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PERIODIC SOLUTIONS OF A WEAKLY NONLINEAR HYPERBOLIC
EQUATION IN E, AND E;

VAcLAV ViTEK

(Received March 30, 1973)

1. Introduction. For n = 2 and 3 I investigate the classical solutions of the equation
with constant coefficients

(1.1) O.u + 2au, + 2(B, V,u) + cu = h(t, x) + ¢ f(t, x, u, ) .
The initial conditions are
(1.207) u(0, x) = p(x), u/0,x)=g4q(x), xekE,.
In (1.1¢)
O, = 0*[ot* — d*[ox] — 0*[ox] — ... — 9*[ox?,
U = (0[0xy, 0[0x,, ..., 0[0x,) ,
B = (by, by, ..., b,),
X = (Xg, Xgy eens X) -

¢ is a small parameter, t € E{ = <0, +00).

The study of (1.1)-type equations was initiated in [2] by F. A. Ficken and
B. A. Fleishman. In [3] J. Havlova studied (1.1V) with a more general right-hand
side, viz. that of f(1, x, u, u,, u,, €).

2. Preliminaries. Denote for n =2 Ef., = E{ x E,, 0> = [B|* + ¢ — a* =
=b} +bi+ ...+ b2+ c—a?
J(B[? +¢—-a?) w*20,

1) O i@ =B —¢ " <0
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Q= ’wl, i.e.,

Q > =0,
(2:2) w = if

iQ ? <0

a w?=0.
(2.3) A= if

a—Q w? <0
Throughout the paper we assume
(2.4) 2>0.

Let us note that this condition is equivalent to a > 0,
of ? < 0.

|B“2 + ¢ > 0 in the case

Further we denote
(2.5 P& = (- 0 - Jx - ¢,
I =20, 1 x).
The facility of multiindex notation is used:
D; = Dj = dlox;, Di=DyD¥...Di", |of =oa, + a0 + ... + 0,

with o; non-negative integers.

If k = 2 is an integer we denote by C*(E,, ;) or briefly C* the Banach space of real
functions v(#, x) having continuous and bounded on E}, | partial derivatives D%,
D%v,, v,,, |B| < |oc| < k. Setting

@6 (ol = sup{

D o(t, x)|, [ D4 v, x)|. [oit, X)|; [B] < || < K},
we define the norm in C* by

(2.7) 9 [ = o

Further let us put

(28) ol = sup{

In (1.1"), (1.2) we introduce the variables

D% u(t, x)!; |oc| < k}.

(2.9) u=w.exp{—at + (B, x)},
v=e"FY y=e " w.

We get

(2.10) O + @’w = e™{5(t, x) + & f4(t, x, w, &)} ,
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w(0, x) = o(x), wl0,x)= W(x)

and

(2.11) 0.0 + 2av, + (0* + a)v = (t, x) + eg(t, x, v, ),
v(0, x) = @(x), (0, x) = (V — ap)(x)

with

(2.12) 5(t, x) = e~ U h(t, x),

g(t,x, v, 8) = fi(t, x, w,e) = e”P¥  f(t, x, u, €),
o(x) = ™ p(x),
Y(x) =e Y (q + ap) (x).
We shall assume
(G®™ . 1): For an arbitrary R = 0 there exists a positive constant A(R) such that
for (1, x, v, ¢) € El.; x {=R,R> x {—egy, &) the partial derivatives
DD} g(t, x, v, ), [fx[ +j<k
are continuous and bounded:
|DiDig(t, x, v, &) < A(R) ;

(G*™ .2): For an arbitrary R = 0 the partial derivatives DD} g(t, x, v, ¢),
Ial + j < k satisfy the Lipschitz condition in v with B(R) as the Lipschitz constant;

(G%™ . 3): DE (1, x), |oc| < k are continuous and bounded on E,, ;

(G™ . 4): The functions ¢(x) and y(x) possess continuous and bounded on E
partial derivatives up to the orders [n/2] + 2 and [n/2] + 1, respectively.

Specializing to the case n = 2, (2.10¥)) is equivalent to an integral equation
(cf. [1]: D, = d]or)

(213) W(l, X, _)7) = (27[)—1 J‘J\J chiorl . r—l et [5(1_’ 5, '1) +
G
+ sfl(r’ 6’ n, W(T’ 6, ’1)’ 8)] dé d'] dT —+

+ (2n)“jj chiowly.Tg' . W(é n)dédy +
B

+ (2n)7* D,(ﬁ chioly.To". (& n)dé d;1>.

G denotes the interior of the cone I' > 0, 0 < t < t with B as the basis. The equi-
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valence of (2.10”)) to (2.13) is meant in the sense that every solution of (2.10?")
solves (2.13) and vice versa. (Cf. [1].)

Introducing polar coordinates r, v in (2.13)

Il

(2.14) E=x+gr.cosv, n=y-+or.sinvy,
0

lIA

v<2m, g=t—1ort,

we get with regard to (2.9)

(2.15) u(z,x,y):(zn)-«ﬂf:"ﬁ ch(io (1 = O) J(1 = ). (1 = r2)7 172

e (f— 1) [8(r.x + (t — 1) r.cosv,y + (t — 1) r.siny) +
+eglt,x +(t—1)r.cosv,y + (1 — 1) r.sinv, oft, x +
+(t—1)r.cosv,y+ (t = t)r.sin v),e)] . rdrdvdr +

- () le‘“"rn'rch oot J(1 = 1) (1 = 1) V2 ( + ag).

0 0

.(x + tr.cosv, y + tr.sin v) .rdrdv +

2n 1
+(2m)~" D, (teatj J chiot J(1 — r?). (1 —r?)" V2.

0 [

co(x + tr.cosv, y + tr.sinv).rdr dv) .

In the case n = 3 the analogue of (2.15) is (cf. [1])

(2.16)  o(t, X) = J‘re_“'(t —1)7'D, (fmﬁ Jo(wl) . Q(6 + e g(v)) (r, X, r) dr).

0 0

0

e 0, (et o ([ sory ot 0. o))

where X =[x, y, z],

(2.17) Q6 + eg(v) (. X, r) = (4n)™! JQH Jw e [o(t,x + r.sin3.cosv, y +
- o Jo

+r.sin$.sinv,z 4+ r.cos9) +eg(t,x + r.sin3.cosv, y +

dt 4+ e 71 D, <jrr~2 Jo(wly) Q¥ + ap) (X, r) dr> +

+r.sin$.sinv,z +r.cos %, v(t,x + r.sinJ.cosv, y +

+ r.sin$.sinv,z + r.cos 9),¢)].sin $d9dv,
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O(u) (X. )

i

2n n
(4n)~! J f u(r, 9, v).sin 3dgdv,

0 0

pro90v) = p(x + r.sind.cosv,y 4+ r.osind . sinv, z + r.cos §).

In what follows we make use of the standard contraction mapping principle:

Let v — V(v) be a mapping of a Banach space X into itself such that (i) Hv” <R,
R = 0 implies ”V(U)H < R; (ii) there exists a real number 0, 0 < 0 < I such that
for Jlo,[| [Jv]] < R the inequality |V(v,) = V(v,)]| £ 0. |Jv, — v,|| is valid. Then
there exists a unique v € X such that v = V(v) and |[o = R.

For the proof cf. e.g. [4].

3.n = 2. The starting point is the equation (2.15). We introduce special ad hoc
integral operators similarly as in [2]. For s(t, x, y) e C}(Ey) put

(G H()(rtx,y) = @n) (1 = 1) e 0. J.M Jl.s(r, x+(t—1)r.

o Jo
ccos v,y + (1 —1)r.sinv). chio(t — 1) /(1 = r?).
(1 =)V rdrdy,

t

ML) (1 x. y) = j Hy(s) (5.1, x, ) de,
®y(0) (1, x,3) = (DY, + a¥,) () (1, x, ) .

Then (2.15) may be written as

(3.2)  o(t, x, ¥) = (e My(g(v)) + My(3) + @x(e) + ¥5(h)) (1, x, y) =
= V5(v) (g9, 6, @, ) (1, x, v) .

To this equation we apply the contraction mapping principle. We choose X =
= C*(E}) and

‘]b” = Huucz = sup {|D7'D¥ u(t, x, y)l, !D’I”Dg’ v t, x, y)l,
(t.x.p)ebs™

ot x, V)|; l[f! < M <2}

Using the inequalities

(3.3a)  ch(io(t —1) /(1 = r?))=ch (= Q(t—1) J(I = r?))=ch (Q(t—1) /(1 —r?)) <
<exp(Q(t — 1) J(1 = r?) £ exp (At — 7)),
[sh (Qr—7)J(1 - ,,z))| < exp (Qt — 1))

236



for the case w? < 0,

(3.3b)  [eh (it — 2) /(1 — )| = [eh (i@t — 7) J(1 — r?))| =

= Icos (Q(t
fin (0t — ) /(1 ~ P)] £ 1

for the case w? = 0 and the identity

1
J‘ (1 = )12 dr = 1
0

we get

(3.4) |H2(s) (1, x, y)l < Hs“o,, At =) e,
D* Hy(s) (1, t, x, y)l = IHZ(D"S) (v, t, x, y)l <
< HD"S”O,T (t—1). 7?0 < HSHZ’I St =) ey |ot| <2.

(The symbol D* denotes D2 D3*.) Differentiating with respect to ¢ in (3.1) we get
(3.5) lDBD, Hy(s) (7, t, x, y)‘ = ID, H,(Ds) (r, t, x, y)l <

< |Ds|y .. e P (1 — 1)

< Hs“z,, e Pt =), |ﬁ| <1.

Here P, ,({) denote a polynomial of the first degree with non-negative coefficients.
Similar estimates hold for D} H,(s) and D] H,(s).

From (3.4—5) it results
(3.6) IMZ(S) (t, x, y)l < J‘;IHZ(S) (z, t, x, y)[ dr <
< .E“S”OJ. eTHTY (t = 1)de £ ”SHO .My,

IA

where

my =sup (A7 — A7X 1 + A)e”*) > 0.

120

Similarly for D’ D, M,(s) and D} M,(s). Finally, we thus obtain
(37) [Mos)]cz = m - s
m being a positive constant. For ¥, and ¢, we have
69 ¥ 5 K[

(39) [#s0)e2 = L - o]

2
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These estimates used in (3.2) give

(3.10)

Va(0) (9, 8 9. )| e» = Jef - mllg(0)]2 + mlo], + Llofls + Kw. =
< Je| m Ay(R) + m|s], + Llofs + K[y

In the last inequality the estimate ”g(v)“z < AI(R) has been used based on the
(G*® . 1) assumption; 4,(R) = A(R). (1 + 3R + R?). Proceeding further we have

(3.11) HVZ(UI) (9.6, @, W) — Va(v,) (g, 6, @, l//)”c2 < Iel m”g(vl) - g(vz)”2 .
With the aid of (G**?. 1, 2) we get first of all

(3.]2) “g(vl) — g(vz)”“ < E(R) . mu, — Uz!”z,r
" with
(3.13) E(R) = B(R)(1 + 3R + R*) + A(R)(3 + 2R).

Taking the supremum over ¢ = 0 and inserting the result into (3.1 1) we have

(3.14) HVZ(U,) (9,9, @, ¥) — Va(v2) (9, 3, @, l//)”cz < Isi m E(R) Hv, - UZHCz .
If we now choose the numbers R, ¢, ¢ from the conditions (:30 > 0 given)
(3.15) R > m|8|, + L|o|s + K|y]., 0<ég < min (e, (mER)™),
lsl < min (e, (R — 171”5”2 — L'lgo]|3 - KHI,DHZ) (m AI(R))_I)
then from (3.10) and (3.14) we see that the (i) and (ii) assumptions of the Contraction

lemma are fulfilled. Hence we conclude

Theorem 1. (Existence and uniqueness of the solution.) Let the functions g, &
defined in (2.12) satisfy (G*? .1-3). Let ¢ and Y satisfy (G® .4). Assume
further (3.15). Then the Cauchy problem (1.1®), (1.2¥)) has exactly one solution
u = u(t, x, y) e CYE7), |le™ ">, u”cz < R.

Remark. Later on we shall need the following modification of Theorem 1. Assume
that g, & satisfy (G*? . 1—3). Assume ¢ =y = 0. Let

(3.16) R > m|5s,
0 < &y < min (g, (m E,(R))™"),

le| < &, = min (¢1, (R — m||8]5)] m Ay(R)),
where
A5(R) = A(R).(1 + 7R + 6R* + R*), E,(R) = A(R)(7 + 12R + 3R?) +
+ B(R) (1 + 7R + 6R*> + R?).
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Then the Cauchy problem (1.1*)) with zero initial conditions has exactly one solution

ue CHED),

e bix by u“C; <R

The proof closely follows the ideas developed in the proof of Theorem | and
is therefore omitted.

Theorem 2. (Continuous dependence of the solution on the initial conditions
and on the right-hand side.) Let R = 0 and (3.15) hold. Let the functions v(t. x, y),
||U,HC2 < R (r=1,2,..)) satisfy the equation

(3]7) Dr = Vz(vr) (g’ 6)" (/)r’ l//r) N
Suppose that there exist functions o, @, such that

(3.18)

V=

when r — +co. Then there exists a function v(t, x, y) which is the solution of (3.2)
such that “vr — U”CZ - 0 for r - + 0.

5, =3[ =0, o, —ofs >0, | =0

Proof. From (3.17), (3.7)—(3.9) and (3.12) we get

lv, = v, ]lc: < |e| - m E(R) |0, = v,-c2 + m|d, = 6, ||z + L|o, — 0,5 +
+ K"'/’r =2
or
(1 - Is] .m E(R)). “vr - v,,”Cz <m|d, — 6, + LI 0, — (pr,”3 +
+ Ky, = vz -
Now 1 — |¢] m E(R) is positive by the assumption and the right-hand side tends

to zero because of (3.18). Therefore {v,}, is a Cauchy sequence in C* and there
exists a function v(1, x, y), the C*limit of {v,};%;,
(3.19) ’ o, = o2 = 0

as r - +o0o0. Moreover, ”l)”cz < R. On the other hand, letting r » + 00 in (3.17)
and taking into account (3.18), (3.19) we see that o(t, x, y) is a solution of (3.2), q.e.d.

Theorem 3. (Asymptotic stability.) Assume (G*? .1,2). Let the functions
v{t, x, )€ CY(E3), i = 1,2, |v)|cz £ R satisfy (3.2) with the initial conditions
¢p;eC? Y, eC?

(3.20) ”(piH3 < B, ‘l//;

B > 0 a constant. Let E(R) be defined as in (3.13). Then there exist positive con-
stants K, o such that for

(3.21) Ial < min (g, K™, (2E(R))™Y)

,<B,
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the inequality
(3.22) oy = vyl £ K. exp (=(x = [¢| K) 1)
is valid.

Proof. Performing similar estimates which led to Theorem 1 (cf. (3.12)) we have
with respect to (3.20)

(323) [~ ol

I\

2Je| J‘YWUI — vyfllae. eV LUP(1 = 7)dT +
0
+ 2{||<p, — 4’2”3 ceTMUR (1) + Hl//l — t//2|]2 e P () £
< | .KJ”‘U, 0 e dr 4 Ke
0
Applying Gronwall’s lemma we get (3.22).

Theorem 4. (Existence and uniqueness of a T-periodic solution.) Assume a * 0,
bi + b3+ ¢>0,0<T< +o0. Let h, f in (1.1%) be T-periodic in t and let
(G®» . 1-3) be valid. Then for |¢| < ¢, and for R > m|d|; (cf. (3.16)) the equation
(1.1%) has exactly one T-periodic in t solution u(t, x, y) € C?, e ™" u| £ R.

Proof. Assume firstly a > 0. By Remark following Theorem 1, Eq. (1.1(2))

has exactly one solution u(t, x, y) e C*(E3), He“””‘"b” ) uHCJ <R, u(0,x,y) =
= u,(0, x, y) = 0. Put

v(t, X, y) = ¢ bixTbw u(t, X, y) .

We have v e C?, HUHC3 < R and v solves (3.2) with zero initial conditions.

Forj =1,2,... let us define
(3.24) ofx, y) =o(iT, x,y),
(¥; = ag)) (x, ) = v(iT, x, y),
vi(t,x, y) = vt +jT, x,y).
We have
(3.25) loifles = R.

Besides, ¢;, §; satisfy (G . 4), ” goj”3 < B, ] l//jH2 < B. Because v (¢, x, y) is a solution
of (3.2) with the initial conditions (3.24) we get by Theorem 3

ey = vllaa =0 a5 (= 4o,

In other words to every # = 0 there exists t, = 0 in such a way that for ¢ = ¢, and
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for j = 1,2,... we have [ v; = v”fz, n. Choosing mT > ¢
t 2 0wehave mT +t = t,. Therefore

m an integer and

”n

(3.26) oy = vl mrsc S0

Choosing further integers p > ¢, pT, qT = t, we get by (3.26)

(3.27) live = oLz = fvp-g — V||2.0r4, < 1.

Therefore

I\

— i . i
”u,, - ”fl”fz = Sup [ty = Uiz
20

which proves that {vj(t, X, y)}}z, forms a Cauchy sequence in C2. In this way the
existence of a C*-limit function &(1, x, y) is established, ”1‘) — vjfe2 > 0as j > +c0.
From here and (3.25) it results further | < R. By (3.27) and (3.23) applied with
Upe Lgs Pps Pgs Wy Wy instead of vy, vy, @y @y, Yy, 5, respectively, we get also the
Cauchy character of {¢,}y-1, {i/,} 7 respectively in C*, C*. L. e., there exist ¢ € C?
and @ € C* such that |[¢ — ¢,|; > 0as p > + oo and | — [, > 0as p - + 0.
< B. |||, £ B. Further

50, x, y) = lim 0,0, x,y) = lim o(pT, x,y) = lim ¢,(x,y) = @(x, )

p—>+ow p—>tw p—+o

and similarly ©,(0, x, ) = (¢ — a®) (x, y). On the other hand, i(t, x, y) is a solution
of (3.2) with @ and ¥ as initial conditions. This follows from the identity

£ = Va0) (9.6, 3,0) = (7 = v,) + (Va(0,) (9. 8, 0 1) = Va(0) (9. 3. 5. )

letting p — 4+o0 and using previous estimates.
T-periodicity of ¢ is guaranteed by the relation

ot + T.x,y) = lim vt + T,x,y) = lim v, ,(t,x, ) = o(t, x, ») .
p=t o p—~+ o

Uniqueness: Would there exist another T-periodic solution of (3.2), say p(t, x, ),
1 pﬁ(«; < R, then reasoning as in the case of vj(t, X, y) we get that the initial conditions

for pt,x, y) L p(t + JT, x, ), viz. p(0,x, ¥) = p(jT, x, y) = p;(0, x, y) do converge
towards @(x, y)asj — +co. We conclude that p(0.x, y) = (0, x, y) and similarly
pA0.x,y) = 5(0, x, y).

On the other hand, by Theorem 3

(3.28) 15 = Pl =0

as t — +00. Because the initial conditions of ¢ and p coincide (3.28) cannot hold
unless ¢ and p are identical in the whole range of t. From #(t, x, y) = e ¥ 7%,
Lt x, y) we get a unique T-periodic in t solution i(f, x, y) e C* of (I.
e brxbay ll|lcz <R.

1(2}
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II. The case a < 0 is changed to the former one by defining f(t, X, Y, U, a) for
negative values of f via T-periodicity. The substitution ¢ = —t in (1.1¥)) then
changes the u,-coefficient sign and so the proof is reduced to part I.

4. n = 3. Following the ideas developed in Sec. 3 we define: for s(t, X) e C*(EY)
(X =[x, ».2])

@1)  Hy(s) (r X) = e (1 — )7 . Dq

0

t—t

1 Jo(@l) . Q(s) (1, X, r) dr)
with

o(s) (v, X, r) = (4n)™! Jh J‘ne‘" .s(r).sin 9d3dv,
4] 0

As()')zs(r,x—i-r.sinS.cosv,y+r.sin.9.sinv,z+r.c039);

t

(42)  My(s) (6 X) = f Hy(s) (5, 1, X) de

W) (1 X) = Hy(s) (0.1.X) with §(X) = 5(0. X).
D3(0) (1. X) = (D5 + a¥3) (¢) (1. X) .

After that (2.16) may be rewritten in the form

(4.3) ot X) = (e M3(g(v) + M3(0) + @3(9) + ¥5(¥)) (1, X) =
= V4(v) (9, 6, ¢, ¥) (1. X) .

Theorem 1. Assume (G?* . 1-3) and (G® . 4). Let
(4.4) R > K[3], + ello]s + ulv]

with suitable positive constants K, ¢, p. Let

(4.5)  le| < min(e5, (R = K|8], — e|e]s — u|v]2)/K 4,(R)).

where 0 < g5 < min (go, (K E(R))™"), E(R) and A(R) is defined as in Sec. 3. Then
the problem (1.1%), (1.2%) has exactly one solution u = u(t, X)e C*(EJ),
et b bz yf| s < R.

Proof. Similarly as in the proof of Theorem 1, estimates of the integral operators
are required in order to verify the (i) and (ii) assumptions of the Contraction mapping
principle.

1) The counterpart of the inequalities (3.3) is the inequality

0> =0,
(4.6) 2'n!|J (@) . (wI)™"

S gu-o F
2o w? <0,

n=12..(Cf[5])
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2) For the total derivatives Dfs, k = 1,2, 3 we get |D'fs] < 3k, “s”,"(.

3) For Q(D}s)(r. X.t — 1) we have |[Q(Dfs)(t, X, t —1)| < 3*. ™. |s]i. k=
=0,1,2,3.

4) Using the known relations (cf. [5])
J(ol). (o)™ > (n!.2")"" as I'-0,
Je)=n . Jz). 27 = Je(z), =012, ..
we get
|D} Jo(wl)| £ Ryt — 1) if @*20
and
|D} Jo(@D)| £ Ryt — 7). e*7 if »? <0,
k =1,2,3, 4. R,(r) are polynomials of the k-th degree with non-negative coefficients.
5) Denoting (k = 1,2, 3, 4)

= fD o1 Q) (5 X 1 dr

we have

Ilkl = Sk+3

if w2=0
and

[I,(‘ < Sppat — 1) et “s“zyt if w?<0.
Si+3(t — 7) are polynomials of the (k + 3)-rd degree with non-negative coefficients.

With the aid of the above inequalities we easily deduce the estimates for the
integral operators:

a) Hy(s) (v, 1. X)| < e Pt —1) <
< |s|ae-e7® P (r 1), | =2;
[DPD, Hy(s) (1. 1. X)| < |[s]2c- €772 Pyt — 1), |B] <
[D,Z Hs(s) (x, 1. X)l < ”5”2_, N X I F
|D,3 Hiy(s)(z, 1, X)l < “sl se-e TPt — 1),
(P, are polynomials of the k-th degree, k = 3, 4,5, 6.)

b) Using the inequalities stated in a) we get for M

D* My(s) (t, X)| < J“HSHZJ ce MO Pyt — 1) dt £
< Jslla- (s + 77 Q4(0) < 5]z Ko o < 2.
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Here

Ko = sup (ry + ™ Q4(1));

120

r3 is a positive constant, Q5(1) a polynomial of the third degree. Further we have
02D, My(s) (1. )] £ ] - K4
|D? My(s) (1, X)| < ||s]).- Ka -
Summarizing we have
(4) MO < 5] - K
with K = max (Ko, K;, K,).
o [ ) (6 X)| = vz e P = [U]a o o] =25

19, ¥a(9) (1.3)] = ol e Pu() < Wi 8] =1
Ith lPs(‘/’) (” X)| N ”'//”z ceTH, Ps(t) = H'/’“z - H2 s

(4.8) [#sW)e> < w1

with g = max (po, fy, ft2)-

d) D" ®(0) (. X)| < |lo|ls - e™* . (Pa(t) + a P3(1)) < ||| - (1, + apo)»
o 52
|DD, @3(¢) (1, X)]| < [@]5- e (Ps(1) + a Py(0)) < [lo]l5 - (1 + an),
Bl =1;
D7 @3(9) (1, X)| < [lolfs - €7 (Po(t) + a Ps(1)) < p5 - o5 :
(49) [2:@)le: = e [ofls

with ¢ = max (u; + apo, ty + apy, p3).
Using in (4.3) the derived estimates a) to d) we get
(4.10)  [V3(v) (9. 0, 0, W]z < [e] - K - 90} + K [0 + 2 [lelfs +
+ vl < Jel - K- AR) + K[3] + efofs + ulv]

and

(411)  [Vs(0)) (9, 8, @, %) = Va(v2) (9, 6, @, V)| 2 < [e] - K - [|9(v1) = 9(v2)]2 £
< |e| . K. E(R). v, — v

These inequalities with respect to (4.4) and (4.5) imply both (i) and (ii) conditions
of the Contraction mapping principle.
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In the same way it would be possible to derive analogous theorems 2’, 3" and 4'.

The author gratefully acknowledges Dr. O. Vejvoda for his encouragement
and instruction and Dr. M. Kopéackova-Suché for several helpful discussions.
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Souhrn

PERIODICKA RESENI SLABE NELINEARNI HYPERBOLICKE ROVNICE
V E, A E,

VAcCLAV VITEK

Pro n = 2 a 3 se dokazuje existence a jednoznacnost klasického periodického
feSeni rovnice )

O,u + 2au, + 2(B, V,u) + cu = h(t, x) + & f(t, x, u, &)

(x = (x4, X3, ..., x,)) za predpokladu periodi¢nosti pravé strany.

Author’s address: RNDr. Viclav Vitek, CSc., INORGA (Ustav pro automatizaci fizeni
v prumyslu), Letenska 17, 118 06 Praha 1.
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