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INTRODUCTION

This paper concerns an abstract mathematical theory of evolutionary variational
inequalities of two different types motivated by the classical flow theory of plasticity.
The quasi-statical traction boundary value problems in infinitesimal strain approach
for elastic-plastic bodies both with and without strain hardening are presented as
examples.

The mathematical theory of plasticity leads to variational inequalities. Duvaut -
Lions [ 1] have proved existence of solutions of these inequalities for materials without
hardening. However, in the quasi-statical case of the traction boundary value problem
their assumptions are too strong, thus restricting essentially the applicability of the
theorem.

To our knowledge the existence proof for the boundary value problem for elastic -
plastic materials with hardening has not yet been accomplished. From the physical
point of view this case has been discussed by Nguyen [2]. By means of the here
introduced plastic potencial, Nguyen formulates the problem as an evolutionary
variational inequality. In comparison with parabolic variational inequalities there
is no coercive elliptic term in Nguyen'’s inequality.

In the course of the proof-reading we have got acquainted, before its publication,
with the paper [3] by Dr. K. Groger, who solves a similar problem by formulating
it as a parabolic inequality. The main difference between our treatment and that of
Dr. K. Groger is his assumption of nondegenerative kinematic hardening.

In our paper we use the penalty method to prove existence theorems for inequalities
of Nguyen’s type. It is interesting that the equation with a penalty term has the physical
meaning of artificial viscosity with internal variables. With some caution we can say
that the above mentioned penalty method is also of constructive character. For
related problems see the papers [4], [5]. [8]. [9] and the book [10]. For general
questions, see the book [6].
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PRELIMINARIES

In this section we collect the mathematical nofation, definitions and assertions
used later. The proofs can be found in [11].

Let H be a Hilbert space with a scalar product [.,.]y and a norm [ o=
=[...]i/* V a closed subspace of H, V" the orthogonal complement of V in H
and P, : H - V the orthogonal projection on V.

Denote by C([0, T, H) the space of all continuous functions ¢ : [0, T] — H with
the scalar product

(@ Dr0.mm = LT[U(’)- (1) dt

and the norm
HUHLZ«O.H,IU = (o. ‘7)11‘4(2(01),11) .

The closure of C([0, T], H) with respect to the norm |- | ,o.1y.m is denoted by
L,((0, T), H). 1t is a Hilbert space of Bochner strongly measurable and square
integrable functions ¢ : (0, T) —» H. Let o € C([0, T], H), t € [0, T]. We define

6(1) = lim o(s) = o(1) (in H),
st s — 1

whenever this limit exists (if t=0o0rt =T, we consider s > {4+ or s - t—, re-

spectively). C'([0, T], H) denotes the subspace of C([0, T], H) such that ¢ €

e C([0, T, H) with the scalar product

(0. = j " ATo0), 0] + [0, 20}

0

and the norm
Il = (s )t

By C4([0, T], H) we denote the subspace of C'([0, T]. H) such that ¢(0) = 0 with
the scalar product

(7.9 = [ [0, 0

and the norm

(B P R FA
The closure of C'([0, T], H) or Cy([0, T], H) with respect to the norm [ ]ar or
[+ | sor is denoted by H'((0, T), H) or Hy((0, T), H) (briefly H' or H), respectively.
H' or Hj is a Hilbert space with respect to the scalar product (., Dt or (o) gt
respectively. ||.”,,1, .“,,01 represent equivalent norms on H). Let o € H! or H),
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o, C'or C}, 6, — o in H' or H}, respectively. The time derivative ¢ of ¢ is defined
by ¢ =limg, in L,((0, T), H). To o€ H' there exists ¢ e C([0, T]. H) such that
o(t) = (1) a.e. on [0, T]. In this paper we use only these continuous representants
& of the elements o€ H'. Let 0, te H', 1,1, € [0, T]. Then

j L6, <l ds = [ot2), «(t2)] — [o(ts), (1)1 j " Lo 1u ds

L8]

(consequently

t
[/ 5l s = 1ot — t1ot0)1i-
0
If a sequence 6, € H' or H} converges weakly to ¢ in H' or H}, respectively: 6, — o,
then o,(1) > o(t) weakly in H for all 1€ [0, T].
Denote by W' -*(G) the Sobolev space

W"Z(G)E{veLz(G))gieLz(G), i=1,2,3}.

Here G is a bounded domain, G < R3. Let S be the Hilbert space of all symmetric

tensor functions 6 = {0;;}; j=1,2,3, 0;; = 0;;, 0;; € L,(G) with the scalar product

(0,7)s = f 0;;7;; dx
G

and the norm | .||s = (., .)s’? (throughout the whole paper the summation convention
is used). The formula

1 /0v; Ov;
0y(v) = = (S + ), i j=1,2,3
i) 2<0xj ax,-) g

defines a tensor function ¢ : [ W"*(G)]® — S. Let A denote the range of ¢ and # the
orthogonal complement of o in S. It is well known that # and & are closed sub-
spaces of S ([4], [5])

Let S be the space of all symmetric tensors ¢ = {O'ij}i,j=1,z,3.- 0;; =0, 0;,€R
with the scalar product (o, 1)s = 0;;7;; and the norm

[-Is = ()5

We conclude this section with a trivial lemma.

Lemma. Let u, € L((0, T) x G), |u,| £ C < o0,u, - u pointwise a.e.on (0, T) x
x G, v,€L,((0, T), S), v, > v weakly in L,((0, T), S); then u, . v, > u . v weakly in
L,((0, T), S).
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ABSTRACT THEORY I

In this section we present in the abstract form a special type of evolutionary
variational inequality. Its form is motivated by the boundary value problem for
elastic-plastic material without hardening (this is shown in the section ““Example I”).
We first formulate a certain abstract problem and then prove uniqueness, existence
and convergence theorems concerning the solution of this problem.

Let K be a convex closed subset of H and let 0 € Cy([0, T, H).
Problem 1. Find o € H{ such that for all t € [0, T],
(Y o(t) — 0(r) eV,

(2) o(t) e K,
t
(3) J [6,t — 0]yds =0 forall teHy forwhich
. 0

(s) — O(s)e V forall se[0,T],
1(s)e K forall se[0,T].
Theorem 1. There exists at most one solution of Problem 1.

Proof. Let ¢!, 62 be two solutions. Taking ¢ = ¢!, T = 6% or¢ = ¢%, 7 = ¢! in

(3). we obtain
t

[ = oo e = 2l - Wi =0, asa
0

Theorem 2. If there is a functional g defined on H such that
(4) the Fréchet derivative g’ exists and it is monotone:
[9(c) — g'(x),0 — 7]y 20, Vo,7eH
and Lipschitz continuous:

lg'(6) — g'(t)|u £ Cllo — t|u forsome C >0, Vo,7eH,

Q) g(6) 20 on H,
(6) g(o) =0 iff o€k,
(7) g'(6) =0 if o€k,

(®) g9(0) =0

and there isy > 0 such that
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9) 0(1) + y0(1)e K forall tef0,T],
then there exists a solution of Problem 1.

Proof. Let ¢, tend to zero through some sequence of positive numbers: ¢, = 0+,

&, > 0. For each ¢,, (4) implies the existence of a unique solution s, € Co([0, T], V)
of the equation

;M+§mwmﬁw»=—m@-

‘n

Put g, = u, + 6. Then

(10) o,(t) — 0(t)e V forall t1e[0,T],
(11) [6.(1), T1u + (1/e,) [g'(04(), %))y = forall 1e[0,T]
andall TeV.
Let us remark that by (11) we have
(12) o.(1) + ! g'(o (1) eVt forall re[0, T].
8"

Taking ¥ = (6, — 0) + (0, — 0) e C([0, T], V) in (11), then integrating (11) over
(0, 1), using (7), the formula

L 4(0) = [9'(0). 61

dt

and the fact that 0 + y0 € K, we get

t B} 1
) J [, 6] ds + -12_[0"(:), 0 + (o) +
0 n
+ lft [9'(0 + 70),0 + y0 — 0,]u ds —
'Sn 0

1 t L. t
_ ! j [9(0). 0 + 70— 0,]u ds = f [60, 0 + 0], ds .
Erdo 0

n

Using monotonicity and the inequality 2ab < (1/¢) a® + £b%, V& > 0, we get for
some constant C > 0 the estimate

(13) j (62, 6] ds + [on()ou(t)] + slg(o,,(z)) <
< CJq [y0 + 0,70 + 6]y ds .
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This estimate implies the existence of an element ¢ € H} and a subsequence (again
denoted by c,) convergent to ¢ weakly in Hg: o, — . It follows that o,(f) — o(t)
weakly in H for all t € [0, T]. Further, since g is weakly lower semicontinuous due to
its monotonicity, (13) implies g(o(r)) = 0 for all 1€ [0, T]. Hence we see that (2)
is satisfied. Since Vis closed, we obtain also (1). It remains to show (3). From (11)
and (7) it follows that

t ] t
(14) J [60 T — 0,]u ds +J [9'(c,), T — 0,]uds —
0 £n 0
1 t
- -—f [¢'(r), T — 6,]ypds =0
&y 0

for all T e Hg such that 7(s) — 0(s) e V, (s) € K for all s [0, T]. By monotonicity
and (14) we have

(15) , 0= J: [d,,, T— 0, ]gds = ft [6‘,,, T]H ds — %Ho,,(t)“f,.

Using (15) we see that

t
0 £ lim supJ’ [6, T]u ds — L liminf o, (1)} <
0

< [ e ds = 3ol = [ oo eluas.

0

This completes the proof of Theorem 2.

Theorem 3. Let 6, o denote the approximate solutions from the proof of Theorem 2
and their weak limit, respecively. Then we have o, — o strongly in C([0, T], H).

Proof. Taking = ¢ in (15), we get

J" [6s 0 — 0,]uds = 0.
It follows
(16) son(t) = o(t), o(t) — o(t)]u < J 6,0 — o] ds.

Since 6, —» o weakly in Hj, we have 6, — a weakly in L,((0, T), H). Put

) = j "[60— 0,Juds.

0

The sequence of the functions ¥, is pointwise convergent to zero and uniformly
bounded on [0, T]. It is
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RO [ "oy

2Jo

and by the Lebesgue Theorem we get ¢, — o strongly in LZ((O. T), H). 1t follows from
(16) that

Hou(t) = o] = J: o) - llo(s) = aul(s)]u} ds =

= “UHHO' . “‘7 - “'th((o,n.m .

This implies that 6, — o strongly in C([0, T], H).

EXAMPLE L.

As an example of application of Abstract theory I we study in this section the
traction boundary value problem for an elastic-plastic material without hardening
in infinitesimal strain approach. First we show a motivation of the definition of
a weak solution of this problem. In this consideration we suppose the functions
¢, e, p, 0, A introduced below to belong to or to have components from C([0. T],
L,(G)). Let us consider a body in the time interval [0, T] occupying at time ¢ = 0
a bounded domain G = R? with lipschitz boundary 6G. Let u denote the vector of the
displacement field at a fixed time t € [O, T]. The strain tensor ¢ is defined by

. ou ;
ey = (2 MY =23,
2\0x;  0x;
u, € W"Z(G) , k=1,2,3.
Denote by e, p the elastic and plastic parts of ¢, respectively, and suppose that

(17) ¢;=e;+ p; forall te[0,T], ae. on G.

ij

The constitutive equations for e and p are supposed to be of the form

(18) ei; = Mo,
) ~ 0
(19) Pij = 4 A (o)
0o

here 1 and ¢ are such that 2 = 0 for f(¢) < k, 4 = 0 for f(s) = k, f(0) < k in the
course of deformation (k is a constant), o denotes the stress tensor, A is an undeter-
mined nonnegative function and f is the so called plasticity function. We suppose
f to be a convex function on S with bounded first and second partial derivatives,
such that f(0) < k and if f(z) = k, then
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T )P myso.

Jo;; " 0oy
Let M, denote elasticity coefficients of Hook’s law such that
(20) M = Mjpy = My € Lo(G) s ij ok, 1=1,2,3.
(21) Culltlls = tiMiul(x) 7 = Col<[s

ae. on G forall 1eS, C,>C,>0.

Now (21) implies existence of a matrix Ly, inverse to M;, in § a.e. on G such that

(22) 6;; = Lijen
(23) Lijy = Ljyq = Lyy; € Lw(G), ij,k,1=1,2,3,

(24) Csnfné = TijLijkz(x) T = C4HT”§ s
‘ ae. on G forall teS; C,>C;,>0.

We introduce another scalar product on S by

(25) [w’ T]S = j 0 Mt dx ;s w,TeS.
G

The norms ||7||s and [7, t]§/? are equivalent.

Let body forces

Fe[Cy([0, T], Ly(G))T?
and surface tractions

g € [Co([0, T], Lo(2G))]*

be given and satisfy the global equilibrium conditions. We want to prove uniqueness
and existence of a symmetric tensor field ¢ such that (18), (19) are in some sense
satisfied together with the equilibrium and boundary conditions

(26) j 0;;0,(v)dx = J‘ F;dx + f gv; dS,
G G oG

Yoe [W3(G)]*, Vie[o, T]

and the condition ¢ = e + pe A for all te [O, T]. To this end we first formulate
precisely what we mean by a solution.
Denote

kE{TESIf(‘L’)ék}.

It follows that (19) can be written for all ¢ € [O, T], a.e. on G in the equivalent form
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(27) ﬁij(fij - 0',‘_,') é 0, VYt e k 5
(28) cek.

Denote K = {te S|f(r) £ k a.e. on G}. The relations (27) and (28) imply for all
1e[0, T]

(29) J‘ Iiij(fij - Uij) dx é 0, Vte K 5
G

(30) ogek.

Moreover, let us now suppose 7 to be time dependent and such that

(31) f 7;;0:{(v) dx =j F;dx +J gv; dS
G G G

for all ve [W3(G)]® and T € K for all t € [0, T]. From (31) and (26) it follows that
T — o€ o for all 1€ [0, T]. Further, ¢ € A for all t e [0, T] implies é € 2", hence

(32) f £(1) (r(1) — o4(1) dx = 0, Vie[0,T].
G
The relations (18), (29) and (32) yield
f ) Musfeift) = () dx 2 0, e [0.7].
It is well known ([10]) that there exists 0 € Co([0, T], S) such that

(33) f 0;,0,(v) dx =f Fv; dx +f g.v; dS,
G G oG

Yoe [Wy(G)]*, vie[0,T]

(e.g. the “clastic solution” of our problem).
Now we find that 7 satisties (31) if and only if

t—0ex, Vie[0,T].
The foregoing considerations motivate the following definition of a solution.

Definition 1. 4 stress field o e HY(0, T), S) satisfying for all te [0, T] the
conditions

(34) o(t) — (1) e A,
(35) o(t)eK,
(36) '[ t [6,7 — a]sds = 0, VreHy(0, T),S)
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such that ©(s) — 0(s)e #, 1(s) € K, Vs € [0, T] will be called a weak solution of the
traction boundary value problem for elastic-plastic material without hardening.

Theorem 4. Let there be 0 e Co([0, T, S) satisfying (33) and y > 0 such that
f(0(t) + v6(t)) < k for all t [0, T]. Then there exists a unique solution in the sense
of definition 1.

Proof.PutH = S, # = V,[o, t]s = [0, t]y. Denoteby M: § - S andL:§ - §
the mutually inverse mappings represented by the matrices M;;, and L;;;. We find
that V* = L(o") and 2 = M(V*). Let us define a functional g on S by

(37) 9(o) = L{(([f(a) — K]+ Y2 - 1) dx

(here y* = 4(y + |y])). Then the Fréchet derivative

(o) = mAUEL,HLWAﬁw
(38) ‘ (o) ([f(e) = K]*)* + 1)V/2 a ( ) Liju

exists. (Here g’ is identified with an element of H with the scalar product [ ., ]H)
We can write also

) Do(o, <) = j {(([f(agf )- k]+ - aif (o) 7 }

Then

Dy(o, 1) = [g'(0), T]s -

The assumptions (4)—(8) can be easily verfied by a routine calculation and so we can
use Theorems 1 and 2.

ABSTRACT THEORY IL

In this section we consider a problem similar to Problem 1. It is motivated by the
boundary value problem for elastic-plastic material with isotropic hardening. We use
the same notation as in Abstract theory I except the symbols g and K. Let Lbe a Hil-
bert space with the scalar product (., .), and the norm

Il = (o)
Let K be a convex closed subset of the cartesian product H X L. In H x Lwe define
the scalar product by

({U’ a}’ {T’ ﬂ})HxL = [0» T]H + (OC, B)L >

where

{o,a}eH x L, {r,B}eH x L.
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Let us denote
H' = H'Y((0, T), L).

Let oy € L be a fixed element such that {0, «,} € K. Let us suppose that for every
o€ C([0, T], H) there exists ye C([0, T], L) such that {o(1),y(1)} e K for all
te[0, T].

Problem II. Find o e H)((0, T), e H'((0, T), L) with «(0) = «, satisfying for
all 1e[0, T] the conditions
(40) o(t) — 0(t) eV,
(41) {o(t). a(t)} € K,

(42) j (607 = olw + (3 B — ))ds = 0

Q

v

Vee Hy((0, T), H), BeH'Y(0,T), L), B0)=ap,
©(s) — 0(s)e V, Vse[0,T],
{1(s), B(s)} e K, Vse[0,T].

Theorem 5. There exists at most one solution of Problem I1.

Proof. The proof is almost the same as that of Theorem 1.
Theorem 6. If there is a functional g defined on H x L such that
(43) the Fréchet derivative

g'(0,0) = {gi(0, 2), g5(0, 0)} e H x L

exists and is monotone and Lipschitz continuous (see (4)),

(44) glo,0) =0 on H x L,
(45) g(o,2) =0 iff {o,0}eK,
(46) d(0,0) =0 if {o,a}eK,
(47) 9(0, a0) = 0,

then there exists a solution of Problem II.

Proof. We use a similar method as in the proof of Theorem 2. The condition (43)
implies the existence of a unique solution

{1 2} € Co((0, T), V) x Ci((0, T), L)

of the system
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(4) i+ L PGy + 0.2 + 20)) = ~PO),

n

(49) A + 1 g5(tn + 0,2, + 2) = 0.
P

Put o, = p, + 0,0, = 4, + a5. Then
(50) a,(t) — 0(t)e v, vte[0,T],
(5 (6.0 2+ 60, B+ (6800 071 +

+ l(g’z(an(t), %(t), ). =0, VieV, VBeL, Vie[0, T].
E}I

Let us note that

(52) 6, + 1 gi(o,, a) e V.
€

n

In (51), put
t=(6,—0)+(0,—0), B=0d,+a,—7,

where y e C([0, T], L) is such that {0(t) + 0(1), (1)} eK for all 1e[0, T]. An
estimate can be established in a similar way as in the proof of Theorem 2. It is of the
form

(53) J’ 6w 6] ds + f (G dn)s ds + [on(0). on(i)]u +
+@mamm+§amamm§

ér[e + 0,0 + 0]y ds +jT(v,v)Lds, vie[o, T].

0 0

From (53) we obtain the existence of elements o € Hy, o € H', a(0) = o and con-
vergent subsequences (again denoted by ¢, and o,): 6, — ¢ weakly in Hj and o, — a
weakly in H'. We also obtain {a(1), «(t)} € K for all t € [0, T]. Instead of (15) we get
from (51) and (46) by monotonicity

t
(54) J {[6m T — 00t + (6 B — )L} ds 2 0.

0

Now (42) follows from (54) in the same way as (3) in Theorem 2.
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EXAMPLE II.

As an example of application of Abstract theory 11 we discuss in this section the
same boundary value problem as in Example I, but we consider the material with

isotropic hardening. The constitutive equation (19) is replaced by

(55) by = 8(F(0) = ) h [1 (o) ] T (o),

0oy, ij

where 5(x) = 0if x # 0, 3(0) = 1, he L,(G), 0 < h; < h(x) < h, a.e. on G (h, >
> h, > 0 are positive constants) and

n(t, x) = max (k, max f(a(s, x)))
0=s=t
is the so called experience.
Put

a=h'"?n. F(o,a)= h'""f(c) — a.

Then we can write (55) in the form

. . OF
(56) Pij = 067(0, (X),
do;;
oF
(57) —d=da (o, a),
Jdot

where (57) is a formal identity. Put
L=1Lyg9) and K = {{r,p}eS x L|F(r, ) <0 ae. on G} .
The following definition is derived from (56) and (57) similarly as Definition 1 from
(19).
Definition 2. 4 pair of functions
{o,a} e HY((0. T), S) x H'((0, T), L)

with a(0) = h'/?k satisfying for all t € [0, T] the conditions

(59) o(t) — 0(t)e A,
(60) {a(1), «(1)} € K,
(61) a(t) = bk,

(€2) j {[67 — oy + (6.8 — o)y} ds 2 0
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V{tr, B} e Hy x H' such that P(0) = h'?*k and Vse[0, T]:1(s) — 0(s) e #,
{1(s), B(s)} € K will be called a weak solution of the traction boundary value problem
for elastic-plastic material with isotropic hardening.

Theorem 7. There exists a unique solution in the sense of Definition 2.

Proof. Let us define a functional g on S x L by
(63) g(o, o) EJ {(F(o,2)")* + 1)'/2 — 1} dx.
G

Then the Fréchet derivative {g/, g5} exists, where

F(o,®)* oF
64 il )= — 24— (0,a) Ly »
(64) 95,00 ) (F(o, @)*)? + 1)V/2 doy, ) Lisu
F(a, ot)+
65 o, a) = — .
( ) 92(‘7 ot) ((F(a, tx)+)2 + 1)1/2
Denote
(66) —d, = Lgi(on ) (itisd, = 0),
8"

. 1 . OF

Pt = — g1,ij\On> 0) Mjjip = 0y ——— \Op, Gy
(67) 1,10 ) M (00 )

8" aokl

and put S = H, # =V, [0, t]s = [0, 7]y. We can use Theorems 5 and 6 to prove
the uniqueness, (59), (60) and (62). Since d, — d& weakly also in L,((0, T), L), we
have & = 0. This and o(0) = h'/2k implies (61). Let us observe that

1
d'n + — gll(o-m 0(n) € VL ’
&

therefore we have
(68) é(t) + p(t)e & forall te[0, T]
for e, defined by e, = Mo,
Theorem 8. Let a,, a, denote the approximate solutions from the proof of Theorem

7 and o, « their weak limits (¢, — 0 in H), o, — ain H' as ¢, — 0+). Let

€n

il

- ~ . , OF
Man: eEMU, PHEO("—“‘(O'",(X"),
oo

pzdg@JL Mgzﬂm@m,p@zf}@m,

0

g, =€t Py, E=€+p.
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Then the sequences a,, e,, «, and a suitable subsequence again denoted by p, fulfil

a) g, - o strongly in C([0, T], S),

b) e, — e strongly in C([0, T], S),

¢) o, - a strongly in C([0, T], L),

d) p, — p weakly in Ly((0, T), S),

e) &(1) = e(t) + p(t) is a compatible tensor for all t € [0, T],

f) oft, x) = max (h'/?(x) k,omax h'*(x) f(o(s, x))) a.e. on G, for all te[0, T].
<sst

Proof. a) and b) can be proved in the same way as Theorem 3. The linearity of
e = Mo implies ¢). Using Lemma from the end of Preliminaries and putting

. _OF
v, = o, u, = ai(am (xn) 5
a

we find d); note that the first derivatives of f are bounded and ¢, — 0, &, — a point-
wise on (0, T) x G by the just proved assertions a), b). We can see immediately that
&,(t) — &(1) weakly in S and (68) implies ¢). It remains to prove f). Put

flo) = W'*f(o), k= h"?k,
A(t, x) = max (k(x), ;Llai(,f(a(s’ x))) .
Since f, i1, a € H'((0, T), L,(G)), we find that the functions
£0) = Jo(t, %), ni(1) = At x),
a(t) = oft, x)
are absolutely continuous on [0, T] a.e. on G. It is
n(0) = 2(0) = k(x), &, =0, i,20, f,<a, on [0,T].

Take a fixed t € [0, T.

It is either f,(t) = n(t) and consequently n(f) < a (1), or f(f) < ny(t). In the
Jatter case we have 71,(1) = 0, () = 0. Put 7 = sup (s € [0, 7] | f(s) = n(s)). Since
i, = 0,d, = 0a.e. on (i, 1) and n(7) < af), we obtain n (1) < a(1).

Now we show that n(t) = o(t) on [0, T]. In (62) put © = o, f = A. It follows
that: n(s) < a,(s) implies d,(s) = 0. Put 7 = sup(se[0,1]|ns) = as)). Let
i <1 Then0 < 7 < t,n(i) = afi)and on (i, 1) it is n(s) < a(s). Hence d,(s) = 0
a.e. on (i, 1). This implies that « (1) = n (i) £ n,(1) < a(r) = «,(i), which is con-
tradiction. Since this consideration is correct a.e. on G, we conclude that f) is
proved.
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Souhrn

EVOLUCNI VARIACNI NEROVNICE
A JEJICH APLIKACE V PLASTICITE.

JINDRICH NECAS, LUDEK TRAVNICEK

V prédci je studovdna abstraktni teorie evolucnich variacnich nerovnic motivova-
nych klasickou pfirustkovou teorii plasticity. V existen¢nich ditkkazech se pouzZivd
metoda penalisace. Jako priklady aplikace teorie jsou diskutovdny hrani¢ni ulohy
pro elasticko-plastickd télesa bez zpevnéni i se zpevnénim deformaci.
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