka reálných čísel taková, že platí 

I-I«,-,.. ih = o, I--Xk...,-h|>o. 
ií ih H ih 

Nechť daná kontingenční tabulka nemá žádné pevné marginální četnosti, takže ji lze 
považovat za výběr z multinomického rozdělení s kladnými pravděpodobnostmi 
(HV..J- Položme 

s<* = Y-'-Tcch..JHlrlPu-ih> < = I •••Sa«i. ..i»lnnh. ..*„> 
í l ih ií ih 

h = exp {Sa} , ba = exp {da} . 

Pak ba a da se nazývají zobecněná interakce, resp. zobecněná logaritmická interakce; 
Pa & óa jsou teoretická zobecněná interakce, resp. teoretická zobecněná logaritmická 
interakce. Simultánní intervaly spolehlivosti pro zobecněné teoretické logaritmické 
interakce lze konstruovat pomocí metod uvedených ve větách 1, 2 a 3. Je uveden 
Simpsonův příklad týkající se tabulky 2 x 2 x 2 , který je navrhovanými metodami 
podrobně vyhodnocen. Poslední část práce je věnována testu hypotézy, že k ne
závisle pořízených čtyřpolních kontingenčních tabulek pochází ze základních souborů 
se stejnou interakcí. Přitom se rozlišují dva případy. První nastává tehdy, je-li tato 
společná interakce součástí hypotézy (je-li tedy dána), druhý případ se týká situace, 
kdy tato hodnota není dána. Navržený test je v obou případech založen na logarit
mických interakcích. 

Authoťs address: RNDr. Jiří Anděl, CSc, Matematicko-fyzikální fakulta Karlovy university, 
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