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FOR THE SIGNED RANK TESTS
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I. INTRODUCTION

The most important problem in investigating the asymptotic efficiency in the
Bahadur sense of a sequence of statistics {S,,} is to find the exponential rate of con-
vergence to zero of the probabilities of large deviations under the hypothesis .,
namely to compute

1.1 lim| — ! log sup {Pr(S, > nr,
t
n

/) :fe)f}] = K(r), say,
where {r,} is a sequence of constants tending to some r > 0, (see, e.g., [I], [3]).
If # and S, are nonparametric, the limit gets much simpler, and it is

n—o n

(1.2) lim [_ Viog P(s, > nr,,):l — K(r).

where P indicates the probability measure under # , and this notation will be kept
throughout the paper.

Let X,,..., X, be a sequence of independent random variables having the same
continuous cdf F(x). Let Xy, ..., X,y be the rearrangement of X, ..., X, ordered
by magnitude of their absolute values, i.e. |X(;)|< ... < |X(,|. and let R{. .., R,
be the corresponding ranks of |X,|,...,|X,|. Let U,,...,U, denote the signs of
X1y --+» X()- The nonparametric hypothesis # in the paper consists of all F(x)
which are symmetric about 0 but otherwise arbitrary.

Klotz [4] has investigated the limit (1.2) for

(1.3) Su =Y EnU,,
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where E,;, 1 £ i < n, are the expected values of the i-th smallest order statistics
from a sample with cdf G(x) on (0; o0) satisfying

(1.4) J' x*dG(x) < oo .
0
Note that, under 5, the variables U, ..., U, are independent and

(1.5) PU;,=1)=PU;=-1)=1]2, 1 £i<n.

The same problem has been explored in [3] for the most general case of the linear
signed rank tests

S, = oilln + 1) RIf(n + 1), W),

from which Klotz’s result follows.

In this paper the author will give a different direct proof of one result in [3] which
generalized Klotz’s one.

2. RESULTS
Theorem. Let
2.1 S, = i a,U;,
with a,; = a,(i) satisfying -
(2.2) Jﬂ a(l + [nu]) — @(u)|du -0 as n— oo,
0
for some o(u) € L,(0; ), where [ -] indicates the integer function. Let
(2.3) raor, 0<r< Jl|¢(u)| du =M, say.
Then '
S (2.4) lim l:— ! log P(S, > nr,,)] = K(r),

where K(r) is evaluated from
1

(2.5) K(r) = br — J. log cosh (b ¢(u)) du
0

with b > 0 being a unique solution of

(2.6) 'f () tanh (b o(u)) du = r

0
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Proof. First note that

h(b) = flw(u) tanh (b ¢(u)) du = J”cp(u)l tanh (b|o(u)|) du

0

is an increasing function of b, and takes value 0 at b = 0 and M at b = o0. Thus
for r satisfying (2.3) there is always a unique solution b > 0 of (2.6).
Clearly (2.2) implies

(27)  (a) a,(1 + [nu]) - ¢(u)in the Lebesgue measure £ on (0, 1)

(b) J‘ a(1 + [ne]) du = % i‘;a,,i " J' o(u) du |

1
0 0

(c) J'Ila,,(l + [nu])] du = ’-11— é:l a,;

1
—»J.l(p(u)]duzM, as n-— 0.
V]

By Lebesgue's theorem (cf. [5], Th. 3, p. 137), for each ¢ > 0 there exists a § > 0
such that

a1 + [nu])l du < ¢

|Lan(1 T [nu)) du| < J'

4
for all 4 = (0; 1) with #(4) < J, and for all n = 1,2, .... Hence

1

a

ni

i/n
= [ la,(1 + [nu])| du <&
o (i—1)/n

for 1 <i < nifn> 1/5. Therefore

2.8 lim max l a;|%=0.
( ) ni
n-ow 1Zign (N
Denote
(2.9) Vi=a,U;,, 1Si<n.

Let Fi(x) be the cdf of ¥; unders#. For b > Oand 1 < i < n, put

pi= B |# ) = J ¢ dF(x) = cosh (bayy),
and

Hyx) = ifx e dF (y).

Di

-

292



Thus H; may be considered as a ‘“‘new” cdf of V; in accordance with a “new” pro-

bability measure Q given by
(2.10) oV, = a,) = e""[2cosh (ba,;) = a;, say,
oV; = —a,) = e "i[2cosh(ba,;) =1 —a; = B;, say.
Let H be the corresponding “new” cdf of S, provided V,, ..., V, are independent under
Q. Using Feller’s transformation (see (3.9), [2]), one has
e dH(y) = ﬁ] cosh (ba,,i)fx e " dH(y) .

(2.11) P(S, < x) = npf

0

It follows from (2.10) that

(2.12)  E(S,|H) = Y a,{(a; — B;) = Y a,; tanh (ba,;) = p(b) = p, . say,
i=1 i=1

and

(2.13) Var (S,

n
2

H) = 4% alap; = alJcosh’(ba,) = Bj(b) = B, , say.
i=1 i

i=

From (2.11) one has
(2.14) P(S, >, — 2B,) = [[ cosh (ba,;) f e ™ dH(y) =
i=1 y>un—28,

n

= []cosh (ba,;) e""""f e " dH*(z),
i=1

z>—-2B,

where H*(z) = H(z + p,)is the “new” cdf of Z, = S, — u,. Noting that E(Z, | H*)=

= 0, Var (Z, [ H*) = B;, and that e " is a decreasing function in z, we get
(215) eZbB,, gJ. e*bz dH*(Z) g e-ZB,.bJ‘ C~bz dH*(Z)
z>-2B, |z| <2B,

2 e ?PM(1 — BIJAB]) = (3[4) e 20",

by Chebyshev’s inequality.
It follows from (2.7), (2.8) and (2.13) that

Bln* < (1/n*) Y &} < (1/n?) max [am.l Ylau -0 as n— oo,
i=1 15isn i=1
i.e.
(2.16) B,[n = o(l), as n— .
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Since x tanh (bx) and log cosh (bx) satisfy Lipschitz's condition, it is easy to see
from (2.7) that

(2.17)  wfn = (I/n)zn: a,; tanh (ba,;) = Jﬂ(p(u) tanh (b ¢(u)) du + o(1),

i=1 0

and

(2.18) (l/n)i log cosh (ba,;) = fllog cosh (b @(u))du + o(l), as n— .

i=1 0

Clearly, by (2.3), (2.16), (2.17) and by the note at the beginning of the proof one can
choose b, > 0 satisfying

(2.19) (1n) mbn) = (2Jn) B(b,) = r,

or equivalently, as n —» oo,

(2.20) J.lq)(u) tanh (b, p(u)) du = r + o(1).

0
Evidently

(2.21) b,—>b, as n—- oo,

where b < 0 is a unique solution of (2.6) Finally, the theorem follows from (2.14) to
(2.21).

Corollary. Klotz’s result mentioned in Section | remains true under a weaker
assumption on G(x):

(222) J' “cd6(x) < o .

0

Proof. Put ¢(u) = G~ '(u) in the Theorem.
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Souhrn

O KLOTZOVE VYSLEDKU O ASYMPTOTICKE EFICIENCI
ZNAMENKOVANYCH PORADOVYCH TESTU

NGUYEN-vAN-HO
V ¢lanku se odvozuje vzorec pro Bahadurovu eficienci testli symetrie znaménko-

je dukaz proveden pomoci odlisné jednodussi metody vhodné pro tfidu jednoduchych
poradovych statistik. Vysledek ¢lanku plati za obecnéjSich predpokladd nez u J.
Klotze [4].
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