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SVAZEK 25 (1980) APLIKACE MATEMATIKY CisLo 1

THE DENSITY OF SOLENOIDAL FUNCTIONS AND
THE CONVERGENCE OF A DUAL FINITE ELEMENT
METHOD

IvAN HLAVACEK

(Received March 17, 1978)

Some a priori error estimates have been given in [1] for the dual variational
method, using piecewise linear equilibrium finite element model of Veubeke-Hogge
([2]) and assuming that the exact solution is sufficiently regular. It is the aim of the
present paper to prove the convergence of the procedure without any regularity
hypothesis. The crucial point of the proof is the following density theorem: the
infinitely differentiable solenoidal vector-functions are dense in the space of admissible
functions, which are solenoidal in the distribution sense.

We present the proof of the density theorems separately for the Dirichlet (Section
1), Neumann (Section 2) and the mixed boundary value problem (Section 3). Whereas
arbitrary bounded plane domains with Lipschitz boundary are considered in the case
of the Dirichlet problem, the remaining cases are restricted to bounded polygonal
domains. Finally, the convergence proof of the dual finite element procedure is given
in Section 4.

1. THE DIRICHLET PROBLEM

Let @ = R? be a bounded domain with Lipschitz boundary. We shall denote by
H*(Q) the Sobolev spaces W*2(Q), with the norm |- |, o. The same notation will
be used for norms of vector-functions in [H¥(@)]*. Ho(€2) is the subspace of H'(R)
of functions, the traces of which vanish on the boundary 0Q. Define

04(Q) = {q € [LZ(Q)]ZIIq cgrad vdx =0 Vve Hé(g)} ’

Q2
(i.e., div ¢ = 0 in the sense of distributions).

Theorem 1. The set I
24(2) n [c*(@)]

is dense in Qo(Q) (with respect to [Ly(Q)]* — norm).
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Proof. Let Q* be a bounded domain with Lipschitz boundary such that Q* > Q.
In case that Q is a domain of connectivity m, we choose Q* of the same connectivity.
Then

Q* = Q=) G;,
Jj=1

where G; are doubly-connected domains.

Let a g€ Qy(Q) be given. We construct an extension Eqe Qo(Q*), Eq|, = q
as follows.

In every G; let us consider the following auxiliary problem: to find

ueV(G;) ={ve H'(G;)|v =0 on 0G; = 0Q}

such that
(1.1) Jgradu .gradvdx = ——J‘q.grad Pvdx YveV(G;),

Gj
where Pu is any extension of v € V(G;) such that

PreV(Q)={veH(Q)|v=0 on Q= G},
Pv=v on 0QndG;.

The right-hand side of (1.1) is independent of the kind of extension from V(G,) into
V(Q). In fact, since Pv — Pv = 0 on 0Q, Pv — Pve Hy(Q) and

Jq .grad (Pv — Pv)dx = 0
Q
follows from the definition of Qy(%).
There exists a linear mapping P of H'/2(0Q n 0G)) into V() (see e.g. [3]) such
that

1Polli.e < Cllolj2.00006, = Cillv]i g, -

Consequently, we have
[a-erad Poa] = faluo |72l = Clalon [l
Q

and the right-hand side of (1.1) is a linear bounded functional on H'(G;). Since the
left-hand side is V(G ))-elliptic, i.e.

2 g, = J‘|grad w2dx = Clwlle, YweV(G,).
Gj

there exists a unique solution u of the problem (1.1).

Setting Eq = grad u in G;forallj =1,...,m, Eq = qin Q, we shall prove that
Eq e Qo(Q*). In fact, let v e Hi(Q*). Then

—[Eq.gradvdx=Jq.gradudx+ grad u . grad vdx .
a* Q FIG,
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We have v|g, € V(G;) ¥j and
ve H(Q)=v =3 w;, w;eV(Q), w;=v on G;niQ
i=1
(sce e.g. [3] — chapt. 2, the proof of Th. 5.7).
Thus we may write

JEq .gradodx =Y [Jq.grad w;dx + Jgrad u . grad udx]z 0,
Q

j=1
aQx J

because w; can be identified with an extension Pv of v and u is the solution of (1.1).
Let us regularize Eq by means of a kernel w,(x — y), where A = const.
_fon(ePl(e - ) ror Jef <,
Awlz) = {0 for |z| = x,
x < dist (0Q*, 0Q). We obtain g7 € C*(Q),
i) = [ods = D Ea()ar. =12,
Q*
. 20
divgi(x)=| =) o o(x — y)Eq(y)dy =0 VYxeQ,
i=1 0y;
o*

because w, € CF(Q*) for » < dist (0Q*, 0Q) and Eqe Q,(Q2*). Consequently,
q* € Qo(Q). Moreover, we have

"qx —E q”O.Q = ”qx - q”o.(z -0 for x—-0.
Q.E.D.

2. THE NEUMANN PROBLEM
From the dual variational formulation ([1], [2]) it follows that in case of the Neu-

mann boundary value problem the admissible vector-functions have to be not only
solenoidal but also their fluxes on the boundary have to vanish. Therefore we define

04(Q) = {q e [L,(2)]?] .[q .gradvdx =0 Yoe H‘(Q)},
12]
(i.e., divg = 0 in the sense of distributions and q.n = 0 as a functional from

H~™ 1/2((19)).

Theerem 2. Let Q < R? be a bounded polygonal domain, (the boundary consists
of a finite number of non-intersecting closed polygons). Then the set

Q(2) n [€(Q)]
is dense in Qo). *)
*) The density is true even for any bounded domain with Lipschitz boundary (sec [4] —

Chap. L. § 2). We present the proof of Theorem 2., because its idea and some parts will be used
in Section 3.
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The proof is based on several lemmas.
Lemma 2.1. Let Q, = Q be a polygonal domain inscribed into the domain
Q, (see Fig. 1), where
Q, = {xe Q|dist(x, 0Q) > h} .
Denote G, = Q =~ Q,.

Fig. 1.

To every qe Qo(Q) a function q" € Q(Q) exists such that " = 0 in the boundary
strip Q = Q5 and
2.1) la = q"lo.0 < Clafo.c,
where C is independent of h.

Proof. Let us define
(2.2) q"=q in Q,,

=0 in Q=0Q,,,
q" = gradu in Q2 = Q= G .

where u e H'(G}) is a solution of the following problem:

(2.3) Jgrad u.grad vdx = Jq .grad Pvdx Vve H'(G}).
o Gn
and Pve H'(G,) is an arbitrary extension of v e H'(Gy).
The right-hand side of (2.3) is a functional f(v), independent of the kind of the
extension P. In fact, Pv — Pv = 0 on 0Q, for any two extensions P and P. If we
prolong Pv — Puv by zero onto Q,,

jq .grad (Pv — Pv)dx = Jq .grad (Pv — Pv)dx =0
Gn Q
by virtue of the definition of Qo(9Q).
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Lemma 2.2 For sufficiently small h there exists an extension P : Hl(G?,) — H'(G,,)
such that

(2.4) |Puly.q, = Cluls g2,
with C independent of h.
Proof. We construct the extension P as follows. We divide the boundary strips

G, into “straight segments’” by means of the axes of the angles at the vertices of 0Q.
Let V" be a straight segment, V" = V" A GP. Denote
h h

Ki’={yeRzlar<)n <b, —’2‘<)'2<‘i}

a rectangle in the (y,, y,)-plane.

Let us put the origin of a local cartesian system (x}, x5) into the point of intersection
of the axes which limit the segment V! and let the x}-axis be orthogonal to the seg-
ment. Then (omitting the superscript r by x"):

h / ‘
ViE=IlxeR’|d, — - <x, <d, + 2, a <X <p,
2 2 X,
and the mapping

R N
’ T Xy =y, + d,,

maps the rectangle Kf onto Vf_’, being one-to-one.
In case of parallel limiting axes, we put the origin into the center of V', consequently

/ l/
V:’z{xeRzl—§<x2<§,—a,<xl—k,x2<a,},

X' = T,’.’y = Xy =W + kr)’z )
Xy = Vo

Let a u e H'(GY) be given. Then u |, n0 € H'(V}°). Defining for u(x) the function
a(y) = u(Tly),
then i e H'(K}°), where K}° denotes the corresponding lower (upper) half of the
rectangle K. In fact, T} and (T}) ™" are Lipschitz mappings on K} and ¥}, respectively.
Let us extend i onto the whole rectangle K" symmetrically, defining for the exten-
sion Pii L .
Piyy, —ys) = Pyi(yy, y,) -
Then obviously P,ie H'(K}).
Defining the extension of u from V/® onto V! as
Pau(x) = Pa((T})"" x),
we obtain Pue H'(V)).
Finally, let Pu be the function such that

Pu IVr" =Pu Vr=1,...,m.
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To prove that Pu € H'(G,), it suffices to verify that the traces of Pu and P, u
coincide on the intersegment boundary V" n V", = I" for all r. Since it holds

- ~ h
Prl}(br* .“2) = Prﬁ(b .)2) V) 2 € <_ g 21>

the traces of P,u are symmetric with respect to the straight line x} = d,. The same
is true for P,, ,u and the traces coincided on Gy n I". Consequently, they coincide
on the whole I".

For sufficiently small h it holds

(2.5) |Paulf yon < Clulfy,mo,

with C independent of h, r. In fact, constants hy, > 0, M > 0 exist such that for
h < hy,

(2.6) max max (|x5s x5 /x5] [1/x5]) < M.

r xel

1

Consequently, the entries of Jacobians of T”, (T:’)_ are uniformly bounded for all r

and h < h,. Moreover, we have
(2.7) |P.a|} xn = 2]d]7 ko Yh < hg, Vr.
Then (2.5) follows from (2.7) and (2.6).

Altogether we may write

m m

[Puli.c, = X |Palivn = C L ulivmo = Clufigpo

and the proof of (2.4) is complete.

Next we are able to finish the proof of Lemma 2.1. The functional f(v) in the right-
hand of (2.3) is linear and continuous on H'(Gy). In fact, using (2.4), we may write

(2.8) If(v)l = ”q”o,cy. . |PU|1,Gh = C”‘IHO.G,. . ‘”|1,Gl,0-

The bilinear form in the left-hand side of (2 3) generates a scalar product in the
Hilbert space /I = H'(G})/P,, where P is the subspace of constant functions. Since
f(l) = 0, fis linear and continuous over A. Consequently, there exists a unique class.
of equivalence i € A such that
grad i . grad i dx = f(?) Viell.
Gp°
Let u € i and choose v = u in (2.3). Thus we obtain
lult 6,0 = Clallo.6, - [uls,6.0
using also (2.8). Setting q" = grad u, it holds

(29) luli 6o = 9"]0.600 = Clallo.g. -
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By virtue of (2.2) and (2.9) we may write
la = q"[5.0 = la = q"[5.c0 + 956,600 =
< 2[q5,6.0 + 2C%|q5.6, + [9]5.6,- 00 = (2 +2€C7) |q

Hence (2.1) follows.
It remains to verify that " € Q,(Q). For any v e H'(Q) we have

2
0.Gy, *

(2.10) Jq" .grad vdx = ~“grad u.grad vdx + Jq .grad v dx
0 GR° Qp
(2.11) qe 0o(Q)= |q.grad vdx + [q.gradvdxzo.
& G
Inserting (2.11) into (2.10), realizing that v |, = P(v|g,0) and utilizing (2.3), we are
led to the conclusion that the integral in the left-hand side of (2.10) vanishes.

Q.E.D.

Proof of Theorem 2. Let g € Qy(<). Consider the function " from Lemma 1,
extend it by zero outside Q and regularize. Thus we obtain R, q" € Cc*(Q),

R.4i(x) = fwx(x - y)qi(y)dy, i=1,2.
Q

Obviously, R,q" = 0 on 0Q for x < h[2. Moreover,

2 A
div R qli(x) = — —[ Y (:j— ofx = y)qi(y)dy =0 V¥xeQ,
i=10y;

Q

because the function w, e C*(Q) = H'(Q). Finally, using (2.1), we obtain
IR.4" = qloo = |la = "o + [4" = R.q"]00 = O

for h - 0, % < 1h.

3. THE MIXED BOUNDARY VALUE PROBLEM

Let us consider a bounded polygonal domain Q = R?, the boundary I' of which
consists of two parts,
r=r,ol,, r,nr,=90.

q

Let the boundary conditions for u be

u=1u on I

al:g on I

on,

us

g
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where du/on, denotes the derivative with respect to the conormal. It is well-known
(see [1], [2]), that the admissible functions of the dual variational formulation have
to satisfy divg=0 in Q,

q.n=0 on I

g

in the following weak sense:
qe 0y(Q) = {q e [Ly(Q)]? ]J‘q .gradvdx =0 Vve V},
Q2

where
V={veH'(Q)|v=0 on I,}.
Theorem 3. Let ', consist of a finite number of connected parts of the polygonal
boundary I.
Then the set
24(Q) n [C7(Q)])?
is dense in Qo(9Q).
The main idea of the proof is similar to that of Theorem 2. First we establish an
auxiliary
~
‘g

r

A onsa

|
—
|
.
|

I,

Fig. 2.

Lemma 3.1. Let us define (see Fig. 2)
Q, = {xeQ|dist(x,I,) > h},
(replacing the circular arcs at concave angles of I'y by tangents, see Fig. 1)
G, =Q=9,, G =G,0Q;.

Then to every qe Qo(Q) a function q" e Qy(Q) exists such that q" =0 in the
boundary strip Q = Q,,,3 and

(3.1) la = q"lo.0 < Clafo.c
with C independent of h.
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Proof. Let us define

(3.2) qd" =gq in Q,,
q"=0 in Q= Qy,3,
q" =gradu in Gy,
where ueV(Gy)) ={veH'(G))|v=0 on 3G’ T,},
(33) Jgrad u . grad vdx = Jq .grad Pvdx Vve V(G)),
Gp° Gn
and

PoeV(G,) = {ve H'(G,)|v=0 on TI,n dG,}
is an arbitrary extension of v € V(Gy).
The right-hand side of (3.3) is a functional f(v), independent of the kind of the

extension P. In fact, Pov — Pv = 0 on 09, for any extensions P, P. If we prolong
Pv — Pu by zero into Q,, we obtain a function, belonging to V. Consequently,

fq .grad (Pv — Pv)dx = fq .grad (Pv — Pv)dx =0
Gn @
holds by virtue of the definition of Q(2).
Lemma 3.2. For sufficiently small h there exists an extension P : V(G,?) - V(G,,)
such that
(3.4) [Pv]16, = Clo]s 6,0
with C independent of h.
Proof. Throughout the proof C will denote generic constants, independent of A.
We construct the extension P as follows. We divide the boundary strips G, into

“straight segments” (cf. the proof of Lemma 2.2) and sectors of circles, to which
adjacent squares are joined (see Fig. 2).

1° Let V! be an arbitrary “straight segment”, V"* = V" A GY.
Let
K" ={y€R2|a, <y, <b, —

w ==

<y <2!1
? 73

be a rectangle in the (y,, y,)-plane. We use the local Cartesian coordinate system
(x7, x3) and a mapping similar to that of Section 2.

Let us consider a convex part of I';, i.e., x5-axis is oriented as an outward normal.
We extend the function ve H‘(V,”O) into Pve H‘(V:') by means of successive sym-
metric extensions in K":

(i) with respect to the straight line y, = 0,

(ii) with respect to y, = Lh.
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(In case that the x3-axis is oriented inward, we also extend symmetrically in K" but
applying the inverse order.)

Thus we obtain a function Pve H'(V}'). By an argument parallel to that of Section
2, we deduce the estimate

3.5 Pol? 0w < Clo|} o Vr, Yh < hy .
y 1.V, SV
Yo
2
-
]
>Q
!
T~
[
No
0 1
)2
KO
=1
-1
Fig. 3.

2° Let V, be a square (with the side h), adjacent to the point I', n [',. Define the
rectangle (see Fig. 3)

K={yeR|0<y <1, -1 <y, <2}.
The mapping

_ _ Jxio=hy,
x=Ty= {xz Yhy,

maps the rectangle K onto the square

N

K:{X’ERZ]0<X'1<h,—g<x

2
< - h}.
3

1, vy = | on the segment
é 0}’ Vo = @
2.

Let V be adjacent to a “‘convex part” of I',.
Consider a function v, € CV(K) such that 0 < v,
{y1=0,0 =y, <2} and on the rectangle {0 < y,

<
<1, -
on the segment {y, = 1,0 £ y, < 2}, where ¢(y,) = 0 for 1 <
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Let ve H'(V)) be given, where V' = V, n Gj. Defining

8(y) = o(T(y) »
te H'(K®), where K® = {y |0 <y, < 1, =1 < y, < 0}.
Let us extend # into K in the same way as in the previous part 1°, denoting the
extension by Pt e H'(K). Then obviously “ Po||? x = 3|8]|7 xo- If we define

then Wwe H'(K), w = P9 = p on K°,

Defining

then Poe H'(V,) and we may write

2 2 A s
(3.6) P2 . —JZ |§’;”|z [ D DALY .

tj=10y; 0x;

110@ 2 9]aw|?\ n? 5

= + = dy < 3|w)? .,
J‘<h2‘a)’1| h? 8}"2! ) 3 ’= ]W a

|2 ) 5 aﬁf;fl | aPp)?
— = |=2Pp — £2 vl PO+ .
R SRR (L)

Since 1[ Uol|C1(K) is a fixed constant, we have
W]k = Cof[Po][T x = 3Co[0]7 ko -
From (3.6) we obtain
(3.7) |Po| . < 9C,| D3 ko -
3¢ Let ¥, be a sector of a circle, adjacent to the point I', n I',. The mapping

— (5, 0) = {xl = 1ho cos 3,

X, = thesin 9§

maps the rectangle (in (9, ¢)-plane)
K={(%0)]%<9%<9,1<eo<3}
onto the sector of the annulus V! < V,,

Vi={x=(97r)]9% <9 <9,3h<r<h}.
Denote
V=1{x=(971)]% <9<9,3h<r<h}=VnG,.

Let a function ve H'(VY), v = 0 for 9 = 9, be given. (Suppose that the straight line
segment $ = 9, belongs to I',). Defining

8(9, 0) = o(T(9 2)),
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then 9 € H'(K?), where
={(%0)]%<9<9,2<0<3},

Let us extend & symmetrically across the line ¢ = 2, i.e., let

(3.8) Pi(9,0) = Po(9,4 — ¢) V9, VI <o <3.
Moreover, we define
(3.9) w(9, 0) = @(2 — 0) P5(9, o),

where ¢ is the function used in the previous part 2°, and extend W by zero for 9, <
< 9 < 9,0 < ¢ < 1. Obviously, we have w e H'(K), w = # on K°.
Defining
0 for V.=~ V!,
Pv=< .. "
W(T 'x) for xeV!,

we may write

(3.10) |Poff . = J[grad Pv|?dx =
3 9y
2 A2 2
_ 2 do w L h” 0dd =
h2 do| ' 009
2 A2
fdgj< Iyl >d9.

Using (3.9), we deduce easily

B < (o + Jol?) [Pol? + 200 ),
do| do
o iaﬁaz
29| = a9
and from (3.10) we obtain
3 9
(3.11) P2, < c(,,J dgﬂ |P3|? + opy 0:; 2) 9
0 C
1 3o

where C,, depends on the function ¢ only.

By virtue of the symmetric extension (3.8), the last integral equals to the double

of the integral
1 ~fdQJ<| B> + )ds.

817'2

00
9
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By an analogous argument as in (3.10) we deduce

3 9
. . 10D 1|0
ol = fae [ (1 + 0+ 28

~

Inserting this into (3.11), we obtain
(3.12) [Po)f .y, < 9C,||0]|7 k.0 -

4° Let us consider the square V together with the sector V, of a circle. In the points
2° and 3” we have deduced the estimates (3.7) and (3.12), from which

(3.13) Poftw, + [Poftw, = C([0]2 ko + )7 ko)

follows. Since b |0 and # g0 have the same traces on the intersection 0K® n JK?,

te H'(K° u K?) and

(3.14) 183 ko + 8]k = [18]F koukeo = CulB[F kour.o

holds by virtue of the generalized Friedrichs inequality (note that # = 0 for 3 = 9,).
It is easy to deduce

(3.15) [8]F ko < 3|v|ivos

o] ko = o[t o -
Consequently, (3.13), (3.14) and (3.15) yield the estimate
(3.16) |Po| . + [Po|f . < Clo|f voov.o-

Remark 3.1 In case that the point ', n I, coincides with a vertex of I, the
internal angle of which is not greater than n/2, it suffices to construct the extension
according to the point 1°, thus obtaining the estimate (3.5).

5° Let a function v e V(Gy) be given. We define the extension Pv separately in the
straight segments, squares and sectors of circles according to the points 1°, 2° and 3°.
Then Pve H'(G,). In fact, the traces on the common boundaries V' n V!, [, V, "V,
and V, n V, coincide. According to the point 3°, Pv = 0 on 3 = 9,, consequently
Pv e V(G,). Using the estimates (3.5) for all r, (3.16) for the squares and sectors, we
obtain the estimate (3.4).

Now we are able to finish the proof of Lemma 3.1. The right-hand side of (3.3)
is a linear bounded functional f(v) on V(G}). In fact, using (3.4), we have

17(v) = [qllo.c. - [Pt]i 6 = Cldllo.c - [0]1.6,0 -
Hence the problem (3.3) has a unique solution u. Inserting v = u in (3.3), we obtain
luli 60 = Claflo.c, -
From the definition (3.2) it follows

la - q"5.c = |q-grad u[g 6,0 + [4]5.6,- 6.0 =
< 2|q)3.60 + 2ulfgo + 1986260 (2 + 267 |q]5., -

Hence the assertion (3.1) follows.
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It remains to verify that ¢" € Qy(Q). Let v € V be given. We may write on the basis
of (3.2)

(3.17) Jq" .grad vdx = Jgrad u.grad v dx + Jq . grad v dx

Q Gn® On

and the definition of Q(9Q) yields that

q . grad vdx +Jq.grad vdx =0.
Qn Gn

Inserting into (3.17), we obtain

fq" .gradvdx = jgrad u . grad vdx — Jq .gradvdx =0,

Q G0 Gp
if we realize that the restriction v IG;. is an extension of v |0 into V(G,), and u is
a solution of (3.3). Q.E.D.

Proof of Theorem 3. Let a qe€ QO(Q) be given. Consider the corresponding
function ¢" from Lemma 3.1 and extend it out of Q as follows.

Let Q* 5 Q, Q* be bounded with Lipschitz boundary. Let h < dist (3Q, 0Q*) and
denote

Gy = {x¢Q|dist(x, ') < 3h}
the ‘“‘external boundary strip”,
Q, =QuGH,
Ve ={ve H'(Q* - Q,)]v=0 on 0Q%}.

Consider the auxiliary problem to find u € V* such that

(3.18) gradu .grad vdx = — jq" .grad Pvdx VYveV*
Q*= 0, Qan/3
where Pv is (a restriction of) an arbitrary extension of the function ve V* into
Hy(Q%).
The right-hand side of (3.18) does not depend on the kind of the extension P.
In fact, Pv — Pv = 0 on 0Q, for any two extensions P, P. Consequently, we may
extend Pv — Po by zero into G and then

Po—Pv=0 on I',=Pv— PreV,

jq" . grad (Pv — Pv)dx = th .grad (Pv — Pv)dx = 0.
Qan/3

A linear extension P : V* — H{(Q*) exists (see e.g. [3] — Chapt. 2, Th. 3.9), such

that
a 1Po])y o < Cllo] 1 geen, VveVE.

Consequently, the problem (3.18) has a unique solution u.
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Defining the extension Eq" as follows

0 in G,
Eq" = {gradu in Q* = Q,,
q" in Q,
then
(3.19) -[th .grad v dx = |q". grad v dx +
ox Qon!s

+ |gradu . gradvdx = 0 Vve Hy(Q*)
* =0,
holds by virtue of (3.18).

Let us regularize Eq" by means of a kernel w,, where » < 2h/3. Then obviously

R,Eq e[C*(Q)]*, R,EG =0 on T

g b
2 )
div R,Eq"(x) = — J.; 0(;7 o x — y)Eqidy =0 VxeQ,

0*

because w, € Hy(Q2*) can be inserted for v in (3.19). Hence for ve V

JR,,Eq" .grad v dx = — Jdiv R,Eq"v dx + fvn .R,Eq"ds = 0
Q Is] Iy
and consequently R,Eq" € Qo(Q).
Finally, from Lemma 3.1 it follows

“Rxth - ‘1”0,9 = ”Rxth - qhno,sz + ”qh - quo,o -0
for h - 0, » < %h. Q.E.D.

4. CONVERGENCE OF THE DUAL FINITE ELEMENT PROCEDURE

In the present Section we apply the previous results to the proof of convergence
of the dual finite element procedure without any regularity assumption. Let us con-
sider a polygonal bounded domain Q = R? and the following problem:

0 u
4.1 e
(+1) 6x,-< ! ox >

J
u=1u on I,,

o,
Yox;

J

fin Q,

a

I

g on I,,

where 0Q =TI',uT,, I',n T, =0, a repeated index implies summation over the
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range {1, 2}, a;; are bounded measurable functions in Q, a;; = a;;, and there exists
oy > 0 such that
aij(x) 5;‘6,’ = aoéifi Vie R? s
holds almost everywhere in Q. The functions fe L,(Q), it e H'(Q) and g e L,(I',)
are given.
Let I', be either empty or consist of a finite number of connected parts.
In the paper [1] the dual variational formulation of the problem (4.1) was pre-

sented, as follows.
Define V= {ve H(Q)|v =0 on I},

Apy = {q e[L,(Q)]*| Jq .grad vdx = va dx + ng ds Vve V}
Q Q g

g

and assume that we have an element g € A, .
Let us define the functional

1 _ _
d(y) = éJbij KX dx + J(bijqilj — y.grad ii)dx,

Q 2
where y € Ay, and [b] is the matrix inverse to [a].

The dual variational problem is: to find z° € A, o such that
(4.2) o(3°) < P(x) Yre Ao, -

In [1] we studied the subspaces A7, of triangular elements, proposed by Veubeke
and Hogge [2] N, consists of piecewise linear vector-functions on a given triangula-
tion 7, of Q. In every triangle they satisfy the condition div y = 0 and their fluxes
Z . n are continuous when crossing any interelement boundary.

Denoting

Vi=NynAgo=1{xeN,|x.n=0 on I},
we define the dual finite element approximation:
(4.3) eV, o)< o(y) VyeV,.

Theorem 4.1 The dual finite element approximations converge to the solution
1° of the problem (4.2), i.e.,

(4.4) " = %°)o,0 =0 for h—0.

Proof. Note that Ay, = QO(Q) in Section 1—3. From the density theorems
it follows that to every ¢, > O there exists a function q° € [C*(Q)]* n Qy(Q) such
that
(4.5) HXO - q0||0,9 <& .

In [1] (see the proof of Theorem 3.1 there) it was shown that an element r,q° € V,
exists such that
(4.6) l9° = 748°l0.0 = Ch?[@° |22 -
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Moreover

(4.7) [2° = 20,0 < Cinf[x° — x]o.0
xeVh
follows from [1] — Theorem 1.2. Consequently, for any & > 0

12° = 200 = C([2° = @°llo.0 + [4° = 119°[0.0) <&

holds for sufficiently small h.
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Souhrn

HUSTOTA SOLENOIDALNICH FUNKCi A KONVERGENCE
DUALNI METODY KONECNYCH PRVKU

IvaN HLAVACEK

V praci [1] byly podany a priorni odhady chyb pro dualni variadni metodu, ktera
uziva po C&astech linearni rovnovazny model konecnych prvkd podle Veubeke a
Hoggea [2], a to za pfedpokladu, Ze piesné feSeni je dostateén& regularni. V tomto
¢lanku se dokazuje konvergence bez pfedpokladu regularity. Zakladnim bodem dii-
kazu je véta o hustoté: nekoneéné hladké solenoidalni funkce jsou husté v prostoru
piipustnych funkci, které jsou solenoidalni jen ve smyslu distribuci.
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