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NONLINEAR ELLIPTIC PROBLEMS WITH JUMPING
NONLINEARITIES NEAR THE FIRST EIGENVALUE

PAVEL DRABEK

(Received October 11, 1979)

I. INTRODUCTION

Let Q be a bounded open subset of RY with a boundary 0Q. Let g : Q x R — R
be continuous function satisfying Carathéodory’s conditions and a certain type of
the growth condition, let a,; = a;, € L*(Q) and let g, v be two numbers, pv > 0.
We are concerned with the weak solvability of the Dirichlet problem
(1) Yo = (=)™ DY (a(x) D u(x)) + 2y u(x) + put(x) +

lal=|Bl=m
+ vu(x) + g(x, u(x)) = f(x) on Q,
Bu=0 on 0Q

(where u™*(x) = max {u(x), 0}, u~(x) = max { —u(x), 0} and B denotes the Dirichlet
boundary conditions) for a given real-valued right hand side fe LZ(Q) under the
assumption that A, is the first eigenvalue of the linear boundary value problem
(2) Y (=)™ D*(a(x) D' u(x)) — Zu(x) =0 on Q,
la|=[Bl=m
Bu =0 on 0Q,

and there is one and only one normed nonnegative eigenfunction v, % 0 correspon-
ding to 4,.

In the present paper we prove a result about the weak solvability of (1) analogous
to that in [2] but under less restrictive conditions upon g, v and g than in Fucik’s
paper [2]. The proof is based on the variational characterization of the eigenvalues
of (2). A similar method is used in [1].

2. PRELIMINARIES

We will denote by |u],, the norm in E = W{"?(Q), m = 1 is an integer and the
usual Sobolev space notation is employed; “Ho is the norm in I*(Q). The inner
product in E will be denoted by (u, v), while (u, v), stands for the inner product
in IXQ).
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Let us consider a formal differential operator
Lo Y (1) D) D).

|| = B =m

In what follows we shall assume

(3) ay(x) = ap,(x)e L7 (Q)
there exists ¢ > 0 such that
(4) 2 ”zﬂézéﬂ > ¢|¢ am

la| =B =m
for all & e RN
For u,vekE, sct

((u, v)) = J‘ Y a,D*uDfv.
Qlal=|8l=m

Remark 1. &, together with the Dirichlet boundary condition Bu = 0 on JQ,
defines by putting (Lu, v),, = —((u, v)) a linear bounded self-adjoint operator L
from E into E, with a countable set of eigenvalues 0 < 2, £ 1, < ... and a cor-
responding complete orthogonal set of eigenfunctions vy, v,. ... (see e.g. [5]). We
recall that 4, can be determined as follows:

Jx = min {g(l—’:z))), veE, (0,v)y=0, i=12,... k- I}.
lello

Let us denote by L, : E — E the linear operator dcfined by
(Lyu, v), = (Lu, v}, + 2(u, v), .

Let g(x,s) : Q x B — R be a function such that

(5) g is measurable in xe Q for all se R, and g is continuous in s for almost all
xe Q; g(x, 0)e [X(Q).

Moreover, let us suppose that there exists ¢, > 0 such that

(6) !g(x, s) — g(x, sz)| < c,ls1 — 52|
for all sy, s, € B and almost all x € Q. Let us remark that (6) implies
lg(x, s)| < lg(x, 0) + clM

for all s € R and almost all x € Q.
Define the mappings
N:E-E. G:E-E, F.:E-E
by the relations

(7 (N(u), v),, = 1t JQu*(x) v(x)dx + v J'sz(x) v(x) dx,
(3 (@) b = [ s ) () .
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o) (F o= [ /(0o 0

Jo
forallu,vek, fe LZ(Q),

Definition. A function ueE is said to be a weak solution of the boundary
value problem (1) if

(10) Ly(u) + N(u) + G(u) = F(f).

Remark 2. It is easy to sce that the mapping N defined by (7) is lipschitzian with
\H Indeed,

the constant max {!;1],

Tollm=1
i Il
_ = nAv i
S | (uy — uy) + —— (u; — uy)|l =
1 5 (uy 2) B (uy o)ho
= Y
< > Hu, - “2”0 + 17727 Hul - ”()Ho <

< max {‘/z|, \“ fuy = uyllp < max {‘;zl, M} fuy — u,)

m

If | F| means the norm of the linear mapping F defined by (9) then |[F|| < 1 (see [2],
Remark 4).

3. MAIN RESULT

Denote by P the orthogonal projection from E onto Ker L, and put P(x) = x —
— P(x), x € E. Suppose that
(11) Ker L, is the linear hull of v,, v, € E, v; 2 0 almost everywhere, v, # 0.
The restriction L, of the operator L; onto Im L, is a one-to-one mapping and there
exists a continuous mapping K : Im L; — Im L, which is called the right inverse
of L,. Thus for each x € Im L, we have x = KLx.

Lemma 1. Suppose (3)—(6), (11). Let '
(12) v >0, max {l;tl, M} + ooy <Ay — 4.

Then for an arbitrary te R and fe LZ(Q/) there exists exactly one v, ;elm L,
satisfying

(13) Li(v,;) + P*N(to, + v, ;) + P G(toy + v, ;) = P F(f).
Proof. Let f e IX(Q) be fixed and for every we Im Ly, t € R lct us denote

D (w) = Li(w) + P°N(tv, + w) 4+ P G(tvo, + w).
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We shall prove the lemma by showing that &, is a strictly monotone mapping in
Im L. For wy, w, € Im L; we have

(B,002) = Do i = W = — (0 = Wy = 0,)) +
oy =l () ) = ) ) )
() = o) a0 (009 4 i) = () o) ).
() = o) a4 [ ol (01 4 ) = a0 + ).

Q
(wi(x) — wy(x)) dx .
The inequalities (12) imply the existence of such an ¢ > 0 that
(1) = Pwa)s wi = wa)y £ = (W) = wa, wy = w2)) +
bl = sl 4 G = 2= ) =
The variational characterization of 4, implies

[w, — wzl|(2) < ((L—l‘l;“j,:f“'z))
! I = 4 .
1 /LZ

Using this fact we obtain

(@(w,) — @ (wy), wy — wy), £ — 'C ((wy = waewy —wy)).
/2

Since ((z, z))'"? is a norm in E equivalent to |z
known lemma of Minty (see [4]).

. the result follows from a well

Remark 3. Let us denote
(14) W, it PN(toy + v, ) + PG(tv, + vy) -

It is proved in [2], Lemma 2 that the equation (10) has a solution ug € E if and only
if there exists 1, € R such that

(15) Vy(to) = P F(f)

and, moreover, g = ty0; + Uy ;-
Remark 4. As in [2], instead of (15) we can consider an equivalent equation

(16) V1) = (F( ) 1) s

where (1) is a real-valued function defined by
(17) ‘//j'(’) = (ll/f(t)’ l‘l)m .
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Using the notation from Section 2 we have
(18) ‘/’j'([) = l‘} (1 04(x) + v, (x)" vy(x) dx +
Q

+ vj (v (x) + v /(x)7 vy(x)dx + j glx, toy(x) + v, (x)) oy(x) dx .
O Q
Remark 5. We shall assume in the sequel that the function g or —g is bounded
from below by a sublinear function in the case g > Oand v > O or t < Oand v < 0,
respectively; this means that there exist a function g, defined on Q x R and ¢, > 0,
o€ 0, 1), (x) e 12(Q) such that

Igl(x’ 5)] < r(x) + CZM(S
and

9(x.9) Z gi(x5) or —g(x.5) = g,(x.5)

for almost all x € Q and all se R.

Lemma 2. For a fixed e L*(Q) the function Wiy is continuous on R and

lim (1) = +oo
[t] =+ =
if £>0,v>0 and
lim (1) = —0
|t|—=

in the opposite cuase.

Proof. Fix fe [*(Q) and suppose
lim

According to the proof of Lemma | we have

d)x,.(vt,.,f) = (pto(ulo.f) = P° P(f) .

ty — o] = 0.

This fact implies

H(Drn(”'u.f) - q)tn(utmf)nm = “q)tn(”tu,f) - (plo(vlu-f)“m =
= ”PEN(IHUI -+ Dro‘f) - PCN(Ioul + Uzo,f) + PCG(tnUl + Ut(,,f) -

— PG(tgv; + vy ) £ (max {[u], v} + ¢1) |t. = 1o -
Analogously as in the proof of Lemma 1 we obtain
l f, — ,o[ > & (i = i g2 D1y p = i p))
Ay(max {ll‘l’ M} +¢r) 120 = Vio.rlim

which implies lim |

n—ow

Uln.f - Ulo.f”m = O
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The continuity of the function v (t) defined by (18) now follows from the necessary
and sufficient condition for the continuity of Némickij’s operator in the space [*(Q)
(sec e.g. [3]).

Let us suppose ;¢ > 0, v > 0 (the proof of the opposite case is analogous). Sup-
pose on the contrary that there exists {1,},2, < R, [1,,‘ — oo such that

(19) lim L <vl(x) + L7"“'f@)+v,(x)dx =0,

[t =% n

(20) lim L (u,(x) + lj""f(x)>_vl(x) dx =0

ltn}= o n

hold simultaneously. Then

0 L (ul(x) + lifv.:f(:*)> 0i(x) dx = Luf(x)dx

Ill

because v, ,/t, € Im L;. This is a contradiction with the assumption made at the
beginning of this section. The assertion follows from (18) because the function g is
bounded from below by a sublinear function.

Theorem. Let all the assumptions of Lemma 1 and Remark 5 be fulfilled, i > 0
and v > 0 Then there exists a lower semicontinuous function I':Im L, - R

such that inf F(/) > —ow for fe LZ(Q) and
F(f)elmL;
(i) the boundary value problem (1) has a weak solution for the right hand side

S e I1XQ) if and only if fe A, where
a = {re@ | sonmar = ref

(i) the boundary value problem (1) has at least two weak solutions for the right
hand side f e I2(Q) if and only if fe B,

B = {/'e LZ(Q);J‘f(x) vy(x) dx > I"(Q‘(f))} ,
0
where Q is the orthogonal projection from I*(Q) onto X = {fe [}(Q);
F(f)e Ker L,}.
Proof. If we put
I'(f) = min (1)

teR
for /€ I*(Q), F(f) € Im L, then the inequalities
1fv = Lol loer, = ool 2 [P F(f1) = PEF(2) | 00, = Orplm 2
z —(Pviy,) = Plvip ) Vg, = Vip)m =

e Y .
2 - ((Ur.f. — Vi Uigy — ”r,[:))’ 1e R, [(71) elmL,, i=12,
12

m
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imply the fower semicontinuity of I'. The other assertions of Theorem follow from
the previous lemmas and remarks.

Remark 6. Theorem is presented for the case ¢ > 0 and v > 0. In the opposite
case I' = max y (¢) will be an upper semicontinuous function and the inequalitics

in (i) and (iriE)Rwill be converse.
Remark 7. Let us consider the following simple boundary value problem:
u’(x) + 2u(x) =0, xe(0,n),
u(0) = u(n) = 0.
Let us denote by

(u. v}y = J ") v(x) dx + J‘ "u(x) o(x) dx

0 0

(1510 = {09 () 05

the inner products in W, *(0, n) and I2(0, m), respectively. In this case we have

e sup [— J W) /() dx + J () u(x) dx] <

K| iwii=1 uiii=1 o .

IIA

< inf sup [~ f ") w(x) dx + 4 J “w(x) u(x) dx — 3 |' :w(,\') u(x) dx]

lwilv=1[lull;=1 0 0 J

n 12
< 3\/3[.[ (sin 2x)? dx] = —3/5, where welmL, and ue W, (0,n).

St 0 vV

On the other hand, 2, — 4, = 3. This fact shows that the condition (12) is more
general than the condition |K| max {;, v} < 1 from the paper [2].

Remark 8. We put E = W™?(Q) if B denotes the Neumann boundary conditions.
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Souhrn

NELINEARNI ELIPTICKE PROBLEMY SE SKAKAJICi NELINEARITOU
V OKOL[ PRVNIHO VLASTNiHO CISLA

PAVEL DRABEK

V ¢ldanku je proveden rozbor existence a ndsobnosti feSeni nelinedrniho eliptického
problému

Lu+ dqu +put v + g u)=fvQ
Bu = 0 na 0Q,

kde parametry p a v se pohybuji v okoli prvniho vlastniho ¢isla 4,. Uvedené posta-
Cujici podminky jsou obecné&jsi neZ v prdci [2].
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