Zdeněk Režný; Josef Jirkovský

Algorithms. 36. SNEDECOR. An algorithm for Fisher-Snedecor’s F-test without application of critical values

Persistent URL: http://dml.cz/dmlcz/103541

Terms of use:

© Institute of Mathematics AS CR, 1974

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
36. SNEDECOR

AN ALGORITHM FOR FISHER-SNEDECOR'S F-TEST WITHOUT APPLICATION OF CRITICAL VALUES

Ing. ZDENĚK REŽNÝ, CSc., Ing. JOSEF JIRKOVSKÝ,
Biofysikální ústav Fakulty všeobecného lékařství Karlovy university, Salmovská 3, 12000 Praha 2.

The algorithm suggested in this paper computes the probability that Fisher-Snedecor's test statistic will exceed the value F actually observed, i.e.

$$
\alpha_{m,n}(F) = \frac{\left(\frac{m}{n}\right)^{m/2}}{B\left(\frac{m}{2}, \frac{n}{2}\right)} \int_{F}^{\infty} y^{m/2-1} \left(1 + \frac{m}{n} y\right)^{-\frac{(m+n)}{2}} dy,
$$

where m, n is the pair of numbers of degrees of freedom. This probability may be hence called the significance degree, similarly as in the case of Student's t-statistic treated in our previous paper [1]. Since the latter represents a special case of the present problem (with $m = 1$, $F = t^2$), the features of the algorithm and further remarks made in [1] apply here, too (except the distinction between one-sided and two-sided tests) and will not be repeated.

Analogously as in [1], the relation

$$
\alpha_{m,n}(F) = A_{m,n}(x)
$$

with

$$
x = \left(1 + \frac{m}{n} F\right)^{-1},
$$

$$
A_{m,n}(x) = \frac{1}{B\left(\frac{m}{2}, \frac{n}{2}\right)} \int_{0}^{x} y^{m/2-1}(1 - y)^{n/2-1} dy
$$
holds and the algorithm is based on the following recurrence relations and initial conditions

\[
A_{m,n}(x) = A_{m,n-2}(x) - \frac{\Gamma\left(\frac{m + n}{2} - 1\right)}{\Gamma\left(\frac{m}{2}\right) \Gamma\left(\frac{n}{2}\right)} \chi^{n/2-1}(1 - x)^{m/2-1}
\]

\[\text{for } m > 0, n > 2\],

\[
A_{m,n}(x) = A_{m-2,n}(x) + \frac{\Gamma\left(\frac{m + n}{2} - 1\right)}{\Gamma\left(\frac{m}{2}\right) \Gamma\left(\frac{n}{2}\right)} \chi^{n/2}(1 - x)^{m/2-1}
\]

\[\text{for } m > 2, n > 0\],

\[
A_{1,1}(x) = \frac{2}{\pi} \arcsin \sqrt{x} , \quad A_{2,1}(x) = \sqrt{x} , \quad A_{2,2}(x) = x .
\]

The last relation follows from the definition, the remainder can be proved by differentiation (the relations (5) and (6) being equivalent due to (8)).

If the statistic \(F \) has its usual form

\[
F = \left(\frac{y}{m}\right) / \left(\frac{z}{n}\right)
\]

where \(y, z \) are certain sampling characteristics, then the transform (3), which is used instead of the statistic \(F \), may be evaluated directly from \(y, z \) in the form

\[
x = z/(y + z).
\]

real procedure SNEDECOR(x, m, n); value x; real x; integer m, n;
begin
real a, b, c, d, e, f; integer i;
procedure G;
begin c := c \times x;
 for f := e step 2 until i do
 begin a := a + b; d := b \times c; b := d/f; c := c + 2 \times x end
end G;
procedure H;
begin x := 1 - x; G; b := -d; c := i + 1; e := 3; i := n;
x := 1 - x; G
end H;
procedure P; begin b := sqrt(x); c := 1; H end;
procedure \(Q \); begin \(b := 1; c := n; G; a := a \times (1 - x) \uparrow (n \div 2) \) end;
if \(n > (n \div 2) \times 2 \) then
begin \(i := m; \)
if \(m > (m \div 2) \times 2 \) then
begin
\(a := 0.63661977 \times \arcsin(\sqrt{x}); \)
\(b := 0.63661977 \times \sqrt{(1 - x) \times x}; \)
\(d := b; e := 3; H \)
end
else begin \(a := 0; e := 2; P \) end
end
else begin \(a := 0; e := 2; \)
if \(m > (m \div 2) \times 2 \) then
begin \(i := n; n := m; m := i; x := 1 - x; P; x := 1 - x; \)
\(n := m; m := i; a := 1 - a \)
end
else if \(m > n \) then
begin \(i := n; n := m; Q; n := i; a := 1 - a \) end
else
begin \(i := m; x := 1 - x; Q; x := 1 - x \) end
end;
\(SNEDECOR := a \)
end \(SNEDECOR \)

The result is obtained with the accuracy of at least about 5 decimal places. We give some check values:

\[
\begin{align*}
SNEDECOR (0.3, 1, 1) &= 0.36901 \\
SNEDECOR (0.25, 1, 10) &= 0.00027 \\
SNEDECOR (0.75, 1, 19) &= 0.02099 \\
SNEDECOR (0.5, 4, 10) &= 0.10937 \\
SNEDECOR (0.4, 10, 6) &= 0.58010 \\
SNEDECOR (0.7, 3, 8) &= 0.38890 \\
SNEDECOR (0.6, 4, 9) &= 0.28109 \\
SNEDECOR (0.1, 3, 1) &= 0.39582 \\
SNEDECOR (0.2, 5, 11) &= 0.00143 \\
SNEDECOR (0.3, 7, 3) &= 0.55292 \\
SNEDECOR (0.75, 10, 1) &= 0.99973
\end{align*}
\]
The program has been tested in the symbolic language MOST [3] and implemented in the Biophysical Institute, Faculty of General Medicine, Charles University Prague for the computer ODRA 1013 [4].