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SVAZEK 25 (1980) A P L I K A C E M A T E M A T I K Y ČÍSLO 4 

EVOLUTIONARY VARIATIONAL INEQUALITIES 
AND APPLICATIONS IN PLASTICITY 

JlNDRICH N E C A S , L U D E K TRAVNICEK 

(Received January 30, 1978) 

INTRODUCTION 

This paper concerns an abstract mathematical theory of evolutionary variational 
inequalities of two different types motivated by the classical flow theory of plasticity. 
The quasi-statical traction boundary value problems in infinitesimal strain approach 
for elastic-plastic bodies both with and without strain hardening are presented as 
examples. 

The mathematical theory of plasticity leads to variational inequalities. Duvaut -
Lions [ I ] have proved existence of solutions of these inequalities for materials without 
hardening. However, in the quasi-statical case of the traction boundary value problem 
their assumptions are too strong, thus restricting essentially the applicability of the 
theorem. 

To our knowledge the existence proof for the boundary value problem for elastic -
plastic materials with hardening has not yet been accomplished. From the physical 
point of view this case has been discussed by Nguyen [2]. By means of the here 
introduced plastic potencial, Nguyen formulates the problem as an evolutionary 
variational inequality. In comparison with parabolic variational inequalities there 
is no coercive elliptic term in Nguyen's inequality. 

In the course of the proof-reading we have got acquainted, before its publication, 
with the paper [3] by Dr. K. Groger, who solves a similar problem by formulating 
it as a parabolic inequality. The main difference between our treatment and that of 
Dr. K. Groger is his assumption of nondegenerative kinematic hardening. 

In our paper we use the penalty method to prove existence theorems for inequalities 
of Nguyen's type. It is interesting that the equation with a penalty term has the physical 
meaning of artificial viscosity with internal variables. With some caution we can say 
that the above mentioned penalty method is also of constructive character. For 
related problems see the papers [4], [5], [8], [9] and the book [10]. For general 
questions, see the book [6]. 
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PRELIMINARIES 

In this section we collect the mathematical notation, definitions and assertions 
used later. The proofs can be found in [11]. 

Let H be a Hilbert space with a scalar product [., . ] H and a norm | | . , . |L = 
= [., - ] H

/ 2 , V a closed subspace of H, V1 the orthogonal complement of V in H 
and Pv : H -> V the orthogonal projection on V. 

Denote by C([0, T], H) the space of all continuous functions o : [0, T] -> H with 
the scalar product 

(a, т) 
Л ľ 

L2((0,Г),ff) K0> т ( ř ) ]и d í 

Jo 

and the norm 

| | ° | | L 2 ( ( 0 , T ) , H ) ~ (°*? °"JL2((0,T),H) • 

The closure of C([0, T] , H) with respect to the norm ||. ||L2((o,T),H) is denoted by 
L2((0, T), H). It is a Hilbert space of Bochner strongly measurable and square 
integrable functions o : (0, T) -> H. Let o e C([0, T] , H), t e [0, T] . We define 

•/ \ 1- a(S) ~ °"(0 /• rr\ 
o{t) = lim —v-; ---- (in H) , 

s-+ t S — / 

whenever this limit exists (if t = 0 or t = T, we consider 5 —> t-F or 5 —> t —, re­
spectively). C j([0, T], H) denotes the subspace of C([0, T] , H) such that o e 
e C([0, T] , H) with the scalar product 

(<*, ^ H 1 

and the norm 

\[a{t), т(0]я + [à(t), Ť(t)]н} dt 
0 

I - ( \lľl 
I Я 1 = ^ . , . ( Н l 

By Co([0, T], H) we denote the subspace of C !([0, T], H) such that <j(0) = 0 with 
the scalar product 

(^ т )я 0 - = í \ý(t), x(t)] dí 

and the norm 

1H01 I - ( V'2 

IHo1 - \»> »1F ' 

The closure of C !([0, T], H) or Co([0, T], H) with respect to the norm | | , |H i or 
||. ||Hoi is denoted by ^ ( ( 0 , T), H) or ^ ( ( 0 , T), H) (briefly H1 or H0), respectively. 
H1 or H0 is a Hilbert space with respect to the scalar product (., .)Hi or (., .)Hoi, 
respectively. | | . | H i , IMHo1 r eP r es ent equivalent norms on HJ. Let o e H1 or H0, 
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on e C1 or CJ, on —> O in H1 or II0, respectively. The time derivative o of o is defined 

by o = lim G;I in L2((0, T), H). To o e H1 there exists G e C([0, T], H) such that 

o(t) = O(t) a.e. on [0, T]. In this paper we use only these continuous representants 

a of the elements o e H1. Let o, r e H1, tx, t2 e [0, F]. Then 

[<т, т ] н ds 
^

t2 

[<r, t ] f l ds = \o(t2), r(t2)]H - [ff(fj), -(<•.)]„ -

(consequently 

' [ * , a ] H d 5 = ilKOII* - i lKodln) -
Jo 

If a sequence one H1 or H0 converges weakly to G in H1 or H0, respectively: O,. -> o, 

then O-„(t) -> cr(r) weakly in H for all t e [0, T]. 

Denote by W1,2(G) the Sobolev space 

И^2(G) = Jt>єL2(G) ^ є L 2 ( G f i = 1,2,3}.. 
ŐX: 

Here G is a bounded domain, G cz R3. Let S be the Hilbert space of all symmetric 
tensor functions o = {<?//} *,;.-. 1,2,3* °"IJ ~ ĵr* ^ij^L2(G) with the scalar product 

(O, T) s = OTyTy d x (a, т) s = cгf 

and the norm | | . | | s == (., .)s / 2 (throughout the whole paper the summation convention 

is used). The formula 

defines a tensor function Q : [W 1 , 2 (G)] 3 -» S. Let JT denote the range of O and ^f the 

orthogonal complement of JT in S. It is well known that X and ^f are closed sub-

spaces of S ([4], [5]). 

Let S be the space of all symmetric tensors o = {CT,*J},-,J = 1,2,3? aij — ajh °ij E RX 

with the scalar product (o, r)§ = o^x^ and the norm 

I-IU = - ( . . . ) ł W2 

We conclude this section with a trivial lemma. 

Lemma. Let un e L ^ O , T) x G), \un\ fg C < 00, u„ —> w pointwise a.e. on (0, T) x 
x G, v„ e L2((0, T), S), vn —• v weakly in L2((0, T), S); then w., . v„ -> it . v weakly in 

L2((0, T), S). 

243 



ABSTRACT THEORY I 

In this section we present in the abstract form a special type of evolutionary 
variational inequality. Its form is motivated by the boundary value problem for 
elastic-plastic material without hardening (this is shown in the section "Example I"). 
We first formulate a certain abstract problem and then prove uniqueness, existence 
and convergence theorems concerning the solution of this problem. 

Let K be a convex closed subset of H and let 0 e Co([0, T], H). 

Problem I. Find o e H0 such that for all t e [0, T] , 

(1) o(t)-0(t)eV, 

(2) o(t) e K , 

(3) [o\ T — G]H ds = 0 for all T e H0 for which 
Jo 

T(S) - 0(s) e V for all se [0, T] , 

T(S) e K for all s e [0, T] . 

Theorem 1. There exists at most one solution of Problem I. 

Proof. Let or1, o2 be two solutions. Taking o — ol, T = o2 or o 
(3), we obtain 

Í [a2 - a1, a1 - a2]„ ds = i\\a2(t) - a\t)\H ^ 0 , q.e.d. 
i o 

Theorem 2. If there is a functional g defined on H such that 

(4) the Frechet derivative g' exists and it is monotone: 

[g'(a) - g'(x), a - T ] H ^ 0 , V<r, T e H 

and Lipschitz continuous: 

\\g'(a) — a'(T)||H g C\\a — T||H for some C > 0 , \/a, x e H , 

(5) a ( < r ) ^ 0 on H, 

(6) g(a) = 0 iff oeK, 

(!) </'(*) = ° '/ °eK> 
(8) g(0) = 0 

and there is y > 0 such that 
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(9) 0(t) + yd(t)eK for all t e [0, T] , 

then there exists a solution of Problem I. 

Proof. Let en tend to zero through some sequence of positive numbers: en -» 0 + , 
en > 0. For each en, (4) implies the existence of a unique solution //„ e Co([0, ^]? ^0 
of the equation 

k + -Pv(9'{»n + 0))= -Pv(6). 

Put o"n = /L,, + 0. Then 

(10) crn(t) - 0(f) e V for all f e [0, T] , 

(11) [an(t), f ] H + (\\en) [g'(an(t), f)]H - for all t e [0, T] 

and all f e V. 

Let us remark that by (11) we have 

(12) dn(t) + 1 g'(an(t)) e V1 for all f e [0, T] . 
zn 

Taking f = y(&„ - 6) + (on - 0) e C([0, T] , V) in (11), then integrating (11) over 
(0, t), using (7), the formula 

— g(<0 = [g 'W'^H 
at 

and the fact that 0 + y0 e K, we get 

7 
J o 

1 

f' 1 1 
[&n, &n~]H ds + - [<,„(*), <7„(t)]H + - yg(vn(t)) + 

Jo 2 8n 

- P [a ' (0 + yd), 0 + T0 - crJH ds -
n J 0 

- ~ f [g 'K)> ^ + ydu- <Jn\H ds = P [<7„, 0 + y9]H ds . 
£/j J o Jo 

Using monotonicity and the inequality 2ab ^ (l/£) a2 + £b2, V£ > 0, we get for 
some constant C > 0 the estimate 

(13) f [&„, <r„]H ds + [Gn(t),o„(tj]H + - g(a„(t)) ^ 
Jo en 

[yd + 6, y9 + 0]„ ds . < C 
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This estimate implies the existence of an element o e Ho and a subsequence (again 
denoted by on) convergent to o weakly in IIJ: on -> o. It follows that on(t) —> o(t) 
weakly in H for all t e [0, T] . Further, since g is weakly lower semicontinuous due to 
its monotonicity, (13) implies g(o(t)) = 0 for all t e [0, T] . Hence we see that (2) 
is satisfied. Since Vis closed, we obtain also (l). It remains to show (3). From (11) 
and (7) it follows that 

(14) [án, т - (т„]я ds + — [gr(on), т - on~]н ás 
ön J 0 

[gГ(т)> т - Ö-„]Я ds - 0 
Sn J 0 

for all T e H0 such that T(S) — 6(s) e V, T(S) e K for all s e [0, T] . By monotonicity 
and (14) we have 

(15) 0 = f [on, T - on]H ds = f [>„, T ] H ds - %\\on(t)\\2

H. 
Jo Jo 

Using (15) we see that 

0 ^ lim sup f [*„, T]H ds - I lim inf ||r/„(t)||g ^ 

[(7, T ] H ds - i||<x(0||H = \?> T ~ < ]̂H ^ • 

This completes the proof of Theorem 2. 

Theorem 3. Let on, o denote the approximate solutions from the proof of Theorem 2 

and their weak limit, respecively. Then we have on -* o strongly in C([0, T], H). 

Proof. Taking T = o in (15), we get 

[on, o - on]H ds = 0 . 

It follows 

(16) i K ( 0 - o-(t), ^ ( t ) - o-(t)]ff g I [d, o- - on]H ds . 

Since on -+ o weakly in Ho, we have on -> o~ weakly in L2((0, T), H). Put 

\l/n(t) = [o-, o- - O-JH ds . 

The sequence of the functions \j/n is pointwise convergent to zero and uniformly 

bounded on [0, T] . It is 
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-r\\an(t)-a(t)\\2
Hdt [Ł(t) dí 

and by the Lebesgue Theorem we get an -> a strongly in L2((0, T), H). It follows from 
(16) that 

-JIN)) - *(t)\2H ^ f { | |^) | |H • Hs) - an(s)\\H} ds £ 
Jo 

— II0" II Ho1 ' ||° ~ °*/.||L2((0tT)tH) •_ 

This implies that an —> a strongly in C([0, T] , H). 

EXAMPLE I. 

As an example of application of Abstract theory I we study in this section the 
traction boundary value problem for an elastic-plastic material without hardening 
in infinitesimal strain approach. First we show a motivation of the definition of 
a weak solution of this problem. In this consideration we suppose the functions 
s, e, p, a, X introduced below to belong to or to have components from C1([0, T] , 
L2(G)). Let us consider a body in the time interval [0, T] occupying at time t = 0 
a bounded domain G cz R3 with lipschitz boundary dG. Let u denote the vector of the 
displacement field at a fixed time t e [0, T] . The strain tensor e is defined by 

1 fdu: du:\ . . A ^ „ 
£,-; = o \7r + ir ; hJ = 1 , 2 ' 3 > 

2 \vXj ox-J 

uke W''2(G), k = 1,2, 3 . 

Denote by <?, p the elastic and plastic parts of e, respectively, and suppose that 

(17) etj = eu + pu for all t e [0, T] , a.e. on G . 

The constitutive equations for e and p are supposed to be of the form 

(18) eu = Mijklakl, 

(19) pij = X-f~(a); 
dau 

here 1 and a are such that X = 0 for f(<r) < k, 1 ^ 0 for f(a) = k, f(cr) _ k in the 
course of deformation (k is a constant), <J denotes the stress tensor, X is an undeter­
mined nonnegative function and f is the so called plasticity function. We suppose 
f to be a convex function on S with bounded first and second partial derivatives, 
such thatf(O) < k and iff(r) ^ k, then 
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Of , , df , , „ 

.r(T)r-(T)>0-
Let M/yju denote elasticity coefficients of Hook's law such that 

(20) Mijkl = My i J k J =- Mklij e LJG) ; i,j, fc, / = 1, 2, 3 . 

(21) CillTl^T^M^x)^^ C2||T||| 

a.e. on G for all T e S , C2 > Cx > 0 . 

Now (21) implies existence of a matrix Lijkl inverse to Mijkl in S a.e. on G such that 

(22) (Tij = Lijklekl, 

(23) Lijkl = LJiki = Lklij e L^G) , i,j, fc, / = 1, 2, 3 , 

(24) C 3 | | T | | | ^ T f iL l i H(x) xkl = C 4 | | T | | | , 

a.e. on G for all T G S ; C4 > C3 > 0 . 

We introduce another scalar product on S by 

(25) [a>, т ] s = (OijMІJklт:kł dx ; co, т є Ѕ 

The norms | |T | | S and [T, T ] S

/ 2 are equivalent. 

Let body forces 

TE[CJ([0,T],L2(G))]3 

and surface tractions 

g e [Ci([0, T], L2(dG))f 

be given and satisfy the global equilibrium conditions. We want to prove uniqueness 

and existence of a symmetric tensor field a such that (18), (19) are in some sense 

satisfied together with the equilibrium and boundary conditions 

(26) 0ijQij(v)dx = FiVidx + g/v/dS, 
J G J G J 6G 

V v e [ W 2 ( G ) ] 3 , Vte[0, T] 

and the condition e = e + p e C/f for all t E [0, T]. To this end we first formulate 

precisely what we mean by a solution. 

Denote 

£ = { T E S | / ( T ) g / c } . 

It follows that (19) can be written for all t e [0, T], a.e. on G in the equivalent form 

248 



(27) 

(28) ce K . 

Denote K = {T E S | j ( r ) ^ /c a.e. on G}. The relations (27) and (28) imply for all 
t 6 [0, T] 

(29) PtÁtu ~ °ÍJ) dx -á ° ' VT 6 /C ; 

(30) o- e K . 

Moreover, let us now suppose T to be time dependent and such that 

(31) I тij@ij(v) dx = Fi^; dx + g^i âS 
G J G J OG 

í 

for all v e [Wl
2(G)f and T e K for all t e [0, T], From (31) and (26) it follows that 

T - o e $e for all t e [0, T] . Further, e e X for all t e [0, T] implies e e JT, hence 

(32) f 8 l 7(t)(T l 7(t)-o- l 7(t))dx = 0 , V t e [ 0 , T ] . 

The relations (18), (29) and (32) yield 

*«(0 Mtufatf) ~ vM dx ^ 0 , Vt E [0, T] . 

It is well known ([10]) that there exists 9 e Co([0, T], S) such that 

(33) f 0,7o,7(v) dx = f F^dx+f g^dS, 
J G J G J dG 

Vve [W 0 (G) ] 3 , V te [0 , T] 

(e.g. the "elastic solution" of our problem). 
Now we find that T satisties (31) if and only if 

T - 0 e Jf , Vt e [0, T] . 

The foregoing considerations motivate the following definition of a solution. 

Definition 1, A stress field o e Ho((0, T), S) satisfying for all t e [0, T] the 
cO/tditiOtts 

(34) 

(35) 

(36) 

a(t) - (t) e X , 

a(t) e K , 

f [G, т - a~]s ds = 0 , Vт є Ho((0, T), S) 
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such that x(s) — 9(s) e Jf7, x(s) e K, Vs £ [0, T] w/l/ be called a weak solution of the 
traction boundary value problem for elastic-plastic material without hardening. 

Theorem 4. Let there be 0 e CQ([0, T] , S) satisfying (33) and y > 0 suc/i that 
f(0(t) F y$(0) = k/Or all t e [0, T] . Therc there exists a unique solution in the sense 
of definition 1. 

Proof. Put H = S,ye = V, [O, T ] S = [<r, T] H . Denote by M: S -> S and £ : S -> S 
the mutually inverse mappings represented by the matrices Mijkl and Lijkl. Wre find 
that V1 = £(JT) and Jf = M(VX). Let us define a functional g on S by 

(37) g(a)m[{{{U{a)-kVy + l)m_l]Ax 

(here y+ = ^(y + |y |)). Then the Frechet derivative 

(38) g'kl(a) = — [ M z ^ r J! l („) Lj 
v ; w (([/(<+>-fc]+)2 + 1 ) 1 / 2 ^ / 
exists. (Here #' is identified with an element of H with the scalar product [., .]#.) 

We can write also 

(39) Dg(a, z) = f I IMjzJUL JL (,) T I dx . 
1 0 JCl(([j(-)-/<]+)2 + l ) 1 / 2 ^ / ^ "J 

Then 

Dtf(<7, T) = |>'(<x), T ] S . 

The assumptions (4) —(8) can be easily verfied by a routine calculation and so we can 
use Theorems 1 and 2. 

ABSTRACT THEORY II. 

In this section we consider a problem similar to Problem 1. It is motivated by the 
boundary value problem for elastic-plastic material with isotropic hardening. We use 
the same notation as in Abstract theory I except the symbols g and K. Let Lbe a Hil-
bert space with the scalar product (., . ) L and the norm 

Hk-(V-)i/2-
Let K be a convex closed subset of the cartesian product H x L. In H x Lwe define 
the scalar product by 

({a-, a}, {T, P})HXL = [<r, x]H + (a, fi)L , 

where 

{a, a} eH x L, {T, £} e H x L. 
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Let us denote 

i i 1 = H\(0, T), L). 

Let a0e L be a fixed element such that {0, a0} e K. Let us suppose that for every 
a e c([0, T], H) there exists y e c([0, T], L) such that {o(t), y(t)} e K for all 
t e [0, T]. 

Problem II. Find a e H0((0, T), aeHl((0, T),L) with a(0) = a0 satisfying for 
all t e [0, T] the conditions 

(40) o(t)-9(t)eV, 

(41) {o(t), a(t)} e K , 

(42) f ([&, x - o]H + (a, p - a)L) As ^ 0 

VxeHl
o((0,T),H), fi e f/'((0, T), L ) , 0(0) = a0 , 

T(s) - f l (s )eV , Vse[0, T], 

{T(S), 0(S)} e K , Vs e [0 , T] . 

Theorem 5. There exists at most one solution of Problem II. 

Proof. The proof is almost the same as that of Theorem 1. 

Theorem 6. If there is a functional g defined on H x L such that 

(43) the Frechet derivative 

g'(a, a) = {gi(o-, a), g'2(o, a)} e H x L 

exists and is monotone and Lipschitz continuous (see (4)), 

(44) g(cr, a) = 0 on H x L , 

(45) g(a-,a) = 0 /# {ex, a} e K , 

(46) g'(a, a) = 0 if {a, a} e K , 

(47) g(0, a0) = 0 , 

then there exists a solution of Problem II. 

Proof. We use a similar method as in the proof of Theorem 2. The condition (43) 
implies the existence of a unique solution 

{fin, Xn} e Co((0, T), V) x Co((0, T), L) 

of the system 
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(48) fin + i PF(g;(^ + M „ + a0)) -= - P K ( 0 ) , 
Zn 

(49) ^ + - g 2 ( ^ + M n + ao) = 0 . 

Put on = fin + 0, an EE A„ + a0. Then 

(50) on(t)-0(t)eV, V te [0 , T ] , 

(51) \_*n(t), f]H + WO, J5)L + - £Vi W0> a*(0)> *]e + 

+ - ( g 2 W 0 ^ « ( 0 ) J ) L = O, VfeV , V £ e L , V te [0 , T] . 
fin 

Let us note that 

(52) on+
1-gf

1(olvan)eV^. 

e« 

In (51), put 

f EE (rjn - 6) + ((7B - 0), /? s dM + ctn - 7 , 

where y e C([0, T] , L) is such that {0(0 + 0(O> K 0 } e J K : f o r a11 ' G L°> T ] - A n 

estimate can be established in a similar way as in the proof of Theorem 2. It is of the 
form 

(53) J [<7„, * J H ds + J (<*„, dn)L ds + [dw(0, cxn(0]H + 
Jo Jo 

+ (a„(«), a„(f))L + - g(on(i), a„(t)) S 

S f [0 + 0, 0 + 0]„ ds + f (y, y)L ds , V< e [0, T] . 
Jo Jo 

From (53) we obtain the existence of elements o e H0 , a e H1, a(0) = a0 and con­
vergent subsequences (again denoted by on and ocn): on -> o weakly in H0 and an -> a 
weakly in H1. We also obtain {<x(t), a(t)} e K for all t e [0, T] . Instead of (15) we get 
from (51) and (46) by monotonicity 

(54) f {[dn, T - < | H + (<*„, j? - a„)L} ds ^ 0 . 

Now (42) follows from (54) in the same way as (3) in Theorem 2. 
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EXAMPLE II. 

As an example of application of Abstract theory II we discuss in this section the 

same boundary value problem as in Example I, but we consider the material with 

isotropic hardening. The constitutive equation (19) is replaced by 

(55) ptJ = <5(/(<т) - n) h 
dakl 

^ W , 

where S(x) = 0 if x 9-= 0, 3(0) = I, he LjG), 0 < ht ^ h(x) ^ h2 a.e. on G (h2 > 

> h! > 0 are positive constants) and 

n(t, x) ~ max (k, max f((j(s, x))) 

is the so called experience. 

Put 

a = h1/2n , F(a, a) = hl/2f(a) - a . 

Then we can write (55) in the form 

OF 

(56) ptJ = d — (a, a) , 
day 
dF 

(57) —a = a — (O, a) , 

doc 

where (57) is a formal identity. Put 

L = L2(#) and K = {{r, f}} e S x L | F(r, /i) ^ 0 a.e. on G} . 

The following definition is derived from (56) and (57) similarly as Definition 1 from 

(19). 
Definition 2. A pair of functions 

{a, a} e Wj((0, T), S) x H]((0, T), L) 

with a(0) = h1/2/c satisfying for all t e [0, T] the conditions 

(59) <r(<) - 0(t) e jf , 

(60) M O , *(t)} 6 K , 

(61) *(t)^hll2k, 

(62) J {[&, x - a\ + (a, j8 - a) t} ds ^ 0 
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V{T, p} E Hl
0 x H1 such that j8(0) = hJ/2k and Vs e [0, T] : T(S) - 9(s) e tf, 

{T(S), p(s)} G K will be called a weak solution of the traction boundary value problem 
for elastic-plastic material with isotropic hardening. 

Theorem 7. There exists a unique solution in the sense of Definition 2. 

Proof . Let us define a functional g on S x L by 

(63) g(a, a) = f {((F(a, a)+f + l)1'2 - 1} dx . 

Then the Frechet derivative [g[, g2} exists, where 

(CA\ > ( \ F(0-> °0 + dF ( \ r 
(64) gltkl(o, a) = — - \ ' — (<r, a) L v w , 

((F(cr, a)+)~ + 1)1/2 doij 
(^\ >( \ F(cr, a) + 

(65) g2(o, a) = - -((F(cr,a)+)2 + l ) 1 / 2 

Denote 

(66) - a w = - g2(cjM, an) (it is a„ ^ 0) , 
£* 

1 3F 
(67) p,ljU = - g'1$ij(on, an) Mijkl = an — (an, an) 

and put 5 = H, ^f = V, [cr, T ] S =• [<x, T] H . We can use Theorems 5 and 6 to prove 
the uniqueness, (59), (60) and (62). Since dn -> a weakly also in L2((0, T), L), we 
have a ^ 0. This and a(0) = h1/2k implies (61). Let us observe that 

on + - g[(on, an) e V1 , 

therefore we have 

(68) *»(') + A . ( 0 e J f fo ra11 ' e[0,T] 

for en defined by en = Mon 

Theorem 8. Let on, an denote the approximate solutions from the proof of Theorem 
1 and o, a their weak limits (on -* o in IIJ, an -> a in H1 as sn ~> 0 + ). Let 

^ dF 
en = Mon, e = Mo , pn = dn-~ (an, an) , 

CO 

. ÔF 
P^*Ta ( f f .«) > л.(0 s P " ( s ) d s ' КО = К s ) d s . 

Jo Jo 

E„ = Є„ + P„, £ = Є + p . 
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Then the sequences an, en, an and a suitable subsequence again denoted by pn fulfil 

a) an -> a strongly in C([0, T], S), 

b) en -> e strongly in C([0, T], S), 

c) ocn ~> a strongly in C([0, T], L), 

d) pn -> p weakly in L2((0, T), S), 

e) s(t) = e(t) + p(t) is a compatible tensor for all t e [0, T], 

f) a(t, x) - max (h1/2(x) k, max h1/2(x)f(G(s, x))) a.e. on G, for all t e [0, T] . 

Proof, a) and b) can be proved in the same way as Theorem 3. The linearity of 
e = Ma implies c). Using Lemma from the end of Preliminaries and putting 

df 
vn = dn , un = — (an, <xn) , 

da 

we find d); note that the first derivatives off are bounded and an -> a, ocn -> a point-
wise on (0, T) x G by the just proved assertions a), b). We can see immediately that 
ejt) -> s(t) weakly in S and (68) implies e). It remains to prove f). Put 

f(a) -. hl'2f(a), k = hl<2k, 

h(t, x) = max (k(x) , max f(a(s, x))). 

Since f, n, oc e Hl((0, T), L2(G)), we find that the functions 

fjt) = f(°(t, x)) , njt) = n(t, x), 

ocjt) _ a(t, x) 

are absolutely continuous on [0, T] a.e. on G. It is 

nJO) = a JO) = k(x) , ax = 0 , w, = 0 , fx = ax on [0, T] . 

Take a fixed t e [0, T] . 
It is either f^t) = njt) and consequently njt) rg ocjt), or f^t) < nx(t). In the 

latter case we have njt) = 0, djt) = 0. Put i = sup (s e [0, t] |fc(s) = njs)). Since 
wx = 0, dx _ 0 a.e. on (t, t) and njt) _ a^t), we obtain njt) rg ax(t). 

Now we show that njt) = ax(t) on [0, T] . In (62) put T = a, p = n. It follows 
that: njs) < ocjs) implies djs) = 0. Put t = sup (s e [0, t] | njs) = ax(s)). Let 
t < t. Then 0 ^ t < t, njt) = ocjt) and on (t, t) it is njs) < ocjs). Hence djs) = 0 
a.e. on (i, t). This implies that ocjt) = njt) ^ nx(t) < ax(t) = ocjt), which is con­
tradiction. Since this consideration is correct a.e. on G, we conclude that f) is 
proved. 
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S o u h r n 

EVOLUČNÍ VARIAČNÍ NEROVNICE 

A JEJICH APLIKACE V PLASTICITĚ. 

JÍNDŘICH NEČAS, LUDĚK TRÁVNÍČEK 

V práci je studována abstraktní teorie evolučních variačních nerovnic motivova­
ných klasickou přírůstkovou teorií plasticity. V existenčních důkazech se používá 
metoda penalisace. Jako příklady aplikace teorie jsou diskutovány hraniční úlohy 
pro elasticko-plastická tělesa bez zpevnění i se zpevněním deformací. 
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