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SVAZEK 24 (1979) A P L I K A C E M A T E M A T I KY ČlSLO 5 

AN ALGEBRAIC ADDITION-THEOREM FOR WEIERSTRASS' 
ELLIPTIC FUNCTION AND NOMOGRAMS 

AKIRA MATSUDA 

(Received November 9, 1977) 

1. INTRODUCTION 

As is well known, a determinantal form of the addition-theorem for Weierstrass' p 
function represents a nomogram for u + v + w = 0. In this paper, the author uses 
another form of the addition-theorem for p function involving no derivative p' [1]. 

By a dual transformation, concurrent charts are transformed into an alignment 
chart where three scales coincide and a tangential contact chart consisting of a family 
of circles, which represent the relation u + v + w = 0. In this case the addition-
theorem for p function stated above is used. 

2. DUAL TRANSFORMATION METHOD FOR CONSTRUCTING 
NOMOGRAM WITH A COMMON BASE 

Consider the cubic equation in t 

(2.1) t3 + w(x, y) t2 + v(x, y) t + w(x, y) = 0 , 

where u(x, y), v(x, y) and w(x, y) are functions of real variables x and y, and of 
class C1 with respect to x, y. One of the functions u(x, y), v(x, y) and w(x, y) may 
be a constant. Furthermore, we assume that the equation (2.1) is not separated into 
a function of x, y only and that of t only, that is, it does not take the formfx(x, y) = 

Regarding t as a parameter, (2.1) represents a family of curves or, in a special case, 
a family of straight lines in xy-plane. We now consider a region of points P(x, y) at 
which (2.1) has three distinct real roots t, and we denote the region by D. 

For a given point P(x, j;) in D, let three distinct real roots of (2.1) be tt (i = 1, 2, 3). 
By the relations between roots and coefficients of a cubic equation, we have 
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(2.2) tx + t2 + t2 = ~u(x,y), 

hh + hh + Mi = Kx> >0 -
^i^2t3 = - w ( x , y). 

Assuming that x and y can be eliminated from the above expressions, we obtain an 
expression 

(2.3) F(tx + t2 + t3, txt2 + t2t3 + t3tu txt2t3) = 0 . 

A given point P(x, y) in D determines three distinct values f̂  (i = 1, 2, 3), cor
responding to which we consider three curves ct (i = 1, 2, 3) represented by the 
following equations 

t] + u(X, Y) t\ + v(X, Y) tt + w(X, y) = 0 (i = 1, 2, 3) , 

where X, Y denote current coordinates. Then the curves ct (i = 1, 2, 3) pass through 
the point P(x, y). Furthermore, the curves are different from each other; indeed, 
the curves are identical if and only if (2.1) takes the form / i (x , y) = f2(t), but this 
does not occur by the assumption. Hence (2.1) forms a concurrent chart satisfying 
the functional relation (2.3) by itself. 

Next, according to the envelope method developed by the author and K. Morita 
[2], we transform the curves (2.1) in xy-plane into a figure in xj!-plane by the trans
formation 

(2.4) (ax + hy + g) x + (hx + by + f) y + gx + fy + c = 0 

where 
\a h g 

4=0, 
a Һ g 
Һ b f 
9 f C 

which is an equation of a polar with respect to the general conic. 

Assuming that (2.1) can be solved for y, we have y = y(x, t), and then substituting 
this into (2.4) we get 

(2.5) {ax -f- y(x, t) h + g] x + {hx + y(x, t)b + f}y + 

+ gx + y(x, t)f + c = 0 . 

Differentiating this expression partially with respect to x we have 

(a + hd-l)-x + (h + bdl)y + g+f8l = 0, 
\ dxj \ dxj dx 

and we eliminate x from (2.5) and the above expression. 
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Then we obtain, generally, an equation in the form 

/(3c, y91) = 0 , 

which expresses a tangential contact chart consisting of one family of curves in 
xy-plane. In the special case when (2.1) represents a family of straight lines, we obtain 
a pair of equations in the form 

x = x(t) , y = y(t), 

which expresses an alignment chart where three scales coincide in xy-plane. Both 
the charts represent the relation (2.3). 

3, ALIGNMENT CHART FOR ux + u2 + u3 = 0 

We shall consider the equation 

(3.1) ,3 _ * ! f2 + 2xy - g2 % _ jr^+g, = Q 
V J 4 4 4 

where g2 and g3 are real constants, which is a special case of (2.1). Solving (3.1) for v, 
we obtain 

(3.2) y = tx± V(4t3 - g2t - g3). 

Here we assume that t takes real values satisfying 

(3.3) 4t3 - a2t - g3 > 0 . 

Regarding t as a parameter, the equation (3.1), which is equivalent to (3.2), represents 

a family of straight lines in xy-plane. 

From (2.2) we have 
x2 

tl + h + >3 = — > 
4 

xy Qi txt2 + t2t3 + t3t, =-±-»i, 
2 4 

txt2t3 = 1- + ^ . 
4 4 

Eliminating x and y from the expressions we obtain 

(3.4) 4(tx + t2 + f3) ^ t . t a ~ ™ ] = Mi^2 + V 3 + 3̂̂ 1 + j j • 

As we have discussed in §2, the expression (3.1) represents a concurrent chart 
satisfying the relation (3.4). 
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Next, we transform (3.1) into a figure in xj-plane by the transformation expression 

(3.5) xx - y - y = 0 , 

which is an equation of a polar with respect to the parabola x2 = 2y. Substituting 
(3.2) into (3.5) we have 

XX y - tx + J(4t3 - g2t - g3) = 0 . 

DifTerentiating the above expression partially with respect to x, we get x = t; and 
substituting this into the above expression we obtain together with the last equation 

(3.6) x = t, y = + V(4t3 - g2t - g3) . 

Eliminating t from the equations we have 

y2 = 4x3 - g2x - g3 . 

The pair of equations (3.6) represents an alignment chart satisfying the functional 
relation (3.4) with the restriction (3.3). 

Here we use a form of the addition-theorem for Weierstrass' p function [1]: 
when ui ± u2 + u3 = 0 (mod 2col9 2co3), then 

(3.7) 4 {p(ux) + p(u2) + p(u3)} \p(uA) p(u2) p(u3) - - j j = 

= \p(ui)p(u2) + p(u2)p(u3) + p(u3)p(Ul) + ^ 1 . 

It is clear that the converse of this theorem is true. 

Now, we put 

(3.8) t = p(u) , 

which is equivalent to u = j7° dxjyj(4x3 — g2x — a3), and mark the value of u 
instead of t on the scale (3.6). Setting tt = p(ut) (i = 1, 2, 3), we obtain (3.7) from 
(3.4). Hence in the addition-theorem stated above the relation (3.4) can be replaced 
without loss of generality by the condition that one of the following relations holds: 

(3.9) u! + u2 + u3 = 0 or period, 

(3.10) ut + u2 — u3 = 0 or period . 

In what follows, we continue under the initial condition that the value of u starts 
from zero at x = oo. Since the scale (3.6) is symmetrical with respect to the x-axis, 
two points whose abscissas are equal have the same value of u. Hence we can state 
the following facts about values u{ (i = 1, 2, 3) marked at three points which are 
intersections of the scale and a straight line: 
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When all the three points lie to the same side of the 3c-axis, then (3.9) holds; and 
when one of them lies on the opposite side than the others, then (3.10) holds. This 
can be easily seen by considering the limit case ux -> 0 when the straight line passing 
through the three points becomes perpendicular to the x-axis. Indeed, in Fig. 1, in 
case (a) we have ut + u2 + w3 = 2u3 = period and in case (b) we have ut + u2 — 
— w3 = 0. Therefore, if we mark the value of u on the curve so that u > 0 when 
y > 0 and u < 0 when y < 0, then the relation (3.9) always holds. 

u.-o 

(a) 

u1 = o 

( b ) 

Fig. 1. 

The nomogram thus obtained is the same as that found in Epstein's work [3], 
in which two examples are illustrated. 

(4.1) 

4. TANGENTIAL CONTACT CHART FOR ux + u2 + u3 = 0 

In this section, we shall consider the following equation instead of (3.1): 

xy g2] 
ґ - Һ 4a2(x2 + 1) (2a2(x2 + 1 ) 4 

_ í У- + £lì = o 
{4a2(x2 + 1) 4 J 

} 

where a (>0) is a constant. Multiplying both sides of the above equation by 
4a2(x2 + 1) and rearranging with respect to y, we have 

(4.2) 
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Here we assume that t takes real values satisfying (3.3); setting 

a2(4t3 - g2t - g3) = r2 (r > 0) , 

then (4.2) becomes 

y2 - 2txy + t2x2 - r2(x2 + 1) = 0 . 

Solving this expression for y we obtain 

(4.3) y = tx ± r j(x2 + 1) . 

Regarding t as a parameter, the equation (4.1), which is equivalent to (4.3), represents 

a family of hyperbolas in xy-plane. 

From (2.2) we have 

x2 

t, + t2 + t3 = 4a2(x2 + 1) ' 

xy g2 
tlt2 + t2t3 + t3tt « — r ^ - — , 

2a\x2 + 1) 4 

y2 #3 
tA2t3 = — + — . 

1 2 3 4a 2 (x 2 + 1) 4 

Eliminating x and y from the expressions we again have the relation (3.4) and, likewise 

(3.1), the equation (4.1) also represents a concurrent chart satisfying (3.4). 

Next, we transform (4.1) into a figure in xy-plane by the expression (3.5). Substi

tuting (4.3) into (3.5) we have 

(x - t)x - y = ±rj(x2 + 1) . 

Squaring both sides and rearranging with respect to x, we obtain 

(4.4) {(3c - t)2 - r2} x2 - 2(x - t) yx + y2 - r2 = 0 . 

Differentiating this expression partially with respect to x, we have 

x = (JLz Oj 
(3c - t)2 - r 2 ' 

Then we substitute this into (4.4), after some calculations we cancel the factor r 2 

and obtain 

(x - t)2 + y2 = r2 

or 

(4.5) (x - tf +ў2 = {a V(4t3 - g2t - ^з)}2 , 
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7806 

9eio*2 

Fig. 2. Chart of uj 4- u2 + u3 = 0. The figure shows that ui =- 0-6422, u2 = 1-0882, u3 

= — 1-7356=> u! + u2 4- u3 = 0. 
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Fig. 3. Chart of *j + «2 + u3 = 0. The figure shows that «, = 0-7215, u2 = 1-2662 u = 
= -1-9849 =-«! + u2 + u3 = 0. 
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which expresses a family of circles with the center on the x-axis and represents 
a tangential contact chart satisfying the functional relation (3.4) with the restriction 
(3.3). 

In this chart, as in the case of § 3, we replace t by u according to the expression 
(3.8), and mark the value of u on a semicircle so that u > 0 when y > 0 and u < 0 
when y < 0; then the relation (3.9) holds. 

As in the case of the aligment chart there are two cases according as whether the 
equation 

(4.6) 4x3 - g2x - g3 = 0 

has one real root or three real roots, and we shall show them in the following, 
examples. 

Example 1. When g2 = 12 and g3 = —13, (4.6) has only one real root —2*12777 
and the period is 41300. The chart with a = 0-12 is shown in Fig. 2. Of course, 
each of semi-circles has many values of u, but in this figure only one value is marked., 
under the initial condition that u starts from zero at 3c = oo. 

Example 2. When g2 = 12 and g3 = — 5, (4.6) has three distinct real roots 
the largest of which is 1-46523, and the period is 2-2560. The chart with a = 0-16 
is shown in Fig. 3. The group of circles B alone forms a complete nomogram, and it 
is possible to construct such a nomogram by choosing a smaller value of a. 

Acknowledgement. The author wishes to express his hearty thanks to Prof. Dr. 
Katuhiko Morita, Kanazawa University, for his kind quidance. 
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Souhrn 

ALGEBRAICKÁ ADIČNÍ VĚTA 
PRO WEIERSTRASSOVU ELIPTICKOU FUNKCI A NOMOGRAMY 

AKIRA MATSUDA 

Vyšetřuje se duální transformace, převádějící průsečíkový nomogram zobrazující 
jedinou rovnici buď na spojnicový nomogram nebo na nomogram s dotykovými 
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kontakty. Pomocí této transformace je sestrojen spojnicový nomogram, v němž tři 
stupnice splývají, a nomogram s dotykovými kontakty složený ze soustavy kružnic, 
které zobrazují vztah u + v + w = 0.V tomto případě je použita jistá forma adiční 
věty pro Weierstrassovu funkci p, která neobsahuje derivaci p \ 

Authoťs address: Prof. Akira Matsuda, Toyama Marině Merchant College, Shinminato City, 
Ebie Neriya 1 — 2, Toyama Pref., 933 — 02, Japan. 
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