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SVAZEK 20 (1975) AP LI K A C E M ATE M A T I KY ČÍSLO 5 

A-STABLE METHODS O F HIGH ORDER 
FOR VOLTERRA INTEGRAL EQUATIONS 

LUBOR MALINA 

(Received July 16, 1974) 

1. INTRODUCTION 

Consider the linear Volterra integral equation of the second kind 

(1.1) y(t) = f K(t, s) y(s) ds + g(t) , 0 = s = t = T < oo , 

where g(t) and K(t, 5) are continuous on 0 ^ 5 ^ t g T 
It is well known that under this condition there is a unique continuous solution 

of (1.1) on the interval [0, T ] . Although we will treat only the linear case, it is simple 
to adjust the present method for the numerical solution of integral equations of the 
first kind, nonlinear and integro-differential equations of Volterra type. 

For efficient numerical solution one must often ask not only for high asymptotic 
accuracy but also for other requirements. One of these is Dahlquist's A-stability. 

Recently, de Hoog and Weiss ([2] and [3]) have suggested, for the numerical 
solution of the Volterra integral equations of the first kind, methods which are 
A-stable (they call them numerically stable). The methods are block by block meth
ods, i.e., many matrix inversions are needed. 

The main result of the present paper is the proof of existence of A-stable high 
order methods for Volterra integral equations of the second kind. Our method con
nects the good features of block by block methods (A-stability plus high asymptotic 
accuracy, not attainable by step by step methods) with relatively easy numerical 
realization of step by step methods. At least we need no matrix inversion. 

Our method for numerical solution of (1.1) which is denoted by 901 is based on the 
following procedure. 
Denote 

(1.2) z(t, u) = 
U 

K(t, s) y(s) ás, 0 ^ u й t 
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For every fixed t e [0, T] , the equation (1.1) is equivalent to the problem 

(1.3) —z(t,u)=K(t,u)y(u), u^t 

8u 

(1.4) z(t, 0) = 0 

and 

(1.5) z(t, t) = y(t) - g(t) . 

Then our method 9JI consists in two steps. First, we compute an approximate 
solution of the problem (1.3) —(1.4) by an O.I.M. (overimplicit multistep) method 
(on such method cf. [1]) then an approximate solution of (1.1) is computed by means 
of (1.5). 

Since the method 901 is essentially based on the O.LM. methods, part 2 is a quota
tion of some basic concepts and results from [1]. In part 3, method 991 is described 
in detail. Convergence theorem and order of 9JZ is examined in part 4. Part 5 is 
devoted to the extension of Dahlquist's A-stability concept to integral equations 
and to the proof of existence of A-stable method 9M. Finally, a numerical example 
is given in part 6. 

In the end, we introduce the notation needed. Let tq = qh, q = 0(1) N, tN = T 
and let h positive be the stepsize. Let y be a real function defined on [0, T] . The ap
proximation value of y(tq) computed by a numerical method is denoted by yq. We al
ways mention explicitly this numerical method if it is not clear from the context. 
Vector e is the k-dimensional vector [ 1 , . . . , l ] T , 0 is the zero vector and 0itJ is the 
zero matrix of type i x j while lj is the identity matrix of order j . 

2. PRELIMINARIES 

In this part we briefly quote some concepts and results from [ l ] . Consider the 
problem 

(2-1) ±y(t)=f(t,y(t)), telO,T] 
at 

(2.2) y(o)=y°, 

where the right hand term is continuous and satisfying the Lipschitz condition with 
respect to y in the strip O r g f ^ T , ~-oo < y < +oo. O.I.M. methods for numerical 
solution of the problem (2.1) —(2.2) differ from linear /-step methods in such a way 
that instead of computing the approximate solution at one point, from the known 
approximate solutions at / preceding points, we compute the approximate solution 

337 



at k successive points simultaneously. Hence one step of an O.LM. method, given 
by matrices B = (b . y )* j = l 5 C = (cij)

k

iJ_1 and D = ( d 0 ) y = 1 , consists in computing 
k values yn+u •••> yn+k of the approximate solution at k successive points tn + 1, ... 

from known / values at the preceding points tn_l + 1, ..., tn, by means of the • • '5 tn + k 

system: 

Уn + 

Уn + k 

+ ß 

-hD 

Уn -l+i 

Уn 

ҺC f(tn+uУn+i) 

lJУn + k-> ynH 

fyn-l + l^ Уn-l+l) 

f(*n> Уn) 

In the next step of the method we choose new I initial values from the values 
yn_l + 2, •-., yn+fc- Because this can be done in many different ways, we are bound 
to say how to proceed. So we introduce a parameter s (1 ^ s ^ k) and new initial 
values are yn_l+l+s, ...9yn+s. If s < k we forget the values yn+s+l9 . . . ,yn + f c just 
computed and recompute them in the next step. Nevertheless, and this cannot lead 
to any misunderstanding, we shall always denote the value of approximate solution 
at the point tt by the only symbol yt. To the O.LM. method just defined we shall 
refer as to the O.LM. method {B, C, D, s}. 

The O.LM. method for which l = 1, B = —e will be called the s e l f s t a r t i ng 
method. 

Let y be (p + l)-times continuously differentiable (p positive integer) on [0, T] 
and denote 

~y(t + Һ) ' 

y(t + kh) 

+ B y(t - ( l - í ) h)l - hC \y'(t + h) 

ҺD 

У(t) 

~У'(t - (/ - 1) h) 

ЎV) 

ÿ(t + kh) 

~Lг(y(t); h) 

Ĺk(У(t)ì h) 

The vector [Ll9 . . . , L fc] ris called the loca l e r r o r of the method. 

Definition. O.LM. method {B, C, D, s} is said to be of order p if the local error 
of the method is of the order hp+i. Moreover, if p is at least one the O.LM. 
method is said to be consistent. 

For the sake of brevity we suppose to be / ^ s. All the following theorems hold 
also for / > s. Definition of the method 9JI remains unchanged. 

Let us define the matrix 

ft = [ol,s.hiholtk_s] 
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and the matrix 
£ = -RB. 

Definition. O.I.M. method {B, C, D, s} is said to be stable if there is a positive 

constant c such that 

||£"1 ^ c for every integer n . 

Theorem 1. A stable and consistent O.I.M. method is convergent. Moreover, 
if the method is of order p and the starting error defined by e{ = yt — y(tt) i = 
= 0(1) l — 1 is Of order at least hp, then 

yn = У(Q + 0(h>) 

for every tnfrom [0, T\ fixed. 

3. DESCRIPTION OF THE METHOD $Jl 

Consider O.I.M. method {B, C, D, s} which computes from values of the approxi

mate solution at I preceding points the values at k successive points. Denote zp(tq) = 

= z(tp, tq) for tp ^ tq and by zp value of the approximate solution of the problem 

(1.3) —(1.4) at the point tq, obtained by the O.I.M. method under consideration. Let 

sufficiently exact starting values of the approximate solution of the integral equation 

at the points t0, ..., tk+l_2 

(3.1) yo = 0(0), yi, ...,yk+l-2 

and of the problem (1.3) —(1.4) at the points t0, ..., tl_l 

(3.2) zp=0, zf,...,zf_!, 

where tp e (0, T] is an arbitrary fixed point, be given and p ^ k + J — 1. 
Later we shall return to the problem of determining the values (3.1) —(3.2). 

Suppose that the values yl9..., yp~i are available. Method 9W consists in the fol

lowing two steps: 

(a) We apply the O.I.M. method {B, C, D, s} to the problem (1.3)-(1.4): 

(3.3) 

7P 
zn + k 

+ в ҺC 

ҺD 

for n + k < p. 

K(tp9 tn_l+í) y n „ l + l 

K(t„, í„) yn 

K(tp,tn+1)yn+1 

K(tp, tn+k) y„+k 

= 0 
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Let us denote by r the least integer for which (r + l) s + k > p and rx = p — 

— (rs + k). We calculate the values zp for q ^ rs + k from the system (3.3). 

(b) Let us carry out one step of the O.I.M. method (3.3), starting from the point 

n = rs + rt. The last equation of the system (3.3) is then 

* k 

(3.4) zp = - £ bkjz
p

p_.k-l+j + A £ c&i K(*V fpHk+,) j p _ f c + y + 
j=i j=i 

+ hYJdkjK(tp,tp_k_l+J)yp_k_l+j. 
1=i 

Using (1.4), the equation (3.4) yields for yp 

i k - i 

(3.5) yp = (g(tp) - X bkjz*_k_l+j + fc X cw K(fp, *,_*+,) yp-fc+i + 
1=1 

+ h £ dkjK(tp, tp_k_l+j) yp_k_l+j)j(l - hckkK(tp, tp)) 
1=i 

for h < l/(|c t t |max| K(l, t)\) and p *> lc + I — 1. 
[0,T] 

Applying successively (a) —(b) for p = k + / — 1(1) IV we can compute yp using 
(3.5). Thus we have established the method 9M. 

Remark . To point out which of O.I.M. methods is used for numerical solution 
of the problem (1.3) —(1.4), we shall sometimes refer to the method SR as to the 
method generated by O.I.M. method {S, C, D, s}. 

Definition. Method 501 is said to be of order m if the O.LM. method {B, C, D, 5} 
generating it is of order m. 

Let us come back to the problem of determinig the starting values of approximate 
solution (3.1) —(3.2). Let {—e,F,G,w} be a selfstarting O.I.M. method which 
computes from one value the values of approximate solution at m successive points. 
For this method it is sufficient to know only the first m values (3.1). Let us denote 
the method for numerical solution of (1.1) generated by the selfstarting method 
{ —e, F,G, w} by 9Jlx. As for the starting values (3.2), they are reduced to zp

0 = 0. 
Thus we can compute, using this method W1, the required values of the starting 
approximate solutions ym,..., yk+i-2> System (3.3) for O.LM. method { — e, F,G, w} 
yields also the values z\, ..., zP_v In the course of calculations, the following case 
can occur: The least integer n0 such that n0 + k > k + I — 2 is reached and we 
have not yet calculated all zP,j^ I — 1. Then the missing values zP are computed 
from the system 

~hF\K(tp,tl_m)yl _J~ Zl-m 

- í - i 

«*?_„ 

-ҺGK(tp,t^ 

^( í p , ŕ ,- 1 ) j ' I - 1 

l)Уl-m-l = 0 . 
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The relationship between m, the order of the selfstarting method and the order 
of the O.I.M. method {B, C, D, 5} will be discussed in the next part. 

Finally, the values yl9 ..., ym-1 could be computed using only the value y0 which 
is given explicitly, by the methods described in [2]. 

4. CONVERGENCE AND ORDER OF SO? 

Definition. The method $R for numerical solution of (1.1) is said to beconvergent 
when 

lim yp = y(t) 
p-*ooph=t 

t is a fixed point from [#,P]. 
Let a method ffl generated by a consistent and stable O.I.M. method {B, C, D, 5} 
of order v be given. Denote 

< = *; - zA) • 
Using (1.4) we have ep

p = yp - y(tp). 
Careful examination of the definition of the method 9W results in the conclusion 

that the convergence of our method, i.e., the convergence of the approximate solu
tions yp = zp — g(tp), is equivalent to the convergence of the approximate solutions 
zp of the problem (1.3) —(1.4), obtained by means of the O.I.M. method {B, C, D, 5}. 

Theorem 2. A method 9Ji generated by a stable and consistent O.I.M. method 
{B, C, D, 5} is convergent. Moreover, if the order of 9[R is v and starting values are 
given such that eP, i = (l) I — 1 and e\, i = 1(1) k + I — 2 are of order at least 
hv then ep is of the order hv. 

The proof of the theorem repeats almost literally the proof of the convergence 
theorem for O.I.M. methods (cf. [1], Theorem 3.1), so we omit it. 

R e m a r k . Let the starting values (3.2) be computed by means of the method Mi 

generated by a selstarting O.I.M. method { — e, F, G, w} of order m. Then ep
q = 

= 0(h m + 1 ) , q = 0(1) Z — 1, though the convergence theorem for O.I.M. methods 
guarantee only the order m. The increase of the exponent by one is caused by the 
finiteness of the steps of the method {— e, F, G, w} during the calculation of the 
values (3.2). Thus the order of the "starting" method Mt can be less by one then the 
order of the method ffl preserving the original order of error. 

5. A-STABILITY OF METHOD Wt 

Our definition of A-stable methods for numerical solution of (1.1) is a direct 
analogy of A-stability (in the sense of Dahlquist) of methods for numerical solution 
of Cauchy problems. 
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Definition. A method ffll generated by an O.I.M. method {B, C, D, s} is said 
to be A-stable if when applied to the equation 

(5.1) y(t)-xí'y(s) ds = 0 , 

t e [0, T] , Re a < 0, solutions yn of the corresponding difference equations converge 
to zero as n tends to infinity. 

Remark . One can define the A-stability concept for the methods of the type ^R 
for numerical solutions of Volterra integral equations of the first kind as in the defini
tion, replacing the equation (5A) by 

(5.2) 0 = a 
r* 

y(s) ás , 

t e [0, T] , Re a < 0 . 

Let us apply the A-stability concept just defined to the methods of de Hoog and 
Weiss. Their method is a block by block method and applied to the equation (5.2) 
could be written in the form 

A/, = _*,_!. 

Yt are vectors of values of approximate solutions in n successive points calculated 
simultaneously and A regular and B are matrices which define the method. Then 
A-stability is equivalent to the condition that eigenvalues of A~XB are in the open 
unit disc. This phenomenon is called by de Hoog and Weiss numerical stability. 

Consider a method 9JI generated by an A-stable O.I.M. method {B, C, D, s}. 
Such methods of arbitrary high order of asymptotic accuracy exist (cf. [ l ] ,Par t 4). 
The problem (1.3) —(1.4) for equation (5.1) is of the form 

z(t, u) = a y(s) ás , u ^ 
Jo 

(5.3) — z(t, u) = a y(u) . 
du 

The equation (5.1) implies 

(5.4) y(u) = a y(s) ds = z(t, u) 

Substitution of (5.4) into (5.3) yields 

rs 

(5.5) — z(t, u) = a z(t, u). 
du 
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The equation (5.5) is solved by an A-stable O.I.M. method {B, C, D, s}. This means: 

z^->0 as p -> oo , q = p. 

Particularly, 

(5.6) zv

p -> 0 as p -> oo . 

Thus (1.4) and (5.6) imply 

Theorem 3. Let an A-stable O.I.M. method {B, C, D, s} Of order m be given. 
Then the method 9Jt generated by this O.I.M. method is an A-stable method of 
order m. 

6. NUMERICAL EXAMPLE 

Careful examination of the definition of the method $R displays one of the ad
vantages of our method. Namely, in the course of calculation of approximate solu
tions yp we do not "solve" any system of equations, "solve" in the sense of inverting 
a matrix of the system in any form. This is necessary in the methods suggested by 
de Hoog and Weiss. The order of the matrix that they must invert equals to the order 
of the asymptotic accuracy, i.e., grown if higher order of accuracy is needed. On the 
other hand, we need just operations of addition and matrix multiplication. More
over, if the method 901 is generated by a selfstarting O.I.M. method, no matrix multi
plication is needed. Also the kernel K(t, s) of the integral equation need not be de
fined for t < s as it is required for the first method in [2]. 

To illustrate our method 901 we consider the method generated by an A-stable 
selfstarting O.I.M. method { — e, F, G, w} with s = 2, k = 2 and 

e - Б -il- D = & 
which is of order two, applied to the equation: 

y(t) = ľ (1/2 + Ѓ - s4) y(s) ás - ŕ(l/2 + 4ЃJ5) + 1 , 

where 0 = s = t = T= 1.40. 

The exact solution is 

y(t) = 1 

In the table below the errors for h = 44 and h -= -028 are tabulated. Among 
other, it points out one interesting feature of our method. There is no "explosion" 
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in the error for h = -14 and t > 1-2 as it is the case in the first of de Hoog and Weiŝ  
methods, i.e., global error of the method is still estimated by const, h2 for thes^ 
h and t. 

t •28 •42 •56 •70 •84 -98 1-12 1-26 1-40 

h = -14 
h = -028 

—0004 
—00000 

•0211 
•00015 

•0087 
•00009 

•0268 
•00017 

•0098 
•00006 

—0116 
—00018 

•0093 
•00008 

—0231 
—00021 

•0098 
•00007 
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Souhrn 

A-STABILNÍ METODY VYSOKÉHO ŘÁDU PŘESNOSTI 
PRO INTEGRÁLNÍ ROVNICE VOLTERROVA TYPU 

LUBOR MALINA 

V článku je ukázána možnost užití O.I.M. metod na řešení Volterrových rovnic. 
V třídě těchto metod existují A-stabilní metody libovolně vysokého řádu asymptotické 
přesnosti. V části 5 je dokázáno, že tyto metody generují metody na řešení Volter
rových rovnic, jež jsou také A-stabilní a libovolně vysokého řádu asymptotické 
přesnosti. Početní výhodou námi definovaných metod je, že tyto, při numerické 
realizaci, nikde nevyžadují inverzi matice v jakékoliv formě. 
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