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SVAZEK 25 (1980) A P L I K A C E M ATE M A T I KY ČÍSLO 1 

THE DENSITY OF SOLENOIDAL FUNCTIONS AND 

THE CONVERGENCE OF A DUAL FINITE ELEMENT 

METHOD 

IVAN HLAVACEK 

(Received March 17, 1978) 

Some a priori error estimates have been given in [1] for the dual variational 
method, using piece wise linear equilibrium finite element model of Veubeke-Hogge 
([2]) and assuming that the exact solution is sufficiently regular. It is the aim of the 
present paper to prove the convergence of the procedure without any regularity 
hypothesis. The crucial point of the proof is the following density theorem: the 
infinitely differentiable solenoidal vector-functions are dense in the space of admissible 
functions, which are solenoidal in the distribution sense. 

We present the proof of the density theorems separately for the Dirichlet (Section 
1), Neumann (Section 2) and the mixed boundary value problem (Section 3). Whereas 
arbitrary bounded plane domains with Lipschitz boundary are considered in the case 
of the Dirichlet problem, the remaining cases are restricted to bounded polygonal 
domains. Finally, the convergence proof of the dual finite element procedure is given 
in Section 4. 

1. THE DIRICHLET PROBLEM 

Let Q a R2 be a bounded domain with Lipschitz boundary. We shall denote by 
Hk(Q) the Sobolev spaces Wk>2(Q), with the norm ||*||kffl. The same notation will 
be used for norms of vector-functions in [Hk(Q)]2- H^(Q) is the subspace of Hl(Q) 
of functions, the traces of which vanish on the boundary dQ. Define 

Q0(Q) = Le[L2(Q)f\ q.gmdvdx = 0 Vv e H^)J , 

Q 

(i.e., div q = 0 in the sense of distributions). 

Theorem 1. The set 
Q0(Q) n [C-(0)f 

is dense in Q0(Q) (with respect to \_L2(Q)Y - norm). 
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Proof . Let £>* be a bounded domain with Lipschitz boundary such that .Q* ID Q. 
In case that Q is a domain of connectivity m, we choose Q* of the same connectivity. 
Then 

Q* - Q = U Gj , 

where Gy are doubly-connected domains. 
Let a q e Q0(.Q) be given. We construct an extension Eq e Q0(.Q*), Fq L = q 

as follows. 
In every Gj let us consider the following auxiliary problem: to find 

u E V(Gj) = {v e H\Gj) | v = 0 on dGy •-- d;Q} 

such that 

( i . i ) grad u . grad v dx q . grad Pv dx Vv є V(G3) . 

where Pv is any extension of v e V(Gj) such that 

Pv e Vj(Q) = {v e HJ(0) | v = 0 on drQ --- dG,-} , 

Pv = v on dQ n <9Gj . 

The right-hand side of (1.1) is independent of the kind of extension from V(Gj) into 
Vj(Q). In fact, since Pv - Pv = 0 on dQ, Pv - Pv e H0(&) and 

q . grad (Pv — Pv) dx = 0 

follows from the definition of Q0(-3). 
There exists a linear mapping P of H1/2(dQ n dGj) into Vj(Q) (see e.g. [3]) such 

that 

IMluQ = C\\Vhl2,dQnOGj ^ Cll^l l .C^. 

Consequently, we have 

q . grad Pv dx \pv\\i,Q = C i | í | |o ,f l HVG ;> 

and the right-hand side of (1.1) is a linear bounded functional on H^Gj). Since the 
left-hand side is V(G -)-elliptic, i.e. 

Mi,c, = I l g r a d w!2 d x = C\\w\\i.Gj Vw e V(Gj) , 

there exists a unique solution u of the problem (1.1). 

Setting Eq = grad u in G7 for all j = 1, . . . , m, Fq = q in Q, we shall prove that 
Fq e Q0(.Q*). In fact, let v e H0(.Q*). Then 

Еq . grad v dx = q . grad v dx + £ grád v dx + YJ S r a d u • g r a d y d * • 
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We have v\G e V(Gj) V/ and 
m 

v e HX(Q) => v = YJ WJ 9 wj e Vj(Q), Wj = v on dGj n GO 
1 = 1 

(see e.g. [3] — chapt. 2, the proof of Th. 5.7). 

Thus we may write 

Eq . grad v dx = £ g . grad wy- dx + grad u . grad v dx = 0 , 

Q* Q Gj 

because Wj can be identified with an extension Pv of v and u is the solution of (1.1). 

Let us regularize Eq by means of a kernel cox(x — y), where A = const. 

A^(z)=jr f
( | z |2 /, ( lf l>"x2)) for | z | < x ' 

XV 7 [0 for |z| ^ x , 

K < dist (dO*, OO). We obtain q* e C°°(.0), 

q*(x) = cox(x - y) F O,(y) dy , i = l , 2 , 

«* 
div q«(x) = f - £ ~ cD,(x - y) Fqf(y) dy = 0 Vx e Q , 

J < = iGy< 
«* 

because OJX e C^O*) for % < dist (dQ*9 dQ) and Eq e 20vO*). Consequently, 
<y* e QQ(Q). Moreover, we have 

||<7* ~ E q\\0fQ = \\qx - q\\0tQ -> 0 for x -> 0 . 
Q . E. D . 

2. THE NEUMANN PROBLEM 

From the dual variational formulation ([1], [2]) it follows that in case of the Neu­
mann boundary value problem the admissible vector-functions have to be not only 
solenoidal but also their fluxes on the boundary have to vanish. Therefore we define 

Q0(Q) = <qe [L2(Q)]2\ q . grad v dx = 0 Vv e Hl(Q)i , 

Q 

(i.e., div q = 0 in the sense of distributions and q . n = 0 as a functional from 
H-1/2(dQ)). 

Theorem 2. Let Q a R2 be a bounded polygonal domain, (the boundary consists 
of a finite number of non-intersecting closed polygons). Then the set 

Q0(Q) n [C"(Q)Y 

is dense in Q0(Q). *) 

*) The density is true even for any bounded domain with Lipschitz boundary (sec [4l — 
Chap. I. § 2). We present the proof of Theorem 2., because its idea and some parts will be used 
in Section 3. 
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The p roof is based on several lemmas. 

Lemma 2.1. Let Qh c Q be a polygonal domain inscribed into the domain 
Qh (see Fig. 1), where 

Qh = {x e Q | dist (x, dQ) > h} . 

Fig. 1. 

To every q e Q0(Q) a function qh e Q0(Q) exists such that qh = 0 in the boundary 
strip Q — Qh,2 and 

(2-0 h - q"\\o,n < C||q||0.Cfc 

where C is independent of h. 

Proof. Let us define 

(2.2) qh = q in Qh , 

q" = 0 in £2 - Qhj2 , 

q" = grad u in Qh/2 - fl,, = G% . 

where it e Hl(G°) is a solution of the following problem: 

(2.3) J , q . g r a d P v d x \/v e H\G°h) grad u . grad v dx = 

G°h 

and Pv e Hl(Gh) is an arbitrary extension of v e Hl(Gh). 
The right-hand side of (2.3) is a functional f(v), independent of the kind of the 

extension P. In fact, Pv — Pv = 0 on dQh for any two extensions P and P. If we 
prolong Pv — Pv by zero onto Qh, 

q . grad (Pv — Pv) dx = q . grad (Pv — Pv) dx = 0 

Gh n 

by virtue of the definition of Q0(Q). 
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Lemma 2.2 For sufficiently small h there exists an extension P : H1(G°) —> Hl(Gh) 

such that 

(2-4) | F M | l i G h g C | M | 1 > G o , 

with C independent of h. 

Proof. We construct the extension P as follows. We divide the boundary strips 

Gh into "straight segments" by means of the axes of the angles at the vertices of dQ. 

Let Vh be a straight segment, Vr° = Vr n G°. Denote 

Kr = )y e R2 I ar < yj < br, < y2 < -
1 2 2 

a rectangle in the (yu y2)-plane. 

Let us put the origin of a local cartesian system (x1 ? x 2) into the point of intersection 

of the axes which limit the segment Vr and let the x2-axis be orthogonal to the seg­

ment. Then (omitting the superscript r by x r): 

Vh = \x e R2 \dr < x 2 < dr + - , ar < — < br 

2 2 x 

and the mapping 

x = Thy = Г1 = Уl^r + } ' 2^ ' 
\X2 = y2 + dr, 

maps the rectangle Kh onto Vh, being one-to-one. 

In case of parallel limiting axes, we put the origin into the center of Vr, consequently 

Vr = <jx E R2 | < x 2 < - , — ar < xi — krx2 < ar) , 

)xi = yi + kry
j2 > 

x' = rry 
lx2 — }2 ' 

Let a u e Hl(G°) be given. Then u \Vrh0 e Hl(Vh0). Defining for u(x) the function 

u{y) = u<Xy), 

then uEHl(Kh0), where Kr° denotes the corresponding lower (upper) half of the 

rectangle Kr. In fact, Th and (Th)~1 are Lipschitz mappings on Kr and Vr, respectively. 

Let us extend u onto the whole rectangle Kr symmetrically, defining for the exten­

sion Pru ft , .. A . N 

Pru(yu -y2) = PrHyi,y2)-

Then obviously Pru e H1^)-
Defining the extension of u from Vh0 onto Vh as 

Pru(x) - Pru((Th)~l x), 

we obtain Pru E Hl(Vh). 

Finally, let Pu be the function such that 

Pu \Vrh = Pru Vr = 1, ..., m . 
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To prove that Pu e H^G^), it suffices to verify that the traces of Pru and Pr+iw 

coincide on the intersegment boundary Vr n Vr+I = lh
r for all r. Since it holds 

Pru(br, v2) = Pru(b„ - y2) V>>2 e (- ~ , ^ , 

the traces of Pru are symmetric with respect to the straight line x2 = dr. The same 
is true for Pr+iu and the traces coincided on G° n Ir. Consequently, they coincide 
on the whole Ir. 

For sufficiently small h it holds 

(2.5) \pA\,vr» ^ C\u\2
UVrh0, 

with C independent of h, r. In fact, constants h0 > 0, M > 0 exist such that for 
h < h0 

(2.6) max max (|Nr
2|, |x i /x2 | , | l /x2 | ) < M . 

r xeVr
h 

Consequently, the entries of Jacobians of T r, ( T r )
_ 1 are uniformly bounded for all r 

and h < h0. Moreover, we have 

(2.7) |Prw|i,K^ = 2|u|1?Krho Vh < h0, Vr . 

Then (2.5) follows from (2.7) and (2.6). 

Altogether we may write 
m m 

\PU\UGH = Z \PMtvr» ^ C Z |M | l ,V° = C\U\2l.Gh« • 
r=l r=l 

and the proof of (2.4) is complete. 

Next we are able to finish the proof of Lemma 2.1. The functional f(v) in the right-
hand of (2.3) is linear and continuous on Hl{G°h). In fact, using (2.4), we may write 

(2-8) |/(t>)| ^ | | « I k e • \PvV,Gh ^ c | |g lkG h • Mi,Gho • 

The bilinear form in the left-hand side of (2.3) generates a scalar product in the 
Hilbert space H = Hl{Gh)jP0, where P0 is the subspace of constant functions. Since 
f(l) = 0,fis linear and continuous over H. Consequently, there exists a unique class, 
of equivalence u e H such that 

grad ü . grad v áx = Дv) Vv є H . 

Gh° 

Let u E u and choose v = u in (2.3). Thus we obtain 

lwli,Gho ^ c N l k G h • lwli,Gh° 

using also (2.8). Setting qh = grad u, it holds 

(2-9) l" | i .G h o= | | q 1 | 0 , c , , o ^ C | | q | | 0 > C h , 
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By virtue of (2.2) and (2.9) we may write 

| q ~ q 0,12 
- ' ' I I 2 

I л _»Л II -• _• •- < < 

|q - q ||o.Gfco + ||q||o,Gh-Gho ş 
^ 2||q||o,G„o + 2C 2 | |q | | 2 , c „ + | q | | 0 , c „ . c „ o ^ (2 + 2C2) | |q| | 0,C ( | . 

Hence (2A) follows. 
It remains to verify that qh e Qo(Q)- For any v e Hl(Q) we have 

(2.10) 

(2.11) 

qh . grad v áx = g grad v dx = grad w . grad v dx + 
Gh° 

q . grad v dx 

Í2Һ 

q є ßo(ß) q . grad v dx + q . grad v dx = 0 

Í2Һ 

Inserting (2.11) into (2A0), realizing that v |G h = P(v |Gho) and utilizing (2.3), we are 
led to the conclusion that the integral in the left-hand side of (2.10) vanishes. 

Q. E. D. 

P r o o f of T h e o r e m 2. Let q e Q$(Q). Consider the function qh from Lemma 1, 
extend it by zero outside Q and regularize. Thus we obtain Rxq

h e C°°(:Q), 
/• 

R„q'l(x) = cox{x - y) q%y) Ay, i = 1, 2 . 
«. 
Q 

Obviously, Rxq
h = 0 on dQ for % < ft/2. Moreover, 

f 2 5 
div RxOx*) = - I T - W*(X - JO «?W d>' = ° Vx e fi > 

J '=i ^yt 
52 

because the function OJX e C°°(£>) c H*(Q). Finally, using (2.1), we obtain 

||1vxq* - q\\0iQ ^ \\q ~ qh\\o,n + W ~ R*<t\\o.o - 0 

for h -> 0, x < \h. 

3. THE MIXED BOUNDARY VALUE PROBLEM 

Let us consider a bounded polygonal domain £_> cz K2, the boundary T of which 
consists of two parts, 

r = ru uFg, runrg = <b. 

Let the boundary conditions for u be 

u = u on FM , 

8 u 

дnÀ 

= ø on F . 
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where du\dnA denotes the derivative with respect to the conormal. It is well-known 

(see [1], [2]), that the admissible functions of the dual variational formulation have 
t 0 s a t i s f y div q = 0 in Q, 

q . n = 0 on Fg , 

in the following weak sense: 

qєöo(ß) = {qє[Mß)]2 q . grad v dx = 0 Vt> є V > , 

where 
V= {veH1(Q)\ v = 0 on FJ . 

Theorem 3. Let Fg consist of a finite number of connected parts of the polygonal 

boundary F. 

Then the set 

Q0(Q) n [C"(G)Y 

is dense in Q0(Q)-

The main idea of the proof is similar to that of Theorem 2. First we establish an 

auxiliary 

r 
is ^ 

m 2Һ/Ҙ 

Ш> 

Fig. 2 

Lemma 3.1. Let us define (see Fig. 2) 

Qh = {x e Q | dist (x, Fg) > h) , 

(replacing the circular arcs at concave angles of Fg by tangents, see Fig. 1) 

Gh = Q — Qh , Gh = Gh n Q2h/3 . 

Then to every q e Q0(Q) a function qh e Q0(Q) exists such that qh = 0 in the 

boundary strip Q — Q2h/3 and 

(3.1) ||q - q*||o,n < cl |q| |o,G, 

with C independent of h. 
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Proof . Let us define 

(3.2) Я = 4 
- " - 0 -2Л/3 

where 

(3.3) 

and 

in Qh, 

q" = U in Q - Q2 

qh = grád u in G° , 

«6V(Gft°) = {i,6/í1(GA
o)|i; = 0 on dG°h n Tu} , 

grád w . grád v dx = q . grád Pv dx Vv e V(Gh), 
Gь° 

Pi; e V(Gh) = {ve H\Gh) | v = 0 on Fu n dG,} 

is an arbitrary extension of v e V(G°). 

The right-hand side of (3.3) is a functional f(v), independent of the kind of the 

extension P. In fact, Pv — Pv = 0 on dQh for any extensions P, P. If we prolong 

Pv — Pv by zero into Qh, we obtain a function, belonging to V. Consequently, 

q . grad (Pv - Pv) dx = \q . grad (Pv - Pv) dx = 0 

Gh Q 

holds by virtue of the definition of Q0(Q). 

Lemma 3.2. For sufficiently small h there exists an extension P : V(Gh) -> V(Gh) 

such that 

(3.4) 

with C independent of h. 

\Pv\LGh ^ CHl,Gho 

Proof. Throughout the proof C will denote generic constants, independent of /?. 

We construct the extension P as follows. We divide the boundary strips Gh into 

"straight segments" (cf. the proof of Lemma 2.2) and sectors of circles, to which 

adjacent squares are joined (see Fig. 2). 

1° Let Vh be an arbitrary "straight segment", Vh0 = Vh n G°h. 

Let 

K"r =\yeR2\ar < y, < b„ 
h 2 . 
- < y2 < - h 
3 3 

be a rectangle in the (y\, y2)"Pl^ne. We use the local Cartesian coordinate system 

(x 1 ? x 2) and a mapping similar to that of Section 2. 

Let us consider a convex part of rg, i.e., x2-axis is oriented as an outward normal. 

We extend the function v e H^V,!70) into Pv e Hl(Vh) by means of successive sym­

metric extensions in Kh: 

(i) with respect to the straight line y2 = 0, 

(ii) with respect to y2 = y/?. 
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(In case that the x2-axis is oriented inward, we also extend symmetrically in Kh

r but 

applying the inverse order.) 

Thus we obtain a function Pv e Hl(V,). By an argument parallel to that of Section 

2, we deduce the estimate 

(3-5) \Pv\2

UVr„ S CMi.vy.° Vr, V/i < h0 

I. 

Fig. 3. 

2° Let Vs be a square (with the side h), adjacent to the point Fg n F„. Define the 

rectangle (see Fig. 3) 

The mapping 

K = {yєR2\0 < Уl < 1, - 1 < y2 < 2 } . 

í*i = ^y i x = Ty = 
ł ^ y 2 

maps the rectangle K onto the square 

V, = \xr e R2 I 0 < x\ < h, - - < x\ <- h\. 

Let Vs be adjacent to a "convex part" of fg. 

Consider a function v0 e C ( 1 )(K) such that 0 g v0 = 1, v0 = 1 on the segment 
(yi = 0, 0 <; y2 <; 2} and on the rectangle {0 ^ yx g 1, - 1 ^ y2 ^ 0}, v0 = cp 
on the segment {y« = 1, 0 = y2 = 2}, where cp(y2) = 0 for 1 g y2 g 2. 
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Let v e H\V0

S) be given, where V° - Vs n G°. Defining 

v(y) = v(T(y)), 

v e H^K0), where K° = {y | 0 < yx < 1, - 1 < y2 < 0}. 

Let us extend v into K in the same way as in the previous part 1°, denoting the 

extension by Pv e H*(K). Then obviously ||Pv||2,K — 3\v\\tKo. If we define 

w = v0Pv , 

then VV e H'(K), VV - Pv - v o n K°, 

u> = Pv o n yi = 0 , 

w = (p(y2) Pv o n yi = 1 . 

Defining 
Pv(x) = ^(T-^x), 

then Pv e HX(VS) a n d we may write 

I D 12 f V \dPv\2A 

\pv\l,vs = I I- - l 2 d x 
(3.6) 

'(Зx.. 
f y I y ^1 dJi\ 

J t = i j = i dyj dxt 

àx = 

í( дw 

ðyí 

2 9 дw 

sУi 

Pv + v0 

8Уi 

õfv 

SУi 

дУ: 

<2v 

-ày ѓ Щì,к, 

'oЦcҷю Pv\2 + 
дPv 

~дy~i 

Since ||vo|c-(.K) ls a h x e d constant, we have 

1 2 ^ s~i l !r* A l l2 i/^ ! | A | | 2 

UK = c o | | ^ | | i , K = 3 C O N I , K 
K° 

From (3.6) we obtain 

(3.7) | P v | i j F ^ 9 C 0 | | v | | i , K o . 

3c Let V0 be a sector of a circle, adjacent to the point Fu n Fg. The mapping 

*-*M-ft: *.".'• 
maps the rectangle (in (9, O)-piane) 

K = {(,9, O) I 3 0 < 9 < 9i, 1 < Q < 3} 

onto the sector of the annulus Vc c Vc5 

Denote 
= ( 9, r) | £0 < 9 < #i, І/Î < r < h} . 

V°c ={x = (9, r) | 90 < 9 < 9 l 5 f/i < f < ft} = Fc n G° . 

Let a function D E H ](V°), D = 0 for 9 = 9j be given. (Suppose that the straight line 
segment 9 = 9 t belongs to T„). Defining 

0(9, e) = «(r(9, <?)), 
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then veIJ1^), where 

Kc° = {(9, Q ) \ 9 0 < 9 < 9 U 2 < Q < 3 } , 

Let us extend v symmetrically across the line Q = 2, i.e., let 

(3.8) Pv(S, Q) = Pv(£, 4 - Oj VS, VI < O < 3 . 

Moreover, we define 

(3.9) W($,Q) = CP(2~Q)PV($,Q), 

where cp is the function used in the previous part 2°, and extend w by zero for B0 < 

< i 9 < 3 1 , 0 < O < l . Obviously, we have w e H*(K), w = v on K°. 

Defining 
fO for Vr --- V! , 

we may write 

(3.10) 

Pv = 

\Pv 

v^T - 1 *) for xeVl, 

\iVc = |grad Pv|2 dx = 

ЬN( 
1 #o 

3 

s з H 

2 J_И 
+ O^te 

Od9 g 

1 »0 

дw 

ÔQ + 

Using (3.9), we deduce easily 

\dw 

ÔQ 

and from (3A0) we obtain 

= (M2 + H2) W + 
<3w2 ^ GPv 

G\9 

d9 

ðРÔ 

ÕQ 

(3.11) Ní ,KC ^ C* | de ( 

(3,9 

\Pv\2 + 
õPv 

ÔQ + 
ôPv 

д9 
d9 

1 #o 

where C(p depends on the function q> only. 

By virtue of the symmetric extension (3.8), the last integral equals to the double 

of the integral 
3 Si 

I = ÚQ I ( |v | 2 -f 

2 »o 

Ôv 2 дv 
+ 

ÔQ дS 
d9 
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By an analogous argument as in (3A0) we deduce 

| l , K c ° 

- Y,A„ \õv 2 130 
dO щ + \— + 7 — 

•V V þt? e2 дЭ 
QÚS^-I . 

9 
#o 

Inserting this into (3.11), we obtain 

(3.12) |Pv |2
!Kc^9C<p | |v | |1)1Cc0 . 

4° Let us consider the square Vs together with the sector Vc of a circle. In the points 
2° and 3° we have deduced the estimates (3.7) and (3A2), from which 

(3-13) \Pv\2
UYm + \Pv\2

UVc ^ C(\\v\\lK0 + p\\2
UKco) 

follows. Since v \Ko and v \Kco have the same traces on the intersection dK° n dK°c, 

v e H^K0 u Kc°) and 

(3-14) lrl|i,K° + lrl|i,Kc° = lrl|i,K°uKco = Ci\v\ltKo^Kco 

holds by virtue of the generalized Friedrichs inequality (note that v = 0 for # = &J. 
It is easy to deduce 

(3.15) Н l > = ЩÎ.V.o , 

| l Д c ° l ,Vc° ' 

Consequently, (3A3), (3.14) and (3A5) yield the estimate 

V 3 - 1 6 ) \Pv\uVs + \Pv\i,Vc = C\V\2l,VsOuVco • 

R e m a r k 3A In case that the point Tg n Tu coincides with a vertex of F, the 
internal angle of which is not greater than n\2, it suffices to construct the extension 
according to the point 1°, thus obtaining the estimate (3.5). 

5° Let a function v e V(Gh) be given. We define the extension Pv separately in the 
straight segments, squares and sectors of circles according to the points 1°, 2° and 3°. 
Then Pv e Hl(Gh). In fact, the traces on the common boundaries Vh

r n V,+ 1, Vr n Vs 

and Vs n Vc coincide. According to the point 3°, Pv = 0 on # -= $l9 consequently 
Pv e V(Gh). Using the estimates (3,5) for all r, (3+6) for the squares and sectors, we 
obtain the estimate (3.4). 

Now we are able to finish the proof of Lemma 3.1. The right-hand side of (3.3) 
is a linear bounded functionalf(v) on V(Gh). In fact, using (3.4), we have 

|/(*0 ^ Nike* • \Pv\i,Gh =
 C N | O , G „ • Mi,Gfc° • 

Hence the problem (3.3) has a unique solution u. Inserting v = u in (3.3), we obtain 

Ml.G„o ^ CH|o,Gh • 

From the definition (3.2) it follows 

I** ~h\\2 

9 ~ 9 o,o Iq-gradu lo^o + ||q||Š,Gh-cho = 
= 2||q!|o\Gřlo + 2|u]1>Gho + | |q | |o,G^G ho g (2 + 2C2 

Hence the assertion (3.1) follows. 
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It remains to verify that qh e Q0(Q). Let u e Vbe given. We may write on the basis 
of (3.2) 

(3.17) qh . grad v áx grad u . grad v dx + q . grad v dx 

Gh° 

and the definition of Q0(Q) yields that 

q . grad v dx + q . grad v dx = 0 . 

nh 

Inserting into (3.17), we obtain 

qh . grad v dx = grad u . grad v dx q . grad v dx = 0 

Gh° 

if we realize that the restriction v \Gh is an extension of v |Gho into V(Gh), and u is 
a solution of (3.3). Q. E. D. 

P roo f of T h e o r e m 3. Let a qe Q0(Q) be given. Consider the corresponding 
function qh from Lemma 3.1 and extend it out of Q as follows. 

Let Q* =5 Q, Q* be bounded with Lipschitz boundary. Let h < dist (dQ, dQ*) and 
denote 

G* = {x $ Q | dist (x, FJ < p } 

the "external boundary strip", 

fli = fluCj, 

V* = {veH^rQ* - (2 i ) |v = 0 on .̂Q*} . 

Consider the auxiliary problem to find u e V* such that 

(3.18) grad u . grad v dx = qh . grad Pv dx v є V* 

Q*^Qi ßгh/з 

where Pv is (a restriction of) an arbitrary extension of the function v e V* into 
Hl(Q*). 

The right-hand side of (3.18) does not depend on the kind of the extension P. 
In fact, Pv — Pv = 0 on dQx for any two extensions P, P. Consequently, we may 
extend Pv — Pv by zero into (7* and then 

Pv - Pv = 0 on ru => Pv - Pv e V, 

qh . grad (Pv - Pv) d^ qh . grad (Pv - Pv) dx = 0 . 

Oihh 

A linear extension P : V* —> Hl

Q(Q*) exists (see e.g. [3] — Chapt. 2, Th. 3.9), such 

II Pull < Cllull V« p l7* 
| | r i ; | | i ,«* = ^P||i,«*---«, vve K . 

Consequently, the problem (3.18) has a unique solution u. 
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Defining the extension Eqh as follows 

then 

(3.19) 

0 in G*, 

Eqh = lgradu in Í2* - Q{ , 

[qh in Q, 

Eqh . grád v dx = \qh . grád v dx + 

2* í-2hl3 

grád w . grád v dx = 0 Vv e H0(í2*) + 
ß * ^ ß 

holds by virtue of (3.18). 

Let us regularize Eqh by means of a kernel cOx, where x < 2/i/3. Then obviously 

RxEqh e [C°°(f2)]2 , RxEqh = 0 on r , , 

div RxEq\x) V — OJX(X - y) Eg* d j = 0 Vxef l 
i=i 5yf 

vn . RxEqft ds = 0 

because cox e II0(O*) can be inserted for v in (3.19). Hence for v e V 

RxEqh . grad v dx = — I div RxEqhv dx 

and consequently RxEqh e Qo(&)> 

Finally, from Lemma 3.1 it follows 

\\RxEqh - q||0,o ^ \\RxEqh - q*||0,o + \qh - q||0)O - 0 

for h -> 0, x < | / i . Q. E. D. 

4. CONVERGENCE OF THE DUAL FINITE ELEMENT PROCEDURE 

In the present Section we apply the previous results to the proof of convergence 
of the dual finite element procedure without any regularity assumption. Let us con­
sider a polygonal bounded domain Q c= R2 and the following problem: 

(4.1) rffl«r> 
ONA ox{ 

ôu 

õx 

u = u on Гu 

Пj = д on Eg , 

where dQ = Fg u T„, T„ n T9 = 0, a repeated index implies summation over the 
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range {l, 2}, au are bounded measurable functions in Q, au = ajh and there exists 
&0 > 0 such that 

au(x) {fa ^ *0Ui V c e R 2 , 

holds almost everywhere in Q. The functions f e L2(Q), ueHi(Q) and g e L2(Fg) 
are given. 

Let Tg be either empty or consist of a finite number of connected parts. 
In the paper [ l ] the dual variational formulation of the problem (4.1) was pre­

sented, as follows. 
Define V = {v e H\Q) \ v = 0 on FM} , 

Afg =\qe [L2(Q)]2 | q . grad v dx = fv dx + gv ds Vv e V i 

n Q rg 

and assume that we have an element q e Afg. 
Let us define the functional 

0OO = " bU XiXj dx + (bo^^j - 1 • grad u) dx , 

Q n 

where / e A0?0 and [b] is the matrix inverse to [a ] . 
The dual variational problem is: to find Z° e A0j0 such that 

(4.2) <%°)^<£(x) V Z e / l 0 , o . 

In [1] we studied the subspaces Jf h of triangular elements, proposed by Veubeke 
and Hogge [2]. Jfh consists of piece wise linear vector-functions on a given triangula-
tion ?Th of Q. In every triangle they satisfy the condition div / = 0 and their fluxes 
/ . n are continuous when crossing any interelement boundary. 

Denoting 
Vh = Jfh n A0,0 = {x e Jfh | / . n = 0 on FJ , 

we define the dual finite element approximation: 

(4.3) xh e Vh , <P(xh) S Hi) V/ e Vh. 

Theorem 4.1 The dual finite element approximations converge to the solution 
X° of the problem (4.2), i.e., 

(4.4) Hz* - x°\\o,n - 0 for / w 0 . 

Proof. Note that A0 0 = Q0(Q) in Section 1—3. From the density theorems 
it follows that to every £t > 0 there exists a function q° e [C°°(-3)]2 n So(^) s u c r i 

that 

(4.5) ||x° - q°||o.ii < ei • 

In [1] (see the proof of Theorem 3.1 there) it was shown that an element rhq° e Vh 

exists such that 

(4-6) \\q»-rhq\,QSChi\\q%cH^. 
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Moreover 

(4.7) | | / 0 - / 1 ! o ^ ^ C i n f | | z 0 ~ / | | o ^ 
XeVh 

follows from [1] — Theorem V2. Consequently, for any e > 0 

IIv° - vhll < C(\\y° — _f°ll 4- \\a° — r a0II ( <r P 

\\X X \\o,n __ MJ|X 9 ||o,o + 119 ^ 9 ||o,oj < £ 

holds for sufficiently small h. 
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S o u h r n 

HUSTOTA SOLENOIDÁLNÍCH FUNKCÍ A KONVERGENCE 

DUÁLNÍ METODY KONEČNÝCH PRVKŮ 

IVAN HLAVÁČEK 

V práci [1] byly podány a priorní odhady chyb pro duální variační metodu, která 
užívá po částech lineární rovnovážný model konečných prvků podle Veubeke a 
Hoggea [2], a to za předpokladu, že přesné řešení je dostatečně regulární. V tomto 
článku se dokazuje konvergence bez předpokladu regularity. Základním bodem dů­
kazu je věta o hustotě: nekonečně hladké solenoidální funkce jsou husté v prostoru 
přípustných funkcí, které jsou solenoidální jen ve smyslu distribucí. 
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