Allah-Bakhsh Thaheem A note on states of von Neumann algebras

Aplikace matematiky, Vol. 24 (1979), No. 3, 199-200

Persistent URL: http://dml.cz/dmlcz/103796

Terms of use:

© Institute of Mathematics AS CR, 1979

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://dml.cz

A NOTE ON STATES OF VON NEUMANN ALGEBRAS

А. В. ТНАНЕЕМ

(Received April 22, 1977)

1. INTRODUCTION

In this note we essentially prove that on a von Neumann algebra (possibly of uncountable cardinality) there exists a family of states having mutually orthogonal supports (projections) converging to the identity operator. The projections thus obtained yield a direct sum decomposition of the von Neumann algebra into subalgebras which can be very useful in the quantum field theory.

Here *M* denotes a von Neumann algebra acting on the Hilbert space H. Let ϕ be a positive linear functional on *M* such that $\|\phi\| = 1$; then ϕ is called a state on *M*. If *p* is the greatest of all projections *q* such that $\phi(q) = 0$ then the projection 1 - p is called the support of ϕ (see for example [1; p. 31]).

I am grateful to Professor A. Van Daele for many useful discussions.

2. THE MAIN RESULTS

Theorem. Let M be a von Neumann algebra. Then there exists a family $\{\phi_{\alpha}: \alpha \in \Omega\}$ of normal states whose supports e_{α} are mutually orthogonal and $\sum_{\alpha \in \Omega} e_{\alpha} = 1$.

Proof. Let J be a collection of all families $\{\psi_{\alpha} : \alpha \in \Omega\}$ where ψ_{α} are normal states whose supports are mutually orthogonal. J can be ordered by inclusion. Let J_0 be a chain in J. Put

$$A = \bigcup_{\beta \in J_0} \beta .$$

Then every element in A is an element of some β in J_0 and therefore it is a normal state on M. Let ψ_1 and ψ_2 be two distinct elements in A. Then there exist β_1 and β_2 such that $\psi_1 \in \beta_1$ and $\psi_2 \in \beta_2$. Since J_0 is a chain, hence either $\beta_1 \subseteq \beta_2$ or $\beta_2 \subseteq \beta_1$. In the first case $\psi_1, \psi_2 \in \beta_2$ and hence ψ_1 and ψ_2 have mutually orthogonal supports.

Similarly if $\beta_2 \subseteq \beta_1$. It follows that A is a family of normal states with mutually orthogonal supports. Therefore $A \in J$ and A is an upper bound for J_0 . Hence using Zorn's lemma we obtain a family $\{\phi_{\alpha} : \alpha \in \Omega\}$ as a maximal element in J with mutually orthogonal supports e_{α} . Put

$$e = \sum_{\alpha \in \Omega} e_{\alpha}$$
 .

The sum is well-defined because e_{α} are mutually orthogonal. If $e \neq 1$ then choose a vector $\xi \neq 0$ in the Hilbert space H such that $(1 - e) \xi = \xi$ or in other words, $\xi \in (1 - e) H$. Put $\phi(x) = \langle x\xi, \xi \rangle, x \in M$. Then ϕ is a normal state on M. As $\phi(e) =$ $= \langle e\xi, \xi \rangle = 0$, the support of ϕ is orthogonal to e and hence to all e_{α} . Thus $\{\phi_{\alpha}: \alpha \in \Omega\} \cup \{\phi\}$ is again in J. This contradicts the maximality and so e = 1. This completes the proof of the theorem.

References

 S. Sakai: C*-algebras and W*-algebras. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 60. Springer-Verlag, Berlin, 1971.

Souhrn

POZNÁMKA O STAVECH NA VON NEUMANNOVÝCH Algebrách

A. B. THAHEEM

Nechť M je von Neumannova algebra na Hilbertově prostoru H. Kladný lineární funkcionál ϕ na M se nazývá stav na M, je-li $\|\phi\| = 1$. Je-li p největší z projekcí q takových, že $\phi(q) = 0$, pak projekce 1 - p se nazývá nosič ϕ .

Věta. Nechť M je von Neumannova algebra. Pak existuje množina $\{\phi_{\alpha} : \alpha \in \Omega\}$ normálních stavů, jejichž nosiče jsou navzájem ortogonální a platí $\sum_{\alpha \in \Omega} e = 1$.

Author's address: Dr. A. B. Thaheem, Department of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan.